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Abstract: This work presents the results of studies related to the design of stabilizing feedback
connections for marine vessels moving along initially given trajectories. As is known, in mathematical
formalization, this question leads to a problem of tracking control synthesis for nonlinear and non-
autonomous plants. To provide desirable stability and performance features of the closed-loop
systems to be synthesized, it is appropriate to use an optimization approach. Unlike the known
synthesis methods, which are usually used within the framework of this approach, it is proposed to
implement the optimal damping concept first developed by V.I. Zubov in the early 60s of the last
century. Modern interpretation of this concept allows constructing numerically effective procedures
of control law synthesis taking into account its applicability in a real-time regime. Central attention
is focused on the questions connected with practical adaptation of the optimal damping methods for
marine control systems. The operability and effectiveness of the proposed approach are illustrated
by a practical example of tracking control design.
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1. Introduction

The nonlinear tracking control of modern marine vessels is one of the most practically
significant and theoretically considerable problems in the area of automatic control analysis
and design. In particular, tracking control systems are widely used in different branches
such as hydrography, inspection of marine constructions, wreck investigation, underwater
cable laying, and so on [1,2]. Central theoretical and practical background of tracking
control for various moving plants is presented in [3–5] and other fundamental works.

Various issues associated with the design of tracking controllers for marine surface
vessels have already been extensively researched and presented in numerous publications
(for example, [1,2,6–16]). To evaluate the state of the art in marine tracking control, let us
address some modern works presenting this direction of research.

Currently, it is possible to use various ideas to design nonlinear tracking control laws
that are reflected in numerous publications, for example, [7,8,13–16]. However, let us note
that the mentioned works are not directly oriented to the application of the optimization
technique. This makes it difficult to provide the desired dynamic features of the closed-
loop connections. Now, it seems to be quite evident that the most effective analytical
and numerical tool for feedback connections design is the optimization approach. Several
aspects of nonlinear tracking control optimization technique are presented in multitudinous
scientific publications, including such popular monographs as [4,5,17–21]. As for the
simplest stabilization problem, the autopilots with multipurpose structures of optimized
control laws are discussed in detail in [22–26].

The sliding mode control technique for marine control applications is discussed
in [1,2,6,8]. This direction seems to be quite constructive, but poorly applicable, since it
leads to intensive wear of the actuators.
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As for the model predictive control (MPC) approach [9], its most significant disadvan-
tage is the large dimension of the minimization problem that is solved at each step of the
control process.

Notably, the complexity of this problem is vast because of the many dynamic require-
ments, restrictions, and conditions that must be satisfied by the chosen control actions.

It should be noted that many scientific works devoted to the tracking control for
marine vessels use linear time invariant models of their motion. However, such models are
not quite adequate for the problems of deep maneuvering control in angle and positional
dynamic variables. Respectively, one of the most important practical difficulties requiring
consideration in the design process is the account of nonlinearity and non-autonomy of the
control plant model. In most cases, this problem is a source of dynamic instability and poor
performance for various systems that were designed based only on linear approximations.

As for the aforementioned optimization approach, its advantages are determined
by the flexibility and convenience of modern optimization methods with respect to the
relevant practical demands for control design implementation. Certain analytical and
numerical methods are used now to compute the optimal controllers for nonlinear and
non-autonomous systems subject to various given performance indices. Nevertheless, there
is no saying that the optimization approach is recognized overall as a universal instrument
to be put into practice for marine tracking controllers design. This can be explained by the
presence of some disadvantages connected with computational troubles. Therefore, there
exists a vital necessity to develop persistently analytical and numerical methods of control
laws design based on optimization ideology adapting to the specific problems for various
marine applications.

At present time, numerous approaches are used for a practical solution of these
problems [1–12,17,18]. Usually, they are based on Pontryagin’s maximum principle, on
Bellman’s dynamic programming principle, on finite-dimensional approximation in the
range of model predictive control (MPC) technique, etc. Unfortunately, all these approaches
are connected with the huge extent of calculations that essentially impedes their implemen-
tation both for laboratory design activity and real-time regimes of control.

