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Abstract: In the process of ship navigation, due to the characteristics of large inertia and large time
delay, overshoot can easily occur in the process of path following. Once the ship deviates from
the waypoint, it is prone to grounding and collision. Considering this problem, a sliding mode
control algorithm based on position prediction using the radial basis function (RBF) neural network
is proposed. The desired heading angle is designed according to a backstepping algorithm. The
hyperbolic tangent function is used to design the sliding surface, and the course is controlled by
sliding mode control. The second-order Taylor expansion is used to predict the future position, the
current error and future error functions are constructed, and the total errors are fed back to the desired
heading angle. In the sliding mode control system, the RBF neural network is used to approximate
the total unknown term, and a velocity observer is introduced to obtain the surge velocity and sway
velocity. To verify the effectiveness of the algorithm, the mathematical model group (MMG) model is
used for simulation. The simulation results show the effectiveness and superiority of the designed
controller. Therefore, the RBF neural network sliding mode controller based on predicted position
has robustness for ship path following.

Keywords: ship motion control; radial basis function; sliding mode control; velocity observer;
position prediction

1. Introduction

Ship transportation is an important mode of transportation, and it can transport a
large number of heavy cargoes. However, due to the ship’s low velocity, long sailing time,
and heavy workload of crew, in order to reduce the workload of the crew and improve
the safety of the ship, many ships adopt the automatic navigation system to automatically
track the preset course [1].

Many achievements have been made in the research of ship motion control, [2–4]
such as sliding mode control, [5,6] adaptive control [7–9], model predictive control [10],
and so on. In [11] a novel predictor-based line-of-sight (PLOS) guidance law for the path
following of underactuated marine surface vehicles was proposed, but only simple PID
control was used In [12], sliding mode control was introduced into the design of heading
autopilot, and the control law was derived by Lyapunov method. In [13], a pre-filter-based
sliding mode approach to control the steering system in oceangoing vessels was proposed
and it was compared with the PID controller. However, whether the parameters of the
PID controller were optimal remains to be discussed. In order to solve the problem of
underactuated with less control input, the path following control problem is transformed
into the heading control problem by the line-of-sight (LOS) guidance method [14]. LOS
was originally used in automobile guidance, and later, Fossen applied it in the field of
ships [15,16].On the basis of LOS guidance, reference [17] and reference [10] proposed a
method of using a variable circle instead of a fixed circle to improve LOS performance,
which can automatically adjust the radius of the receiving circle according to the angle
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between adjacent paths, so as to reduce the overshoot of ship path following. Based on
the parameterized LOS framework, a new sailing guidance principle was proposed [18].
In [19], an integral line-of-sight guidance law was presented, which was combined with
a sinusoidal gait pattern and a directional controller that steers the robot toward and
along the desired path. The guidance principle includes the mechanism of observing
the crab angle and generating a reference heading angle. In order to solve the overshoot
problem in the process of control path following, a tracking prediction model based on
curve was proposed [1], and the first-order position prediction and the second-order
position prediction were compared, but the results showed that their performance was
almost the same. An estimator-based backstepping controller was presented with an
estimator designed to provide a precise estimation of the disturbance and uncertainties
in [20]. In [21], an original ship course-keeping algorithm based on a knowledge base
was proposed. In [22],a novel data-driven sideslip observer-based adaptive sliding-mode
path-following control scheme was proposed for underactuated marine vessels in the
presence of large and time-varying sideslip.

