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Abstract: Prognostics is an engineering discipline focused on predicting the time at which a system
or a component will no longer perform its intended function. Due to the requirements of system
safety and reliability, the correct diagnosis or prognosis of abnormal condition plays a vital role in
the maintenance of industrial systems. It is expected that new requirements in regard to autonomous
ships will push suppliers of maritime equipment to provide more insight into the conditions of their
systems. One of the stated challenges with these systems is having enough run-to-failure examples
to build accurate-enough prognostic models. Due to the scarcity of enough reliable data, transfer
learning is established as a successful approach to improve and reduce the need to labelled examples.
Transfer learning has shown excellent capabilities in image classification problems. Little work has
been done to explore and exploit the use of transfer learning in prognostics. In this paper, various
deep learning models are used to predict the remaining useful life (RUL) of air compressors. Here,
transfer learning is applied by building a separate prognostics model trained on turbofan engines. It
has been found that several of the explored transfer learning architectures were able to improve the
predictions on air compressors. The research results suggest transfer learning as a promising research
field towards more accurate and reliable prognostics.

Keywords: anomaly detection; prognostics and health management (PHM); predictive maintenance;
explainable results; machine learning

1. Introduction

Prognostics and health management (PHM) is an important topic that aims to improve
the reliability of operational equipment. Several sectors focus on the development of
increased autonomy and unmanned vehicles. One of these is the maritime sector, which
recently has experienced an increased focus on autonomous ships. This makes prognostics
and health management (PHM) systems increasingly relevant. The PHM pioneer Goebel [1]
states that a successful implementation of such a system should answer three critical
questions about the monitored equipment:

Anomaly detection: is there something wrong with the system?

Diagnostics: If so, what is wrong?

Prognostics: When will it fail?

This means that a PHM system is crucial for unmanned autonomous ships to become
a reality. Imagine a container ship travelling from New York to London without personnel
on board. What would happen if vital equipment breaks down halfway? With successful
and accurate prognostics, it could be possible to predict such breakdowns before the sail
starts, hence, make the necessary maintenance actions to avoid a potentially dangerous
situation. One of the main challenges in developing such prognostics models are collecting
enough run-to-failure examples from different necessary scenarios. It is stated that the

J. Mar. Sci. Eng. 2021, 9, 47. https://doi.org/10.3390/jmse9010047 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-7607-5154
https://orcid.org/0000-0003-1252-260X
https://doi.org/10.3390/jmse9010047
https://doi.org/10.3390/jmse9010047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9010047
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/9/1/47?type=check_update&version=2


J. Mar. Sci. Eng. 2021, 9, 47 2 of 20

maritime sector, in general, has a few of these examples. This project tries to explore those
challenges by focusing on working with a few examples of run-to-failure by using transfer
learning with other related datasets.

In the next Section 2, we have reviewed some related works. The deep learning models
used in this work are described in Section 3. Our purposed method to find the optimal so-
lution towards marine air compressors is described in Section 4. The model configurations
are presented in Section 5. Finally, Sections 6 and 7 report the results and conclude this
work, respectively.

2. Related Work

Enough research on prognostics and remaining useful life (RUL) predictions has been
published. Both traditional methods and deep learning (DL) methods have been used,
giving a wide variety of approaches. In common for most of the approaches is the need for
several run-to-failure examples. This section introduces some important works related to
prognostics research.

Sequential data such as sensor measurements are a typical format of data in prognos-
tics problems [2]. Recurrent neural network (RNN)’s are designed to work with these kinds
of data formats and is therefore considered to be suitable for prognostics. Among RNNs;
long short-term memory (LSTM) and gated recurrent unit (GRU) are the most used. In gen-
eral, the vanilla LSTM is indicated to give the best results.

One of the most popular datasets used for research related to RUL predictions is
called C-MAPSS [3]. It is a collection of four datasets obtained from simulated degradation
on turbofan engines. They consist of nominal and fault of turbofan engines and their
degradation over several flights. In 2008, a competition to predict the most accurate RUL
on a related turbofan engine dataset was arranged by the IEEE Prognostics and Health
Management Conference. These datasets are often used in prognostics research.

Heimes et al. [4] proposed a method for predicting RUL using traditional RNN trained
with back-propagation and extended Kalman Filter training. Their results were accurately
able to predict the RUL and therefore received second place in the 2008 PHM competition.
Instead of using a pure linear RUL label, they used a piece-wise linear RUL label, which
has become accepted as the best labelling approach so far. In this approach, the label is
constant until a certain level of degradation is reached; from then, it is linearly decreasing.
The degradation point is selected to be the same for all sequences. In 2019, Ellefsen et al. [5]
proposed an alternative labelling approach which resulted in one of the best performances
on the C-MAPSS dataset so far. The approach is an adaptive version of the piece-wise
linear RUL labels. In this approach, the starting point of the linear RUL decrements based
on faults in the system selected individually for each sequence.