The existence of numerical difficulties motivates us to use other approaches that allow
avoiding the aforementioned shortcomings. This work focuses on a different concept that
can be applied to design tracking controllers using the theory of optimal damping (OD).
This theory, which was first proposed and developed by V.I. Zubov in his works [19–21],
provides effective analytical and numerical methods for control calculations with essentially
reduced computational consumptions with respect to classical techniques. We believe that
this theory was ahead of its time and was undeservedly underutilized for practical control
problem solving. This work is one of the attempts to overcome this omission, taking into
account the impressive development of modern computer technologies.

In this article, special attention is paid to the control of marine vessels in terms of the
forward speed and heading angle. We are considering the regime of the acceleration in or-
der to achieve the specified forward speed with one-time turn along the heading. To achieve
desirable stability and performance features of the reference motion, the correspondent
tracking controllers were designed based on the OD technique.

The main contribution of this paper is determined by the following statements. First,
we propose to use the OD concept to design tracking controllers for marine vessel speed
and heading. This has not been the case before. Second, we discuss a new methodology
for selecting the functional to be damped, taking into account the desirable features of
the closed-loop system in the range of the optimization technique. Hereby, the choice of
this functional as the basis is argued by the guarantee asymptotic stability and the desired
quality of control processes. Third, we point to the possibility of applying the OD approach
to a wide class of nonlinearities in the mathematical model of the vessel. It is noted that
this approach can be implemented in real-time regime of a ship’s motion. The practical
applicability and effectiveness of the proposed technique is illustrated by a controller
design for a transport marine ship.



J. Mar. Sci. Eng. 2021, 9, 45 3 of 15

The novelty of the proposed approach with respect to other works lies in the univer-
sality and flexibility of proposed nonlinear non-autonomous control laws based on OD
computational procedure, which can be implemented in a real-time regime of functioning
for marine control plants.

In general, the present study is an extension of the multipurpose approach proposed
in [22–27] and developed in [28] with respect to the marine autopilot control laws with the
novel structure, taking into account actuators’ time delays.

This article is organized as follows. In Section 2, the optimal damping concept for con-
trol law synthesis for nonlinear non-autonomous systems is discussed, taking into account
certain specific stability and performance requirements for marine control applications.
The known background is presented, and the novel ways are proposed to provide tracing
controllers synthesis. Section 3.1 is devoted to the OD synthesis problem statement for the
forward speed tracking controller and for the tracking autopilot. Central attention is paid
to the presentation of mathematical models of the control plant and dynamic requirements
for the quality of the closed-loop connection. Section 3.2 presents an exhaustive novel
solution for the mentioned synthesis problem based on the optimal damping concept. In
Section 3.3, a practical example of tracking controller synthesis is presented to illustrate the
applicability and effectiveness of the proposed approach. Finally, Section 4 concludes the
article by discussing the overall results of the investigation and indicates how these results
can be further developed.

2. Materials and Methods

As mentioned above, the essence of this paper involves developing an optimal damp-
ing technique of tracking control law synthesis for marine vessels with nonlinear and
non-autonomous models. In this section, let us first consider the background and some
essential features of the OD approach that define the methodological basis of the study.

First of all, let us introduce a commonly used nonlinear robot-like model of the control
plant, which represents marine vessel motion for various regimes of its operation [1,2,6]:

M
.
ν+ C(ν)ν+ D(ν)ν+ g(η) = Guτ+ d,

.
η = J(η)ν,

(1)

where vector ν ∈ Rn presents velocities defined in a plant-fixed frame and vector η ∈ Rn

contains position dynamical parameters (displacements and angles) in an Earth-fixed
frame. External disturbances and controls are presented by the vectors d ∈ Rn and τ ∈ Rm,
respectively. Let us accept that the inertia matrix is positive definite: M = MT > 0,
the matrix of Coriolis-centripetal terms is skew-symmetrical: C(ν) = −CT(ν), and the
damping matrix D(ν) > 0 is positive definite but non-symmetrical. Vector g(η) represents
gravitational and buoyancy forces and moments, J(η) is the matrix of rotations, and the
matrix Gu with the constant components reflects controls allocation.