The radial basis function (RBF) can determine the corresponding network topology
according to specific problems. It has the functions of self-organization, self-learning, and
self-adaptation. It has uniform approximation to nonlinear continuous functions and fast
learning speed, so it is well respected by the majority of scientific research workers. A
recursive neural network maneuvering simulation model for surface ships was proposed
in [23]. A model predictive control (MPC) method [24] was proposed for the path following
problem of underactuated surface ships with input saturation, parameter uncertainty,
and environmental disturbance. It was used to compensate unknown factors such as
parameter uncertainty and environmental disturbance. In [25], the dynamic surface control
technique was introduced into the neural network adaptive control design framework,
and the backstepping-based control design was carried out for a class of nonlinear systems
with arbitrary uncertainties and strict feedback forms. In [26], neural networks were
utilized to identify the unknown nonlinear terms induced by uncertainties and actuator
faults. To reduce the computational burden caused by estimating the weight vectors, the
norms of weight vectors were used for the estimation. In [27], a new neural network
finite-time formation control algorithm was proposed to solve the problem of actuator
failure of underactuated surface ships, and the error was approximated by the neural
network. In [28], the RBF neural network was applied to the path following problem of the
underactuated cable-laying ship to solve the problem that the model of the cable-laying
ship was uncertain and has an external interference. In [29], based on the sliding data
window observer to adjust the structure and parameters in real time, an online prediction
model of ship rolling motion based on the variable structure radial basis function neural
network is proposed. On the basis of the above research, this paper proposes a new RBF
neural network sliding mode control algorithm for ship path following based on position
prediction. The main contributions of this paper are as follows:

(1) Three-degree-of-freedom track tracking control is transformed into course control by
the backstepping algorithm, and the future position is predicted by the second-order
Taylor expansion method. The current error and future total error functions are
constructed, and the errors are fed back to backstepping to form the desired heading
angle in order to solve the problem of the inability to track the waypoint without
overshoot in the process of following.

(2) The RBF neural network and sliding mode control are combined to estimate unknown
disturbance by the RBF neural network and feedback to the sliding mode controller
to solve the external interference and the internal model uncertainty.

(3) The nonlinear observer is used to obtain the velocity and solve the problem of un-
known ship velocity.

The paper is constructed as follows: Firstly, Section 2 introduces the mathematical model
of ship motion, including the simulation model and design model. Next, Section 3 describes
the design process of the ship motion controller, including backstepping, the RBF neural net-
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work, and second-order Taylor formula. Then, Section 4 presents numerical simulation results.
The ship path following effect based on position prediction is compared with that without
prediction, and the algorithm proposed in this paper is compared with other algorithms.
Finally, Section 5 provides the conclusions of this paper.

2. Ship Motion Model
2.1. Simulation Model

With the development of autonomous ship technology, the modeling technique for
ship maneuvering motion has attracted wide attention. A reliable mathematical model
has a highly practical value for providing accurate motion predictions or designing a
control system [30]. In this paper, MMG (the mathematical model group) [31] is used as
the mathematical model of ship motion. The MMG model is based on profound theoretical
analysis and a large number of experiments. It decomposes the hydrodynamic force
(moment) acting on the ship into the hydrodynamic force (moment) acting on the ship,
propeller, and rudder, and considers the interaction between the hydrodynamic forces
(moments). Figure 1 shows coordinate systems used to describe ship motion. In a world
coordinate system, x0 axis points toward north and y0 axis points towards east. Here, (x, y)
is the position of the ship in the world coordinate system. The angle between the center line
of the ship’s head and tail and the x0 axis is a course angle called ψ. In a local coordinate
system (u, v) that is fixed to the ship, u and v axis point toward a surge direction of the ship
and a sway direction of the ship, respectively. u and v are the surge velocity and the sway
velocity in the local coordinate system. r is the yaw rate of the ship. Total velocity relative
to the ground is V = (u2 + v2)

1/2, drift angle b = arctan(v/u). δ is the rudder angle.