Others have also used the C-MAPSS dataset for their research. Wu et al. [6] used
LSTM to estimate RUL. In addition, they compared the performance with traditional RNN
and GRU. They found that the LSTM performed much better. In 2016, Yuan et al. [7]
also used LSTM on turbofan engines, but for both diagnostics and prognostics. They
aimed to predict a piece-wise linear RUL label and the probability of fault occurrences.
The dataset did not contain fault labels, so they used an support vector machine (SVM)
approach to detect anomalies and use them for labelling faults. Similar to other research,
they compared their RUL predictions with other variants of RNN, but found the standard
LSTM to perform better. Ellefsen et al. [8] proposed a deep semi-supervised architecture for
predicting RUL on turbofan engines (C-MAPSS). The approach used a layer of restricted
Boltzmann machine (RBM) for weight initialization and feature extraction, together with
LSTM and finally a feed-forward neural network (FNN) layer for the final prediction.
The proposed architecture achieved good results compared to pure supervised approaches.
In 2017, Zheng et al. [9] combined sequences of LSTM-layers and normal FNN-layers
to estimate RUL on both turbofan engines and milling machines. They state that their
approach performs better than traditional methods. Their approach used a piece-wise



J. Mar. Sci. Eng. 2021, 9, 47 3 of 20

linear RUL label. According to them, this labelling approach is not general enough and
should be explored further.

Malhotra et al. [10] highlighted the problems with assumptions on degradation fol-
lowing a linear or exponential curve. They proposed a method that combined LSTM and
encoder-decoder architecture for obtaining an unsupervised health index. The health index
is then used to train a regression model that predicts RUL. The approach proves to be
promising and achieves better results than several others that make normal degradation
assumptions on the same datasets. Hinchi and Tkiouat [11] proposed an approach that
combined LSTM and convolutional neural network (CNN). A convolution layer was used
to extract features directly on vibration data from rolling bearings. The features were
passed to an LSTM-layer that predicted the RUL on the bearings. The results are promising,
but the authors state that further work needs to be done to include uncertainty in the
predictions. In 2018, Zhang et al. [12] proposed a method based on LSTM to predict a
capacity-oriented RUL on lithium-ion batteries. In order to introduce uncertainties to the
predictions, they used a Monte Carlo simulation method.

Having a few samples of failure progression is a typical problem in prognostics
research that Zhang et al. [13] highlighted. They used a Bi-directional LSTM for RUL
prediction but experimented with transfer learning by pre-training the network with
a different, but related dataset. Finally, the model is fine-tuned with the exact dataset.
The results show that the transfer learning approach in general improved the prediction
accuracy on datasets with few samples. The use of transfer learning in prognostics is
investigated further in this work.

Yoon et al. [14] proposed an approach based on combining variational autoencoder
(VAE) and RNN to predict RUL on turbo engines. Their approach used the encoder part
of a VAE to reduce the dimensions of the data. Tang et al. [15] used a combination of
sparse autencoder (SAE) (for feature extraction) and LSTM to predict bearing degradation
performance. The results show better performance than traditional methods such as
principle component analysis (PCA)-LSTM, SVM, and FNN. Senanayaka et al. [16] used a
similar approach. They used a combination of autoencoder (AE) for unsupervised feature
extraction and LSTM for prognostics on bearings.

CNN has also been used for predicting RUL. Babu at al. [17] used a deep CNN for
estimating RUL on turbofan engines. The network consisted of two stages of convolution
and pooling for automatic feature learning before a fully connected FNN was used to
do the final RUL prediction. The input data consisted of sensor values structured into
a 2D-format where each column represented a time-step, while each row was a specific
type of sensor measurement. In 2018, Li et al. [18] used a similar approach based on a
sliding window to structure the data in a 2D-format. They optimized their solution in
terms of the number of convolutional layers and the size of the time window to achieve
accurate results.

Deutsch and He [19] proposed a method based on deep belief network (DBN) in
combination with a FNN for predicting RUL on rotating components. The method tries
to use the strengths of DBN for feature extraction and FNN for its prediction power.
The approach was compared with a model where feature extraction was done with a
particle filter-based approach instead of DBN. They achieved quite similar results. Simpler
DL techniques such as a FNN with several hidden layers have also been used towards
PHM. Tian [20] used age and sensor measurement from present and previous inspections
as input to an FNN with two hidden layers. The method was applied to predict RUL in the
form of a percentage of health state on bearings.

Among the attempted approaches on prognostics, LSTM and CNN seems the most
promising. Both methods and FNN is used for prognostics in this paper. Both the piece-
wise linear RUL labelling approach and the newly proposed adaptive approach are used
for labelling. The next section presents how maintenance on air compressors is done today.
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3. Theory

This section briefly introduces theory on the DL methods used in this project. A more
detailed description of the theory can be found in the master thesis [21] that this work
originates from.

3.1. Feed-Forward Neural Network

Feed-forward neural network (FNN) is a type of cyclic ANN. It is considered to be
the first and simplest type of ANN. An FNN consist of multiple, simple, processing units
called neurons, organized into layers [22]. A neuron can have multiple inputs but only
one output, which can be distributed to other neurons. Neurons are interconnected with
weighted connections that are used to transfer signals. Neurons in the input layer get
activated from input data, while neurons in other layers are activated through weighted
connections [22]. The output of a neuron is either an input to another neuron or an output
of the model. A neuron’s output is determined from the sum of the weighted inputs passed
through an activation function.