Let us provide a transformation of the body-fixed frame representation (1) to the
Earth-fixed one with respect to the vector η. Following [1], this can be done using the
following notations:

Mη(η) := J−T(η)MJ−1(η),
Cη(ν,η) := J−T(η)

[
C(ν)−MJ−1(η)

.
J(η)

]
J−1(η),

Dη(ν,η) := J−T(η)D(ν)J−1(η), gη(η) := J−T(η)g(η),
τη := J−T(η)Guτ, dη = J−T(η)d.

(2)

In accordance with (2), initial model (1) of the plant takes the form:

..
η = −M−1

η (η)
(
(Cη(ν,η) + Dη(ν,η))

.
η+ gη(η) − τη − dη

)
, ν = J−1(η)

.
η . (3)
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The essence of the tracking control problem is to provide given desirable motion
η = ηd(t) of the vessel, using the following state feedback

τ = τ(η,ν,ηd(t)), (4)

which is a nonlinear non-autonomous tracking controller.
Within mathematical formalization, controller (4) must be implemented to provide the

zero equilibrium with respect to the tracking error e(t) := η(t)− ηd(t) for the closed-loop
system (3), (4), where d(t) ≡ 0. Naturally, this equilibrium point must be asymptotically
stable to guarantee that e(t)→ 0 as t→ ∞ . Let us especially note that the mentioned
closed-loop system is nonautonomous, if we have no constant reference motion ηd(t).
This gives reasons for us to require the uniform asymptotic stability in global (UGAS) or
local (UAS) form. An additional requirement is that the controller (4) provides the desired
dynamical features for the closed-loop system (3), (4) under the action of an admissible
control τ ∈ Tu.

To set the perform of the controller (4) synthesis, we assume that the vector functions
ηd(t), ν(t) := J−1(ηd(t))

.
ηd(t), and the corresponding τd(t) are given. These functions

satisfy Equations (1) or (3), i.e., we have:

M
.
νd(t) + C(νd(t))νd(t) + D(νd(t))νd(t) + g(ηd(t)) ≡ Guτd(t),.

ηd(t) ≡ J(ηd(t))νd(t).
(5)

Let introduce the following additional notations:

~
x :=

(~
x1
~
x2

)
=

(
ν

η

)
, f(

~
x) :=

(
−M−1[C(ν) + D(ν)]ν−M−1g(η)

J(η)ν

)
, B :=

(
M−1Gu

0

)
which allows us to present Equations (1) and (5) as

.
~
x = f(

~
x) + Bτ,

.
xd ≡ f(xd) + Bτd, (6)

supposing that d(t) ≡ 0.
Let us also consider deflections

x :=
~
x− xd =

(
x1
x2

)
:=
(

eν
e

)
:=
(
ν− νd
η− ηd

)
, u := τ− τd (7)

of the vessel dynamical parameters from the desirable motion.
Then, we can present equations of the vessel in the deflections from the desirable

motion. Using notations (7) on the base of (6), we obtain

.
x = α(t, x) + Bu, (8)

where

α(t, x) = α(t, e, eν) :=
(
−M−1[C(eν + νd(t)) + D(eν + νd(t))](eν + νd(t))−M−1g(e + ηd(t))

J(e + ηd(t))(eν + νd(t))

)
−(

−M−1[C(νd(t)) + D(νd(t))]νd(t)−M−1g(ηd(t))
J(ηd(t))νd(t)

)
.