.
x = ur cos ψ− vr sin ψ + Vc cos ψc = u cos ψ− v sin ψ
.
y = ur sin ψ + vr cos ψ + Vc sin ψc = u sin ψ + v cos ψ
.
ψ = r
.
u =

[
(m + my)vr + XH + XP + XW + XWAVE

+(mx −my)Vc sin (ψc − ψ)r

]
/(m + mx)

.
v =

[
(m + mx)ur + YH + YP + YW + YWAVE

+(mx −my)Vc cos (ψc − ψ)r

]
/(m + my)

.
r = (NH + NP + NR + NW + NWAVE)/(IZZ + JZZ)

(1)
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In Equation (1), m is the mass of the ship; mx and my are added mass; XH , YH , and NH
are the hydrodynamic forces and moments on the naked hull; XP, YP, and NP are propeller
force (moment); ψc and Vc are flow direction and velocity, respectively, XW , YW , and NW are
wind force (moment); Xwave, Ywave, and Nwave are wave force (moment); Izz is the moment
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of inertia of the ship around the vertical axis; Jzz is additional moment of inertia; and XR,
YR, and NR are rudder forces (moment), which are calculated as follows:

XR = −(1− tR)FN sin δ
YR = −(1 + aH)FN cos δ
NR = −(xR + aHxH)FN cos δ

(2)

In Equation (2), tR is the reduction in rudder resistance, aH is the ratio of additional
lateral force caused by the rudder and rudder lateral force, xH is the distance from the
center of action of lateral force induced by the rudder to the center of gravity of ship, and
FN is the positive pressure of the rudder.

2.2. Design Model

Path following does not need to consider the time factor, so in this paper, the propeller
speed is set as a fixed value, only considering the rudder angle input. Therefore, Equation
(1) can be simplified as the design model of Equation (3) [17].

.
x = u cos ψ− v sin ψ =

√
u2 + v2 cos(ψ + β)

.
y = u sin ψ + v cos ψ =

√
u2 + v2 sin(ψ + β)

.
ψ = r
.
r = − r

T + K
T δ + f

β = arctan(v/u)
f = f1 + d

(3)

In Equation (3), K is the ship’s cyclicity index; T is the following index; f1 is the
internal model uncertainty; d is the external interference uncertainty; and f is the sum of
the model uncertainty f1 and external interference d, that is, the total unknown term. It is
difficult to measure the surge velocity u and sway velocity v in practice.

2.3. Wind and Wave Interference Model

In order to verify the effectiveness of the controller below, this section introduces the
simulation ship Yulong ship used in this paper. The MMG model in Equation (1) is taken
as the simulation model. The parameters of Yulong wheel are the same as [32].

The wind force (moment) Xw, Yw and Nw in Equation (1) are calculated as follows [33]:
Xw = − 1

2 ρa A f U2
RCwx(αR)

Yw = 1
2 ρa AsU2

RCwy(αR)

Nw = − 1
2 ρa AsLoaU2

RCwn(αR)

(4)

where ρa is the air density; αR is the relative wind direction angle; UR is the relative
wind speed; A f and As are the forward projection area and side projection area above the
waterline of the ship; Loa is the total length of the ship; and CXw(λ), CYw(λ), and CNw(λ)
are the wind pressure (moment) coefficients.

Since large ships can resist the first-order wave interference in their navigation, this
paper only considers the second-order wave interference, and the wave forces (moments)
Xwave, Ywave, and Nwave are calculated as follows [34]:

Xwave =
1
2 ρLα2 cos χCXw(λ)

Ywave =
1
2 ρLα2 sin χCYw(λ)

Nwave =
1
2 ρLα2 sin χCNw(λ)

(5)

In Equation (5), λ is wave wavelength; χ is wave encounter angle; ρ is sea water
density; α is wave amplitude; L is ship length; and CXw(λ), CYw(λ), and CNw(λ) are wave
drift force (moment) coefficients.
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2.4. Assumptions

Since the longitudinal displacement is not considered in the path following, the ship
can follow the path by stabilizing the lateral displacement y to 0. Therefore, the control
objective of this paper is to set the propeller speed in advance and design the appropriate
rudder angle so that the ship can track the reference path, that is, the lateral displacement
deviation ye = 0. In the process of designing the controller, the following assumptions are
required:

(1) The ship state values, x, y, and ψ can be obtained.
(2) The uncertainty f is bounded, that is | f | < fmax.
(3) The second derivative of displacements x and y is bounded, i.e., |

..
x|≤ ..

xmax, |
..
y| <

..
ymax.