3.2. Long Short-Term Memory

LSTM is a variant of RNN designed to learn long-term dependencies [23]. The LSTM
introduces the idea of a memory cell, which contains gates that tries to regulate the
information through the cell. The result is a network that achieves contextual weights that
can deal with long-term dependencies flexibly. Several variants of the LSTM have been
introduced, such as the Vanilla LSTM [24] and GRU-LSTM [25]. The Vanilla LSTM has
proved itself popular for PHM; therefore, it is the preferred variant of LSTM in this project.
Many variants of the Vanilla LSTM exist [26]. In this work, the Vanilla LSTM without
peephole connections were used. The Vanilla LSTM (referred to as just LSTM from now
on) has four interacting NN layers. The architecture of an LSTM and its memory cell is
illustrated in Figure 1.

Figure 1. Basic components of the LSTM architecture [27].

3.3. Convolutional Neural Network

CNNs are a type of DL techniques known for their performance on images. They
have been used to classify images, cluster images, identify faces, and much more [28].
Although they are often mentioned for images, they can also be used for 1D-data, e.g., time-
series or 3D-data such as videos. A CNN is an artificial neural networks (ANN) model
that uses convolution operations in at least one layer. CNN has become popular due to its
ability to extract important features from input data automatically. One of the motivations
for using CNN is that it reduces computation requirements due to weight sharing [29]. A
typical CNN consist of four types of layers: convolutional, pooling, flattening and fully
connected [30].

3.4. Particle Swarm Optimization

Particle swarm optimization (PSO) is a robust stochastic optimization technique based
on swarm behavior [31]. It was originally introduced to optimize continuous, non-linear
functions, but other versions of the algorithm can also solve binary and permutation
problems. In the topic of machine learning (ML), PSO has among other things been used as
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a training algorithm for the weights in a neural network (NN) [32] and for optimization of
ML hyper-parameters [33,34]. In this project, PSO is used for tuning hyper-parameters.

The PSO is based on a swarm of particles that aims to find x that minimizes an
objective function f (x) [35]. First, the swarm of particles with size N is initialized where
each particle is assigned a random position, X, in the search space with the velocity V.
Internal parameter settings such as the maximum number of iterations and weights are
also assigned. At every iteration, the position of each particle is evaluated based on the
objective function. Each particle keeps track of their personal best solution throughout a
search. The algorithm keeps track of the global best solution among all particles as well.
The next step of the PSO is to update the velocity and position of each particle. The velocity
is determined based on the three factors: inertia, personal influence, and influence by the
society. Inertia is considered a way to keep the momentum and is found with Equation (1),
where w is the inertia weight, and vi(t) is the previous velocity.

Inertia = w ∗ vi(t) (1)

The personal influence lets a particle i to move towards its personal best solution so
far. It is determined by Equation (2), where c1 is an acceleration coefficient, r1 is a random
number between 0 and 1, pi is the personal best solution and x(t) is the current position.

Personal Influence = c1 ∗ r1(pi − xi(t)) (2)

The influence by the society lets a particle move in the direction of the global best
solution. It is found from Equation (3), where c2 is an acceleration coefficient, r2 is a random
number between 0 and 1, pg is the global best solution and x(t) is the current position.

Global Influence = c2 ∗ r2(pg − xi(t)) (3)

These three factors update the velocity of a particle with Equation (4), where w, c1 and
c2 are parameters used to adjust the behaviour of the algorithm. A large w (inertia weight)
gives the algorithm better exploring abilities, while smaller values mean better exploiting
capabilities. Exploitation can also be achieved by having larger c1 than c2. The opposite
gives better exploration ability.

vi(t + 1) = w ∗ vi(t) + c1 ∗ r1(pi − xi(t)) + c2 ∗ r2(pg − xi(t)) (4)

Finally, the position x of each particle is updated with Equation (5).

xi(t + 1) = xi(t) + vi(t + 1) (5)

After updating the position of all particles, the search loop either continues or stops if
the search criterion’s is met. Such search criteria can be maximum number of iterations or
no improvements for k iterations [35].

4. Methodology

Prognostics is often concerned with predicting the RUL of a system. In this project,
it is explored towards predicting the RUL of air compressors with DL techniques. These
experiments’ goal is to find a technique able to predict the RUL accurately and help
prevent unexpected standstills and better plan when to do maintenance. Predicting RUL
is not something new, but according to the researched literature, it has not been done on
air compressors.

This research on prognostics includes two main sub-parts. An overview of these topics
is listed below.

• Explore three different DL techniques for predicting RUL to find the most
promising method.
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• Explore if transfer learning is promising in prognostics. Investigate if a different
prognostics dataset can improve the predictions.