(9)

It is a matter of simple calculations to check that equation (6) has zero equilibrium
position, which must be stabilized by the choice of the controller u = u(t, x). If this
controller is found, then the tracking feedback (4) can be presented as

τ = τ(t,ν,η) = τ(η,ν,ηd) = u(t, x) + τd(t), x :=
(
ν− νd(t)
η− ηd(t)

)
. (10)
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As for the desirable dynamic features of the closed-loop connection, the most widely
used formalized approach is based on minimizing the following integral functional:

J = J(t, x, u) =
∞∫

t0

f (τ, x, u) dτ,

that determines the quality of control processes for a closed-loop system. Here, subintegral
function f is positive definite, i.e., f (t, x, u) ≥ 0 ∀t ≥ t0, ∀x, ∀u, f = 0⇔ x = 0, u = 0.
However, as is well known, there are certain difficulties in directly implementing this
approach, which are determined by the huge extent of calculations that essentially impedes
their practical implementation.

We propose to overcome the mentioned obstacles using a novel technique based on
the OD concept, connected to the OD problem for the synthesis of the control u. To state
this problem, firstly, let us introduce the functional to be damped as follows:

L = L(t, x, u) = V(t, x) +
t∫

t0

f0(τ, x, u) dτ, (11)

where V = V(t, x) is a Lyapunov function candidate, and f0 is a positively defined function.
Let us additionally accept that the function V satisfies the following conditions:

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖)∀x ∈ Br ⊂ En, ∀t ≥ t0, (12)

where α1,α2 ∈ K are comparison functions [4].
The essence of the OD approach consists of the control generation as a function from

the current values of variables t, x in the form

u0 = u0(t, x) = argmin
u∈U

W(t, x, u) (13)

where U ⊂ Em is the metric compact set, and W is a rate of the functional L change along
the motions of the plant (8):

W(t, x, u) :=
dL
dt

∣∣∣∣
(8)

=
dV
dt

∣∣∣∣
(8)

+ f0(t, x, u) =
∂V
∂t

(t, x) +
∂V
∂x

(t, x)α(t, x) +
∂V
∂x

(t, x)Bu + f0(t, x, u).

In other words, it is necessary to find OD controller (13), using an admissible set
U ⊂ Em such that ∀u ∈ U : τd(t) + u(t, x) ∈ Tu, ∀t ≥ 0.

We can specify three possible ways to solve this optimization problem:

(a) The first way is based on the direct numerical calculation of the vectors u = u0(t, x)
providing the pointwise minimization of the function W by the choice of u for current
points (t, x). Let us especially notice that this variant is universal in nature and can be
applied to generate a control signal for real-time regime of motion.

(b) The second way involves the possibility of an analytical solution to the problem (13).
Naturally, this is the most preferred way, but such a situation is quite rare, although
an example of its practical application will be given below.

(c) The third way reduces the problem (13) to a numerical solution of a nonlinear system
of finite equations. In fact, if we have u0(t, x) ∈ intU ∀t ≥ 0, ∀x ∈ Br, then with
necessity we obtain

dW
du

∣∣∣∣
u=u0(t,x)

= 0 ⇒
[

∂V
∂x

(t, x)B +
∂F
∂u

(t, x, u)
]

u=u0(t,x)
= 0. (14)

Using the necessary condition (14), one can solve the following nonlinear system

a(t, x, u) = b(t, x)
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for any point (t, x) with respect to the vector u, where a(t, x, u) = col[ai(t, x)], b(t, x) =
col[bi(t, x)],

ai(t, x, u) :=
[

∂F
∂u

(t, x, u)
]

i
, bi(t, x) := −

[
∂V
∂x

(t, x)B
]

i
, i = 1, n.

Based on [4,5], it can be shown that if the function V = V(t, x) is such that W(t, x, u0(t, x))
≤ −α3(‖x‖) ∀x ∈ Br, ∀t ≥ t0, where α3 ∈ K, then the function V is control Lyapunov
function (CLF) for the plant (8), and the zero equilibrium for the closed-loop system (8),
(13) is UAS.

3. Results

This section is devoted to a practical implementation of the proposed OD approach to
nonlinear tracking controllers design for marine vessels. Particular attention is given to the
forward speed tracking control law with initially given reference signal.