(4) The motion of the ship in roll, pitch, and heave directions was neglected.
(5) The ship had neutral buoyancy, and the origin of the body-fixed coordinate was

located at the center of mass [35].

3. Path following Controller

In this paper, the path following controller consists of two parts. The first part is
designing the desired heading angle based on the predicted future error and backstepping
algorithm; the second part is using the nonlinear sliding mode controller and RBF neural
network to realize the course control. The control structure is shown in Figure 2.
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3.1. Backstepping Algorithm

This section uses the backstepping algorithm designing the desired heading angle
according to the predicted future error. Firstly, the derivation of the lateral displacement
deviation

.
ye =

.
y− .

yd is obtained, and Equation (3) is substituted by:

.
ye =

.
y− .

yd
=
√

u2 + v2 sin(ψ + β)− dyd
dx ·

dx
dt

=
√

u2 + v2 sin(ψ + β)− tan θ · .
x

=
√

u2 + v2 sin(ψ + β)− sin θ
cos θ ·

√
u2 + v2 cos(ψ + β)

= cos θ ·
√

u2 + v2 sin(ψ + β)− sin θ ·
√

u2 + v2 cos(ψ + β)

=
√

u2 + v2sin(ψ + β− θ)

(6)

According to Equation (6), the desired heading angle is designed as follows:

ψd = −c0tanh(c1ye)− β + θ (7)
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In Equation (7), c0 and c1 are positive design parameters, the Lyapunov function
.

V1 = (1/2)y2
e is selected, and its derivative is obtained:

.
V1 = ye

.
ye

= ye
√

u2 + v2 sin((−c0tanh(c1ye)− β + θ) + β)

= −ye
√

u2 + v2 sin(c0tanh(c1ye))

(8)

Because the value of c0tanh (c1ye) is between (−π/3, π/3), sin (c0tanh (c1ye) is an odd func-
tion, and the sign is the same as ye. It can be obtained by −ye

√
u2 + v2 sin(c0tanh(c1ye)) ≤ 0;

thus,
.

V ≤ 0. Therefore, the designed reference course Equation (7) can make the path deviation
ye tend to 0.

However, in most studies, only the path deviation ye at the current time is considered,
which can easily generate overshoot at the turning point. In view of this, this paper predicts
the ship’s future position and then considers the path deviation in the present and future
time domains. This allows the ship to predict the path ahead of time, thus turning as early
as possible to avoid overshooting. First, according to Equation (3) and second-order Taylor
expansion, all ship positions in the future time domain n are predicted:

y(k + 1) = y(k) +
0
∑

j=0
(T

.
y(k + j)) + 1

2

0
∑

j=0
(T2 ..

y(k + j))

y(k + 2) = y(k) +
1
∑

j=0
(T

.
y(k + j)) + 1

2

1
∑

j=0
(T2 ..

y(k + j))

. . .

y(k + n) = y(k) +
n−1
∑

j=0
(T

.
y(k + j)) + 1

2

n−1
∑

j=0
(T2 ..

y(k + j))

(9)

In Equation (9), y(k+ n) is the predicted value of y at k+ n, T is the predicted sampling
time, and

.
y(k + j) is the discretization result of the second term in Equation (3).

.
y(k + j) = u(k) sin ψ(k) + v(k) cos ψ(k) (10)

The future error
.
y(k + j), j = 1, 2, ...n is calculated by the predicted value of Equation (9)

and reference path yd; n is as follows:
ey(k + 1) = y(k + 1)− yd(k + 1)
ey(k + 2) = y(k + 2)− yd(k + 2)
...
ey(k + n) = y(k + n)− yd(k + n)

(11)

According to Equation (11), the total path error including current time and future time
is constructed as follows:

yE(y, yd) = Pey(k) +
n

∑
j=1

Qey(k + j) (12)

In Equation (12), P and Q are weights to adjust the balance between current time error
and future error.