Predictions must be early enough to start maintenance activities before it is too late.
Predictions should not over-estimate the RUL. Under-estimating is not as bad, but it means
that maintenance actions might be taken before it is necessary. The predictions are explored
with three different types of DL models:

• FNN: Deep FNN is tested as the only model not taking sequences into account.
• LSTM: The related work indicated the LSTM as one of the best choices for

predicting RUL.
• CNN: The CNN is used with the time-window approach described in the related

works. It has also proven promising towards prognostics.

4.1. Data

22 datasets from an air compressor were collected to conduct the relevant experi-
ments. The air compressor is equipped with 14 sensors measuring temperatures, pressures,
and current from different system parts. The compressor datasets were collected in a
controlled environment, where the faults are forced. Three different types of datasets were
collected; normal data and two different types of faults. The sequences with faults start in
normal operating conditions, but a fault is gradually introduced to the system, leading to
degradation of the air compressor. The end of the sequences is considered the end-of-life
of the compressor. That is also the point that is tried to predict the time until.

The two types of faults are just referred to as faults A and B. This is due to a confiden-
tiality agreement with the company producing the compressors. This also means that the
specific sensors’ measurements, time scale, and fault/failure source cannot be disclosed.

Table 1 shows which datasets are used for training, validation, and testing during the
models’ tuning process. Table 2 shows the usage when evaluating the model performance.

Table 1. Data usage for training and tuning.

Prognostics: Data Usage for Tuning

Type # Datasets Training Validation Testing

Normal 8 8 0 0
Fault A 7 5 1 1
Fault B 7 5 1 1

Table 2. Data usage for evaluating the model prognostics predictions.

Prognostics: Data Usage for Evaluation

Type # Datasets Training Testing

Normal 8 8 0
Fault A 7 6 * 1 *
Fault B 7 6 * 1 *

* Iterative process with k-fold cross validation.

In k-fold cross-validation, the data is randomly split into k distinct folds. The model
is then trained and tested k times, picking a different fold for evaluation every time and
training on the other k-1 folds. The result is an array containing the k evaluation scores.
An average score can be used as an estimate of the performance of the model. K-fold
cross-validation comes at the cost of training your model k times; however, it gives more
accurate estimates of the model’s overall performance and enables the use of the whole data
available for training your model without sacrificing a holdout test set. These models were
evaluated with k-fold cross-validation, where the results are the mean of the results for
each fold. 7 folds were used, meaning that each dataset was used once for testing. K-fold
cross-validation is also a preventative measure against the typical problem of overfitting
when working with small datasets.
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A common problem when working with ML, especially for prognostics, is having a
few training examples. Data augmentation is a term used for increasing the data foundation
by augmenting existing examples. For images, this can typically be to rotate, skew, flip,
and add noise. In this work, the data is multivariate time-series data, consisting of few run-
to-failure examples. Data augmentation was used to create more run-to-failure examples
from the initial sequences. If the data is sampled 10 times each second, one run-to-failure
example can be split into 10 new run-to-failure examples. This can be done by using
the 10 first samples as the first sample in 10 new sequences. Next, every 10 sample is
used in each of the new sequences. The first run-to-failure example will then contain
sample numbers 1, 11, 21, 31, and so on. This approach gives more samples for every
value of the RUL label, but there is a significant restriction to note. The new sequences
that originate from the same sequence will, in theory, have values drawn from the same
statistical distribution. Therefore, all sequences originating from the same original sequence
are used for the same purpose (e.g., training) to avoid information leakage. This also yields
for the k-fold cross-validation. In the experiments, data augmentation is used to generate 5
new sequences from each original sequence.

4.2. PHM08 Challenge Data

The 2008 PHM conference competition used a dataset that has several run-to-failure
examples for turbofan engines [36]. The competition’s goal was to explore techniques
for prognostics and get the most accurate RUL predictions. The dataset is based on an
aero-propulsion system simulator called C-MAPSS. The simulator simulates degradation
in turbofan engines and collects many sequences where the condition goes from the
normal condition until failure. Each sequence has different running conditions, initial wear,
and noise levels. The data contains 21 sensor measurements and 3 signals referred to as
operational settings. The PHM08 challenge dataset is a part of a larger and more complex
dataset referred to as the C-MAPSS dataset in the literature. These datasets are the most
used within the field of PHM and especially when it comes to RUL predictions. In this
paper, the PHM08 dataset was used for experimentation of transfer learning in the field
of prognostics.

4.3. Labelling

RUL is the number of time units (seconds, hours, cycles, etc.) until a system fails or
breaks. The last sample in a sequence is considered to be end-of-life. The goal is to predict
the time until end-of-life. The available literature has indicated that the piece-wise linear
RUL labelling approach is accepted as the best. It emphasizes the fact that systems do not
show signs of degradation until a certain level is reached or a fault has occurred. The RUL
is decreasing linearly from that point on. Therefore the RUL is kept constant until the last
X samples. The constant level must be chosen based on how long in advance predictions
should or could be taken.

Figure 2 shows an example of the normal piece-wise linear RUL label, where the
constant level was chosen to be 100. It shows three sequences of different lengths (200, 225,
and 250).