3.1. Tracking Control Problem for Marine Vessels

To consider the problems of tracking control for marine applications, let us accept the
following widely used [1,2] nonlinear dynamical model of a marine vessel:

dVx
dt = Tv(Vx,ξ, u1) + Th(Vx,ξ),

dVy
dt = h2(Vx,ξ), dω

dt = h3(Vx,ξ),
dϕ
dt = ω, dδ

dt = u2.

(15)

Here, the following notations are used: Vx, Vy, andω are the projections of the veloc-

ity vectors on the axes of a vessel-fixed frame Oxyz (Figure 1); ξ :=
(

Vy ω ϕ δ
)T is

the auxiliary vector of dynamical parameters; ϕ is the heading angle, and δ is the vertical
rudder deflection. The functions Tv and Th represent hydrodynamical forces, which are
produced by the ship’s engine and the water resistance correspondingly.
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Figure 1. Earth-fixed and vessel-fixed coordinate frames.

The control signals u1 and u2 must be composed by the automatic control system to
be designed. The first of them determines a reference surge speed of the vessel, and the
second one presents a reference speed of the rudders’ deflections.

Assuming that the number of the screw rotations is proportional to a reference surge
speed, the function Tv(Vx,ξ, u1) determining a trust force of the screw can be presented in
the form

Tv(Vx,ξ, u1) ≡ αu2
1 + β(Vx,ξ)u1 + γ̃(Vx,ξ), (16)

We accept here that α ≡ const, and that the variables β and γ̃ are treated as known
functions of the dynamical parameters Vx,ξ.
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Let us introduce new vector variables h(Vx,ξ) :=
(

h2(Vx,ξ) h1(Vx,ξ) ξ3 0
)T ,

b =
(

0 0 0 1
)T , and, taking into account (16), we can rewrite nonlinear model (1) of

the vessel dynamic as follows:

dVx
dt = αu2

1 + β(Vx,ξ)u1 + γ(Vx,ξ),
dξ
dt = h(Vx,ξ) + bu2.

(17)

Now we specify a certain reference motion Vxρ(t), ξρ(t), u1ρ(t), and u2ρ(t) of the
plant (17), satisfying the identities

dVxρ
dt ≡ αu2

1ρ + β(Vxρ,ξρ)u1ρ + γ(Vxρ,ξρ),
dξρ
dt ≡ h(Vxρ,ξρ) + bu2ρ.

(18)

Using systems (17) and (18), we can present equations of vessel dynamic in deflections
from the desirable reference motion of the form

dVx
dt +

dVxρ
dt = α

(
u1 + u1ρ

)2
+ β(Vx + Vxρ,ξ+ ξρ)

(
u1 + u1ρ

)
+

+γ(Vx + Vxρ,ξ+ ξρ),
dξ
dt +

dξρ
dt = h(Vx + Vxρ,ξ+ ξρ) + b(u2 + u2ρ) ,

(19)

where

Vx := Vx −Vxρ, ξ :=
¯
ξ − ξρ, u1 := u1 − u1ρ, u2 := u2 − u2ρ. (20)

One can see that Vxρ = Vxρ(t), ξρ = ξρ(t), u1ρ = u1ρ(t), and u2ρ = u2ρ(t) are
known functions of t: using new correspondent notations β1, γ1, h1, we can rewrite (19)
as follows:

dVx
dt = αu2

1 + β1(t, Vx,ξ)u1 + γ1(t, Vx,ξ),
dξ
dt = h1(t, Vx,ξ) + bu2

(21)

stating that the resulting system (21) has a zero-equilibrium position.
Let us especially note that, unlike (17), this system is not only nonlinear, but also

non-autonomous. This is due to the explicit introduction of the time-dependent reference
signals into the vessel dynamics equations.