According to Equation (12), the virtual reference course is designed as follows:

ψd = −c1tanh(c0yE)− β + θ (13)

3.2. Design of RBF Neural Network Controller

The RBF neural network can approximate any nonlinear function, deal with the laws
that are difficult to analyze in the system, has a good generalization ability, and has a fast
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learning convergence speed [24]. In the RBF network, x = (xi)
T is the input of the network,

the output of the hidden layer of the network is h = (hj)
T , and hj is the output of the j

neuron of the hidden layer

hj = exp(−
‖x− cij‖2

2bj
2 ) (14)

In Equation (14), cij is the coordinate vector of the center point of the Gaussian basis
function of the j neuron in the hidden layer, and bj is the width of the Gaussian basis
function of the j neuron in the hidden layer. The network weight of the RBF is w, and the
output of the RBF network is y(t) = wTh.

The second-order ship motion system is a nonlinear system. δ and y are the input and
output of the system, respectively. f is the external disturbance and the total disturbance
of the system. The desired heading angle of the ship is calculated by the backstepping
method. According to the error, nonlinear sliding surface are designed as

s =
.
ψe + c2tanh(c3ψe) (15)

In Equation (15), c2 and c3 are positive design parameters. The derivation of Equation (15)
is correct {

.
s =

..
ψe +

.
a

a = c2tanh(c3ψe)
(16)

By substituting Equation (1) into Equation (16)

.
s = − 1

T
r +

K
T

δ + f −
..
ψd +

.
a (17)

In order to make the sliding surface s tend to be stable, let

.
s = −c4s (18)

Equation (18) c4 is a positive design parameter. Then, the sliding mode control law is
designed as follows:

δ =
T
K
(−c4s +

..
ψd +

r
T
− f − .

a) (19)

Since f is an unknown term, it is approximated by the RBF, so the RBF neural network
is used to approximate f , where

f = W∗Th(x) + e (20)

where W∗ is the ideal weight of the network, ε is the approximation error of the network,
and |e| ≤ eM and f are the output of the ideal RBF network. If the input of the network is
defined as ψe, the output of the RBF is

f̂ = ŴTh(x) (21)

where f̂ is the estimated value of f . Then, Equation (19) can be written as

δ =
T
K
(−c4s +

..
ψd +

r
T
− f̂ − .

a) (22)

By substituting Equation (22) into Equation (17),

f̃ = f̂ − f = ŴTh(x)−W∗Th(x)− e = W̃Th(x)− e (23)

.
s = W̃Th(x)− e− c4s (24)
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In Equation (23), f̃ is the estimation error of the unknown term f and Ŵ is the
estimation weight. The Lyapunov function is selected as follows:

V2 =
1
2

s2 +
1
2

ξ(Ŵ −W)
2 (25)

In Equation (25), ξ is a positive coefficient and the derivative of V2 is as follows:

.
V2 = s

.
s + ξ(Ŵ −W)

.
Ŵ = s(−c4s + f − f̂ ) + ξ(Ŵ −W)

.
Ŵ = −c4s2 + (Ŵ −W)(sh(x)− ξ

.
Ŵ) + es (26)

Let
.

Ŵ = sh(x)/ξ; then,
.

V2 = −c4s2 + es, because e is the approximation error of the
network, which can be limited enough in theory, so

.
V2 = −c4s2 + es ≤ 0 (27)

Thus, the proofs of RBF sliding mode control were investigated.