4.4. Scoring

For this project, mean absolute error (MAE) (Equation (6)) and root mean squared
error (RMSE) (Equation (7)) were selected to evaluate the performance. MAE gives a
descriptive output which says how much the predictions differs from the target in general.
Another function was selected as loss-function. It penalizes over-estimates more than under-
estimates was. This is selected due to a more severe consequence when over-estimating
the RUL. The asymmetric absolute error [37] is chosen. The function is quite similar to
the ordinary MAE-function. The difference is that when the prediction over-estimates,
the absolute value of the error is multiplied with β. If it under-estimates, the absolute



J. Mar. Sci. Eng. 2021, 9, 47 8 of 20

value of the error is multiplied with α. If β > α over-estimates are penalized more than
under-estimates. In present work, α = 1.8 and β = 2.2.

MAE =
1
N

N

∑
i=1
||ti − yi|| (6)

where MAE is the loss, N is the number of outputs, ti is the desired output and yi is the
actual output.

RMSE =

√√√√ 1
N

N

∑
i=1

(ti − yi)2 (7)

where RMSE is the loss, N is the number of outputs, ti is the desired output and yi is the
actual output.

The choice of scoring and loss-function is selected manually based on experience.
In the future, a more thorough exploration of loss and scoring for prognostics should
be done.

Figure 2. Piece-wise linear RUL label.

4.5. Transfer Learning

Transfer learning was investigated towards trying to improve the predictions and
potentially reduce the need for run-to-failure examples. Transfer learning is much used in
object detection in images, where re-using parts of an already-trained network can improve
predictions and reduce the number of needed training examples.

Transfer learning can be performed in several ways. Commonly, transfer learning
refers to when a model is trained to solve a problem, then reused to solve another (poten-
tially related) problem. The model could be reused directly but retrained on data from the
new problem. Another approach is to take layers from the original model and reuse them
for the new problem in a new model. These layers are then transferred by initializing layers
of the same size and weights as the transferred layers in the new model. These layers can
be used in two ways:
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• Trainable layers: The weights are then only used as an initialization with the idea that
the weights are closer to the optimal value than if they are initialized randomly.

• Untrainable layers: In these cases, the layers’ weights are frozen, meaning that they
cannot be updated during training. The idea here is that the original model already
learned optimal features.

The concept of transfer learning in the field of prognostics has so far received little
attention. A part of this case was to investigate the effects of using transfer learning for this
purpose. The PHM08 dataset was used to build a good performing model. The model was
then used to transfer learning to new models to perform on the compressor dataset. 8 differ-
ent model architectures were tested to predict RUL on the compressor dataset. The models
are involved in a transfer learning process to improve air compressors’ predictions by
transferring both trainable and untrainable layers.

5. Model Configuration

The hyper-parameters and architectures for each model were tuned using PSO. The se-
lected PSO-specific parameters are displayed in Table 3. Every model was first tuned
manually to find promising regions of architecture before running the optimization loops.

Table 3. PSO-specific parameters.

Parameter Values

Inertia 0.5
Cognitive 0.8

Social 0.6
#Particles 10
#Iterations 10

5.1. FNN

Among the four optimizers (SGD, RMSProp, Adam, and AdaGrad), Adam was
selected to give good results in manual experiments. The experiments indicated that a FNN
with three hidden layers were most promising. Dropout was used between the hidden
layers. Table 4 shows the parameters that were tuned with PSO and the best parameters
found are highlighted.

Table 4. FNN hyper-parameters for prognostics.

Hyper-Parameter Values

Learning rate 0.001, 0.0001, 0.00001
Batch size 10, 25, 50
Units layer h1 10, 20, 30, 40
Units layer h2 10, 20, 30, 40
Units layer h3 10, 20, 30, 40
Dropout 0.0–0.3 (0.2)
Activation sigmoid, tanh, ReLU

5.2. LSTM

Through manual experiments, many architectures for the LSTM was tested. The most
promising architecture was with three LSTM layers and two dense (FNN) layers. The last
dense layer is the output layer. The RMSProp optimizer was selected based on its perfor-
mance in manual experiments. The output activation function is mentioned as tanh. For the
LSTM layers, the tanh activation function was used (default), but the activation function
for the dense layers was tuned with PSO. The training was performed with 30 epochs
and early stopping. Table 5 shows the parameters that were optimized with PSO, the best
parameters found are highlighted in the table.
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Table 5. LSTM hyper-parameters for prognostics.

Hyper-Parameter Values

Learning rate 0.001, 0.0005, 0.0001, 0.00005, 0.00001
Batch size 10, 40, 70, 100
Units layer LSTM1 10, 15, 20, 25, 30, 35, 40
Units layer LSTM2 10, 15, 20, 25, 30, 35, 40
Units layer LSTM3 10, 15, 20, 25, 30, 35, 40
Units layer Dense1 5, 10, 15, 20, 25, 30
Activation Sigmoid, tanh, ReLU
Time window 5, 10, 15, 20, 30, 40, 50

5.3. CNN

CNN is a model with many parameters to tune. Manual experiments were performed
to find the most promising architecture. These experiments indicated that the most promis-
ing architecture was to use two sets of convolutional layers and max-pooling layers. Next,
flattening and then three dense layers. The final dense layer is the output layer. A padding
strategy called same was used for all convolutional and max-pooling layer, except the
final max-pooling layer where valid was used. This means that the dimension is reduced
instead of keeping it. Dropout was added between the first two dense layers. The RMSProp
optimizer was selected since it showed the most promising results. The remaining parame-
ters were tuned with PSO. Table 6 shows the tuned parameters, and the best parameters
are highlighted.