The purpose of the control design procedure is to construct the following stabilizing
feedback controllers in deviations:

u1 = u1(t, Vx,ξ), u2 = u2(t, Vx,ξ), (22)

such that the zero equilibrium of the closed-loop connection (21), (22) is asymptotically
stable. This means that if the motion of the initial plant (15) takes place under the action of
tracking controllers of the form

u1 = u1ρ(t) + u1(t, Vx,ξ), u2 = u2ρ(t) + u2(t, Vx,ξ), (23)

starting in some neighborhood of the point {Vxρ(0), ξρ(0)}, then this motion tends to the
reference one as t becomes infinite.

As for the performance of control processes, they are usually formalized mathemati-
cally using certain functionals, which are given on the motions of the closed-loop system
(21), (22). Currently, the commonly used approach to design stabilizing controllers (22) is
setting and solving the following optimization problem

J = J(u1, u2)→ min
{u1,u2}∈Ũ

(24)
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based on the integral functional

J = J(u1, u2) =

∞∫
t0

f ∗(t, Vx(t),ξ(t), u1(t), u2(t)) dt, (25)

where Ũ is the set of admissible pairs {u1, u2} and subintegral function f ∗ is positive
definite for all its arguments.

In contrast to the problems (24), (25) with traditional methods of its solving, as
mentioned above, we propose to use novel approach based on the OD concept.

Let us especially note that both the solution of the problem (24) and the solution of the
OD problem significantly depend on the initially given mathematical model (21) of a marine
vessel. Naturally, this is evidence that this model cannot be formed accurately, which raises
very important questions about the robust features of the closed-loop system to be designed.
This problem is quite solvable for various types of marine vessels: the paper [29] is an
example. However, the study of the robust features of tracking OD controllers presents an
independent problem to be addressed in future studies.

3.2. Forward Speed OD Tracking Controller Design

In general, the synthesis of the two stabilizing controllers (22) using OD technique
can be carried out simultaneously. Nevertheless, one can also apply a combined approach
to the feedback design for the considered plant (21) with two control channels. In the
range of this approach, the first control is formed based on the OD problem, and the
second one can be designed in any other way, providing desirable performance features.
However, a joint closed-loop system must have zero equilibrium, and this motion must be
asymptotically stable.

Realizing this idea, let us accept the dynamic controller for rudders (marine autopilot)
in the following form:

dz
dt = γz(t, z, Vx,ξ),
u2 = gz(t, z, Vx,ξ),

(26)

where z ∈ Eν is the state vector of this controller.
In particular, the feedback (26) may have a multipurpose structure, which is presented

in detail in [22,27] for linear time-invariant case. Its implementation taking into account
control time-delay is investigated in the paper [28].

The equations of the control plant now take the form

dVx
dt = αu2

1 + β1(t, Vx,ξ)u1 + γ1(t, Vx,ξ),
dξ
dt = h1(t, Vx,ξ) + bgz(t, z, Vx,ξ),
dz
dt = γz(t, z, Vx,ξ).

(27)

In order to synthesize a feedback for the first control channel, i.e., design the OD
forward speed stabilizing controller, let us introduce the functional to be damped as

L = L(t, Vx,ξ, z, u1) = V(Vx,ξ, z) +
t∫

t0

λ2
1u2

1 dτ. (28)

Let us take as a Lyapunov function candidate the following sum of quadratic forms:

V = V(Vx,ξ, z) = λ2V2
x + ξTQξ+ zTQ1z, Q > 0, Q1 > 0. (29)

Based on (28), (29), we can state the correspondent OD problem of the form

W(t, Vx,ξ, z, u1)→ min
u1∈U1

(30)
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where the rate W of the functional L change is determined as follows:
W = W(t, Vx,ξ, z, u1) := dL

dt

∣∣∣
(27)

= dV
dt

∣∣∣
(27)

+ λ2
1u2

1 = ∂V
∂Vx

dVx
dt + ∂V

∂ξ
dξ
dt + ∂V

∂z
dz
dt + λ2

1u2
1

= 2λ2Vx
[
αu2

1 + β1(t, Vx,ξ)u1 + γ1(t, Vx,ξ)
]
+ 2ξTQ dξ

dt + 2zTQ1
dz
dt + λ2

1u2
1.