3.3. Nonlinear Velocity Observer

In this section, a nonlinear velocity observer is used to estimate surge velocity u and
sway velocity v. First, the derivatives of displacement

.
x and

.
y are estimated:

.
x̂ =

.̂
x− kx1(x̂− x)

.
.̂
x = −kx2tanh(x̂− x)
.
ŷ =

.̂
y− ky1(ŷ− y)

.
.̂
y = −ky2tanh(ŷ− y)

(28)

In Equation (28) x̂,
.̂
x, ŷ, and

.̂
y represent x,

.
x, y, and

.
y, respectively, while kx1, kx2,

ky1, and ky2 are the design parameters. Taking x as an example, the Lyapunov function is
selected:

V3 =
1
2

γ(x̂− x)2 +
1
2
(

.̂
x− .

x)
2

(29)

In Equation (29), γ is a positive coefficient, and the derivation of Equation (29) is as
follows: 

.
V3 = γ(x̂− x)(

.
x̂− .

x) + (
.̂
x− .

x)(
.
.̂
x− ..

x)
= γ(x̂− x)(

.̂
x− kx1(x̂− x)− .

x)
+(

.̂
x− .

x)(−kx2tanh(x̂− x)− ..
x)

= −γkx1(x̂− x)2 − z1z2 − z3

z1 =
.̂
x− .

x
z2 = kx2tanh(x̂− x)− γkx1(x̂− x)
z3 =

..
x(

.̂
x− .

x)

(30)

According to assumption (3), z3 is negligible. Since the hyperbolic tangent function
is strictly bounded, choosing the appropriate positive parameter kx1 > kx2 can make z2
and the different sign; that is, when z2 is greater than 0, at this time, the second term in
Equation (30) will be greater than 0, and then it will be increased, meaning that z1 and z2
will be greater than zero. Similarly, if z2 is less than 0, the second term in Equation (30)
will also be less than 0, and, thus, it will be reduced so that z1 and z2 will both be less than
zero and will still be a problem. The proof process of y is the same, so it is not described
here. According to the estimated values of

.
x and

.
y, the kinematic equation in Equation (3)

is transformed: {
û =

.̂
y sin ψ +

.̂
x cos ψ

v̂ =
.̂
y cos ψ− .̂

x sin ψ
(31)
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4. Simulation Results
4.1. Comparative Experiment for Position Prediction

In this section, the position prediction strategy is compared with the without-position
prediction strategy, and some interesting conclusions can be obtained. The following
waypoints are shown in Table 1, and the simulation results are shown in Figures 3 and 4.

Table 1. Ship reference waypoint.

Desired Waypoint Coordinate

Waypoint 1 (0,0)
Waypoint 2 (2000,0)
Waypoint 3 (4000,2000)
Waypoint 4 (8000,2000)
Waypoint 5 (10,000,4000)
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In Figure 3, the red line indicates that there is no path following effect based on
position prediction, the blue line is the tracking effect based on position prediction, and
the black line is the reference path. For the quantified analysis, the important performance
index ‘overshoot’ is presented to verify the conclusion. When the path following has no
predicted position, the prediction range is n = 0, and the overshoot of path following is
97.1 m. When the path following has a predicted position, the prediction range is n = 45.
Considering the future path and deviation, the steering point can be steered in advance, so
the path following has basically no overshoot.

In Figure 4, the red line indicates the value of path following error without position
prediction, and the blue line indicates the value of path following error based on position
prediction. It can be seen from the figure that the initial error of path following is 300 m.
Under the action of the controller, the error begins to decrease slowly, and the path following
based on prediction has a better effect. There is basically no overshoot compared with no
prediction.

4.2. Comparative Experiment for Control Algorithm

To verify the performance of the proposed control algorithm, a comparison with the
method used in [32] is given in this section. The ship initial states are shown in Table 2.
External interference: wind speed: 10 m/s; wind direction: 30sin (0.02t) + 45; velocity:
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1.0 m/s; flow direction: 10sin (0.005t) + 45; wave wavelength: 83 m; wave encounter angle:
135◦–30◦sin(0.02t). The controller parameters are c0 = 0.003, c1 = π/3, c2 = 0.1, c3 = 0.4, and
c4 = 0.1; the speed observer parameters are kx1 = 0.58, kx2 = 0.15, ky1 = 0.55, and ky2 = 0.1;
the parameters of Gaussian function are (−5 −2.5 0 2.5 5), bj = 0.25.For more details about
the parameter setting of the compared algorithm, the readers are suggested to refer to [32].