Table 6. CNN hyper-parameters for prognostics.

Hyper-Parameter Values

Learning rate 0.001, 0.0005, 0.0001, 0.00005, 0.00001
Batch size 10, 40, 70, 100, 130
#Filters-Conv2D (1) 4, 8, 12, 16, 20
Kernel size-Conv2D (1) 4–10 (5)
Kernel size-Pool (1) 2, 3, 4
#Filters-Conv2D (2) 4, 8, 12, 16, 20
Kernel-Conv2D (2) 5–10 (4)
Kernel-Pool (2) 2, 3, 4
Units -Dense (1) 10, 20, 30
Units -Dense (2) 4, 8, 12, 16, 20
Dropout 0.0–0.3 (0.15)
Activation sigmoid, tanh, ReLU
Time window 5, 10, 15, 20, 30, 40, 50

6. Results
6.1. Compare Models

After the best architecture and hyper-parameters were found, each model was trained
and evaluated using k-fold cross-validation. The models’ performance was mainly evalu-
ated with MAE, which indicates the average error from the target. RMSE was also used,
which punishes large errors more. Table 7 shows the MAE and RMSE for each of the
models on the averaged performance from k-fold cross-validation.

The results show that there were some large differences between the models. The LSTM
was clearly performing the best with a MAE of 6.87. This means that the model on average
predicted 6.87 time units from the target. The second best model was the CNN, and worst
was FNN. Table 8 shows the MAE on each individual split. The table indicates that the
performance on split 3 was much worse than for the other splits. The LSTM achieved an
average MAE of 22, and as high as 33 for FNN. Since the results shows that split 3 performs
the worst, it can be assumed that the data was collected under quite different conditions or
operation. We have discussed it further later.
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Table 7. Results from RUL prediction using k-fold cross validation.

RMSE MAE

FNN 14.04 9.27
LSTM 11.03 6.87
CNN 13.14 8.34

Table 8. Results from RUL predictions on each individual split.

MAE

Models Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7

FNN 4.00 7.16 33.10 2.42 6.93 4.45 6.85
LSTM 4.92 6.04 22.04 3.77 3.72 1.85 5.76
CNN 3.70 6.10 26.91 5.07 5.00 3.81 7.81

When excluding split number 3 the predictions from the LSTM model were on average
4.34 time units away from the correct RUL. So far, the RUL predictions have only been
evaluated based on the performance measure. The predictions were also analyzed visually.
This makes it possible to notice if the predictions were fluctuating, over-estimating, under-
estimating, etc. Next, predictions from each model is analyzed visually.

6.2. FNN

First, the FNN predictions were explored. Split number 4 achieved a MAE of 2.42.
Figure 3a,b shows the predictions on one sequence of each fault type from that split.
The figures prove that the predictions were accurate and very close to the actual RUL of
the compressor.

(a) Fault type A (b) Fault type B

Figure 3. RUL prediction from FNN on split 4.

The FNN achieved variable results for the other splits. On split number 6, it achieved
a relatively low MAE, but as Figure 4a indicates, the predictions on a sequence with fault
type A from split 6 had much noise. Several of the predictions from FNN on sequences
with fault type A have similar fluctuations. This could have been reduced by applying a
moving average filter. Figure 4b shows that the predictions on a sequence with fault type B
followed the target relatively good. It had less noisy, but were a bit late to start predicting
the linear RUL.
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(a) Fault type A (b) Fault type B

Figure 4. RUL prediction from FNN on split 6.

As indicated earlier, predictions on split number 3 have performed much worse than
the others. This is proven in Figure 5a,b, which are predictions on a sequence with fault A
and B from split 3. The predictions on the sequence with fault type A were far from the
target and under-estimated the RUL by a lot. The other sequence was over-estimated large
parts of the linear RUL.

(a) Fault type A (b) Fault type B

Figure 5. RUL prediction from FNN on split 3.

6.3. LSTM

Predictions from the LSTM model achieved the lowest MAE and can be considered
the best performing model. Figure 6a shows that the model was accurately predicting the
RUL on a sequence with fault type A from split 6. The predictions from the same split,
but on a sequence with fault B is not as accurate, but still a good prediction.

(a) Fault type A (b) Fault type B

Figure 6. RUL prediction from LSTM on split 6.
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Predictions on split number 7 achieved a higher MAE than four other splits. The se-
quence with fault A slightly under-estimated the RUL (Figure 7a), while the sequence
with fault B is over-estimated a little. Under-estimation is considered better since the
maintenance can be done before something breaks. Over-estimation may lead to failure
before maintenance actions took place.