(31)

Let us solve the problem (30), taking into account (31) and assuming that the extreme
is achieved at the inner point of the set U1: with necessity we obtain

dW
du1

= 2λ2Vx(2αu1 + β1(t, Vx,ξ)) + 2λ2
1u1 = 0

that determines the following controller

u1 = u10(t, Vx,ξ) = −λ2Vxβ1(t, Vx,ξ)
2λ2Vxα+ λ2

1
. (32)

Since, according to formulae (15)–(21), we have

β1 = β1(t, Vx,ξ) := 2αu1ρ(t) + β(Vx + Vxρ(t),ξ+ ξρ(t)) ,

β(Vx + Vxρ(t),ξ+ ξρ(t)) = β0

√
(Vx + Vxρ(t))

2 +
(
Vy + Vyρ(t)

)2, β0 = const ,

we arrive from (32) at the following OD controller:

u10(t, Vx,ξ) = −
λ2Vx

(
2αu1ρ(t) + β0

√
(Vx + Vxρ(t))

2 +
(
Vy + Vyρ(t)

)2
)

2λ2Vxα+ λ2
1

, (33)

where Vy =
(

1 0 0 0
)
ξ, Vyρ(t) =

(
1 0 0 0

)
ξρ(t).

It is necessary to note that if the value u10(t, Vx,ξ) is out of an inner part of the
admissible set U1, we must use the control signal u1 = 0.01Pρu1ρ(t) · sign(u10(t, Vx,ξ))
instead of (33).

It is necessary to note that practical problems involve situations where the right part
of the equation for forward speed has a more complex structure than for the system (17).
In general, this equation can be presented as

dVx

dt
= Fx(Vx,

¯
ξ, u1).

which results in the correspondent equation for the system (21) in deflections:

dVx

dt
= Gx(t, Vx,ξ, u1),

where Gx(t, Vx,ξ, u1) := Fx
(
Vx + Vxρ(t),ξ+ ξρ(t), u1 + u1ρ(t)

)
− Fx

(
Vxρ(t),ξρ(t), u1ρ(t)

)
.

In this case, instead of (31) we have

W(t, Vx,ξ, z, u1) = 2λ2VxGx(t, Vx,ξ, u1) + 2ξTQ
dξ
dt

+ 2zTQ1
dz
dt

+ λ2
1u2

1.

and the analytical search for stationary points of the function W becomes problematic.
Nevertheless, it is always possible to consider a question about the numerical solution of
OD problem (30) for each aggregate of fixed parameters t, Vx,ξ. Moreover, it is always
possible to pose a finite dimensional minimization problem

u1 = un
10(t, Vx,ξ) = arg min

u1∈U1n

(
g1(t, Vx,ξ, u1) + λ2

1u2
1

)
, (34)

on the finite net U1n ⊂ U1 for any compact set U1. This problem should be solved at the
time t for the fixed parameters t, Vx(t),ξ(t). Obviously, with a sufficiently large number
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of points for the set U1n, the solution of the problem (34) tends to solution for the same
problem on the set U1.

Finally, in accordance with formula (23), we can compose the tracking controller of
the form

u1 = u01(t, Vx,ξ) := u1ρ(t) + u10(t, Vx,ξ),

where the stabilizing part u10(t, Vx,ξ) is determined by equality (33). One can see that the
resulting representation for OD forward speed tracking controller is as follows:

u1 = u01(t, Vx, Vy) =
λ2

1u1ρ(t)− λ2(Vx −Vxρ(t)
)
β0

√
Vx2 + Vy2

2λ2α
(
Vx −Vxρ(t)

)
+ λ2

1
. (35)

The current values of the dynamic parameters Vx(t), Vy(t) must be measured to
implement the controller (35).

3.3. Numerical Example of OD Tracking Controller Synthesis

To illustrate a practical implementation of the proposed OD approach, let us consider
a practical example of forward speed tracking controller design for the transport ship with
a displacement of 3500 tons, a length of 110 m, a width of 14 m, and an immersion of 5 m.
As a mathematical model of the plant, let us accept equations (17), which are presented
in [1,2] with the given functions β(Vx,ξ), γ(Vx,ξ), h(Vx,ξ) and parameter α.