Table 2. Ship initial parameters.

Ship Initial States Value

surge velocity u 7.2 m/s
sway velocity v 0 m/s

yaw rate r 0 m/s
course 0◦

position coordinate (x,y) (0,300)

The final comparative results are presented in Figures 5–7. Figure 5 shows the path
following effect of different algorithms. It is noted that both schemes could achieve the
effective path following for the designed reference path. Moreover, through attentive
observation, it is obvious that the proposed algorithm in this paper has a better follow
effect than that of the algorithm proposed in [32]. Figure 6 shows the course changes of
the two algorithms in the process of ship motion. Due to the influence of time-varying
wind, wave, and current interference, there are small amplitude oscillations in the course
to resist the external effect of disturbance. Figure 7 shows the curve of the rudder angle
changing with time. Similarly, due to the influence of time-varying wind, wave, and current
interference, the rudder angle oscillates slightly. However, careful observation shows that
the average rudder angle of the algorithm proposed in this paper is significantly reduced
compared with the algorithm in [32]. Because the high steering frequency will cause the
crew discomfort and reduce the stability of the ship during navigation, the algorithm
proposed in this paper has better navigation practicality.
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For the quantitative purpose, some popular performance indexes (Equation (32)) are
utilized to evaluate the comparison result [18], e.g., the mean absolute error (MAE) and the
mean absolute control effort (MAC). MAE reveals the stabilizing performance of the control
system. MAC indicates energy consumption. The specific data are shown in Table 3. It can
be observed that the proposed control algorithm has more advantages in many aspects.

MAE = 1
t f−t0

∫ t f
t0
|ye|dt

MAC = 1
t f−t0

∫ t f
t0
|δr|dt

(32)

Table 3. Quantitative performance comparison of both algorithms.

Algorithm Types MAE MAC

The proposed algorithm 3.82 m 8.12 deg
The algorithm in [32] 5.12 m 9.07 deg

4.3. Verification of Effectiveness of Neural Network and Velocity Observer

Figures 8–10 show the observation effect of the speed observer and the estimation
effect of the RBF neural network.
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Figure 8 describes the observation ability of the designed nonlinear observer for longi-
tudinal velocity u and transverse velocity v. It is obvious that the designed observer can
accurately estimate u and v. Figure 9 shows the observation error of the speed observer.
Because the initial speed of the ship is not zero and the wind and wave disturbance some-
times changes, the velocity observer has a large error at the beginning. With the increase
in time, the error tends to zero, and the error of the observer is not more than 0.2 m/s,
showing the effectiveness of the speed observer. Figure 10 shows the approximation ability
of the introduced RBF neural network in regard to the total unknown term. The results
show that the designed RBF neural network can approach f effectively.

5. Conclusions

In order to solve the problems of velocity measurement, uncertain model, and external
interference in the under-drive ship path following, a sliding mode control algorithm is
used based on position prediction with the radial basis function. Firstly, in order to make
the ship turn ahead of time at the turning point, the ship position is predicted. Based on
the predicted value and the reference path value, the future error of the path is calculated
in advance, and the reference heading angle is designed by a backstepping algorithm.
Secondly, the hyperbolic tangent function is used to design the sliding surface, and the
course is controlled by sliding mode control. In order to improve the robustness of the
controller, an RBF neural network is introduced to approach the external interference and
uncertain parameters. The u and v are estimated by using nonlinear observers to avoid the
problem of a velocity difficult to obtain. The simulation results show that the controller can
keep the ship accurately tracking the reference path under wind and wave disturbance and
turn the rudder in advance at the turning point to avoid overshoot. These results verify the
effectiveness of the proposed control algorithm. Because the computer simulation is only
used in this paper, and no real ship simulation is adopted, our next study will consider the
problem of ship path following in the case of a real ship.
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