(a) Fault type A (b) Fault type B

Figure 7. RUL prediction from LSTM on split 7.

As stated earlier, both the LSTM and FNN achieved the highest MAE on split number
3. Figure 8a shows that the LSTM predictions on the sequence with fault A were not as
accurate as the ones seen so far. It was more accurate than FNN on the same sequence.
The predictions under-estimated the RUL, but were at least able to indicate that the system
was degrading in advance of a failure. The sequence with fault B over-estimated less than
the FNN prediction, and even under-estimated the target towards the end-of-life. This is
indicated in Figure 8b.

(a) Fault type A (b) Fault type B

Figure 8. RUL prediction from LSTM on split 3.

The LSTM has proven superior to the FNN both when it comes to the score and
the visual analysis. The LSTM achieved satisfactory results for all splits, except split 3.
The results on split 3 were at least better for LSTM than for FNN.

6.4. CNN

The MAE showed that the CNN performance was ranked between FNN and LSTM.
The best CNN results were achieved on split 1. The prediction on a sequence with fault
A and B from that split is shown in Figure 9a,b, respectively. The results for fault A
show that the prediction slightly over-estimated the RUL in early stages of degradation.
The other sequence shows that the RUL was estimated accurately until about 30 time units
were remaining.
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(a) Fault type A (b) Fault type B

Figure 9. RUL prediction from CNN on split 1.

The CNN achieved varying results on split 6. The predictions on a sequence with fault
A (Figure 10a) were following the target closely, but with some noise, especially towards the
end-of-life. The model performed worse on the sequence with fault B, where the reduction
in RUL was detected too late. It over-estimated the early linear phase of the prediction.

(a) Fault type A (b) Fault type B

Figure 10. RUL prediction from CNN on split 6.

Figure 11a shows that the CNN also struggled with predicting the RUL on the sequence
with fault A on split 3. The prediction under-estimated the target by a lot for almost the
entire sequence. The results on the sequence with fault B were not as bad, but it over-
estimated the RUL mid-sequence (Figure 11b).

(a) Fault type A (b) Fault type B

Figure 11. RUL prediction from CNN on split 3.

6.5. Summary

The results have indicated that there were considerable differences in the three DL
models’ performance. LSTM performed best and therefore considered the best model for
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predicting RUL, in this particular case. The predictions were accurate, and they were on
average missing in the upper edge of 6 time units from the target. This is promising results.
Next, it is explored how transfer learning can be used in prognostics, and if it can improve
the results.

6.6. Transfer Learning

Transfer learning was researched to see if the results could be improved using datasets
on other equipment degradation. If so, it contributes to reducing the required number of
run-to-failure examples. It was investigated with LSTM, which has performed the best
in the previous prognostics experiment. Transfer learning was used by first training a
model to perform well on the much larger and popular dataset within prognostics research,
called PHM08 (see Section 4.2). The model was built to match the LSTM architecture that
performed well on the air compressor’s prognostics experiments, making it easier to use
transfer learning.

The architecture and parameters of the LSTM model on the PHM08 dataset were
decided based on experience and manual experiments. The best results were achieved
using a model consisting of four LSTM-layers and two dense layers. The number of neurons
in each layer is described in Table 9. The same setup as for the experiments with the air
compressor data was used to train the model. This means that the labels were normalized
between −1 and 1, the time window was 20, and activation functions for all layers were
tanh. Since the number of inputs was not equal, the first LSTM-layer of the PHM08-model
was not reused.

Table 9. Architecture for the transferred model.

Layer Units

LSTM layer 1 20
LSTM layer 2 30
LSTM layer 3 30
LSTM layer 4 30
Dense layer 1 20
Dense layer 2 1

Transfer learning typically means to take parts of another trained network and reuse it
in a new network either with untrainable or trainable layers. Several different architectures
were explored. The architectures were based on:

• Re-using parts of the model, but make the layers untrainable.
• Re-using parts of the model, but make the layers trainable.
• Combining both untrainable and trainable layers.

To explore if transfer learning can contribute to improve the RUL predictions on the
air compressor, several architectures were tested. The layers from the trained PHM08-
model were used either untrainable or trainable. In the described architectures, a layer
from the PHM08-model is referred to with PHM- plus the type of layer and the cor-
responding layer number (from Table 9). An example is if the second LSTM layer is
used, it is referred to as PHM-LSTM-1, while a new LSTM layer is simply referred to
as LSTM.

Tables 10–13 describes 8 different models that were tested to improve the predictions.
Model 1, 2, and 5 uses several layers from the PHM08-model but allows the transferred
layers to be trained. The pre-trained layers are, in such cases, used as a kind of weight
initialization. The other models use a combination of new layers together with both
trainable and untrainable layers. The reason some layers were untrainable is the idea that
they might have been trained to find good and general features that the new model can
benefit from.
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Table 10. The first and second proposed model related to transfer learning.

Model 1 # Nodes Trainable Model 2 # Nodes Trainable

LSTM 20 Yes LSTM 20 Yes
PHM-LSTM-2 30 Yes LSTM 30 Yes
PHM-LSTM-4 30 Yes PHM-LSTM-4 30 Yes
PHM-Dense-1 20 Yes PHM-Dense-1 20 Yes
PHM-Dense-2 1 Yes Dense 1 Yes

Table 11. The third and fourth proposed model related to transfer learning.

Model 3 # Nodes Trainable Model 4 # Nodes Trainable

LSTM 20 Yes LSTM 20 Yes
PHM-LSTM-2 30 No LSTM 30 Yes
PHM-LSTM-4 30 No PHM-LSTM-4 30 No

Dense 20 Yes Dense 20 Yes
Dense 1 Yes Dense 1 Yes

Table 12. The fifth and sixth proposed model related to transfer learning.

Model 5 # Nodes Trainable Model 6 # Nodes Trainable

LSTM 20 Yes LSTM 20 Yes
PHM-LSTM-2 30 Yes PHM-LSTM-2 30 No
PHM-LSTM-4 30 Yes PHM-LSTM-3 30 No
PHM-Dense-1 20 Yes PHM-LSTM-4 20 Yes

Dense 1 Yes PHM-Dense-1 20 Yes
Dense 1 Yes

Table 13. The seventh and eight proposed model related to transfer learning.

Model 7 # Nodes Trainable Model 8 # Nodes Trainable

LSTM 20 Yes LSTM 20 Yes
PHM-LSTM-2 30 No PHM-LSTM-2 30 No
PHM-LSTM-3 30 No PHM-LSTM-3 30 Yes
PHM-LSTM-4 30 No PHM-LSTM-4 30 Yes
PHM-Dense-1 20 Yes PHM-Dense-1 20 Yes

Dense 1 Yes Dense 1 Yes

All the stated models were trained with the RMSProp optimizer with a learning rate of
0.00005. A batch size of 40 was used, and the models were trained over 40 epochs. The time
window was selected to be 20 time units. Results were evaluated based on MAE averaged
over the 7 splits in k-fold cross-validation. Table 14 shows the score of each of the transfer
learning models and the best model without transfer learning, referred to as original best.
The models that performed better than the original best are highlighted in the table.

Table 14. Results from RUL predictions with transfer learning models.

Model MAE

Original best 6.87
Model 1 9.81
Model 2 8.22
Model 3 9.58
Model 4 6.78
Model 5 8.41
Model 6 6.14
Model 7 7.45
Model 8 5.92
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The results showed that three of the models performed better than the best model
without transfer learning. Model 4 performed quite similar to it, while model 6 and 8
performed much better. These three models have in common that they have at least one
untrainable layer from the PHM08-model. Model 6 and 8 also used several trainable layers
from the PHM08-model. The difference between the two best models was that model
6 has two untrainable layers, while model 8 only has one. This indicated that having
untrainable layers might force the network to reconstruct and benefit from good features
in the transferred model.

The result from the best model (#8) for each individual split is presented in Table 15.
Compared to the original model, the transfer learning model performed similarly for most
of the splits, but there were large differences in split 2 and 3. The MAE was reduced a lot
for split 3, while it increased a lot for split 2. It is hard to identify why this happens, but it
might indicate that the original model was over-fitted to some degree, while the transfer
learning model generalizes superiorly.

Table 15. Results from RUL predictions on each split with model 8.

MAE

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7

Model 8 3.43 11.3 7.57 3.24 5.17 3.96 6.77

Figure 12a shows the prediction from model #8 on a sequence with fault type A
from split 7. Figure 12b shows the prediction on a sequence with fault B from split 0.
The predictions were following the target relatively good.

(a) Fault type A (b) Fault type B

Figure 12. RUL predictions from transfer learning model.

Split 3 resulted in quite bad predictions on the original model, but the best transfer
learning model performed a lot better. Figure 13 shows the RUL prediction on the sequence
with fault A from split 3. It shows that it was a lot better than the original predictions,
but struggled to predict accurately close to end-of-life.

The results proved that using a model that was trained on sequences from a differ-
ent system can contribute to improving predictions. Transfer learning in prognostics is
promising and should be explored further.
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Figure 13. RUL predictions from transfer learning model on split 3.

7. Conclusions and Future Work

The results show that it is possible to predict the RUL of air compressors using DL
approaches. The best-resulting model proved to be LSTM, matching other relevant research.
Since the air compressors’ faults were forced, it is not possible to conclude with how well
it transforms into real situations and degradation patterns on air compressors. However,
the most important finding in this research is that transfer learning improves predictions.
Using a degradation dataset from a different type of equipment improved the accuracy of
the RUL predictions. Transfer learning shows potential in prognostics and is a field that
should be explored more in the future.

Based on this paper’s results, we suggest that transfer learning for prognostics should
be explored further. It could be beneficial to validate that the approach can improve the
results in other use cases and analyze which features are transferred when using transfer
learning for such problems.

This paper used an experimental data augmentation approach to split each data into
subsets to get more examples from each value of RUL. This particular case meant that the
DL models had five times as many examples of the RUL value. This approach could be
investigated further to see if it can improve predictions in cases with little data.
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