First, we define the reference motion of the ship as a partial solution of system (17)
with the initial conditions Vx(0) = 2 m/s, ξ(0) = 0. Let us accept the reference forward
speed control as follows:

u1ρ(t) =
{

2 + 0.08t, i f 0 ≤ t ≤ 100s,
10, i f t ≥ 100s.

(36)

To determine the reference control for the rudders, let us initially construct a model
feedback as a controller

um = k1xm1 + k2xm2 + k3(xm3 −ϕz) + k4xm4 := kmxm − k3ϕz, (37)

fulfilling the command-heading signal ϕz. The basis item kmxm in (37) stabilizes Linear
Time Invariant (LTI) plant

dxm

dt
= Amxm + bmum (38)

which is a result of the plant (17) linearization in the neighborhood of the origin for a fixed
forward speed Vx. Let us especially notice that the linear model (38) is used only for the
synthesis of controller (37) but is not used for simulation and for performance indices
computation: controller (37) closes full initial model (17) of the vessel.

Accepting Vx = 10 m/s , we obtain

Am =


a11 a12 0 b1
a21 a22 0 b2
0 1 0 0
0 0 0 0

, bm =


0
0
0
1

 a, 11 = −0.0936, a12 = −6.34, b1 = −0.190,
a21 = −0.00480, a22 = −0.717, b2 = 0.0160.

We design the basis control um = kmxm for plant (38) with aforementioned parameters
as the Linear Quadratic Regulator (LQR) optimal controller with respect to the functional

Jm = J(um) =

∞∫
0

(
xT

mQmxm + λmu2
m

)
dt, (39)

where Qm = diag
(

0 1.975 0.0250 0
)
, λm = 60. Let us especially remark that the

choice of the presented parameters for the functional (39) is determined by the initially
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given requirements to a dynamic quality of the control processes for the nonlinear time
varying system. These requirements provide desirable settling time and overshoot for the
closed-loop connection.

As a result of computations, we get the constant vector km =
(

k1 k2 k3 k4
)
,

where
k1 = 0.00234, k2 = −0.0495, k3 = −0.0204, k4 = −0.0497.

Let us substitute the reference heading control u1ρ(t) and the rudders feedback control

u2 = k1ξ1 + k2ξ2 + k3(ξ3 −ϕz) + k4ξ4, ϕz = 90◦, (40)

into Equation (17). After integration, we obtain the functions u2ρ = u2ρ(t), Vxρ = Vxρ(t),
and ξρ = ξρ(t) =

(
Vyρ(t) ωρ(t) ϕρ(t) δρ(t)

)T , which determine given reference motion
of the vessel. The graphs of aforementioned functions are presented in Figures 2 and 3.
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To provide simulation process, instead of (23), (26), we accept the following simple
feedback control law for a marine autopilot:

u2 = k1Vy + k2ω+ k3(ϕ−ϕz) + k4δ, (41)

where ϕz is the command-heading signal. This controller, corresponding to (40), can be
directly used for actuators of the vertical rudders.

Thus, one can see that, as a result, initial control plant (17) is closed by the tracking
controllers (35) and (41). The current values of the dynamic parameters Vx(t), Vy(t),ω(t),
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ϕ(t), and δ(t) must be measured by the corresponding sensors for the actual implementa-
tion of these controllers.

For simulation of the closed-loop system dynamics, the following parameters values
are accepted: λ2 = 100, λ2

1 = 1, α = 0.00462, β0 = −0.00322. In addition, let us take into
account the restrictions

∣∣δ(t)∣∣ ≤ dm = 35◦ and |u2(t)| ≤ um = 3 ◦/c.
To illustrate the practical applicability of the proposed approach, let us simulate

the control processes for the closed-loop connection. The aim is to make the proposed
approach comparable to other methods. This determined the choice of design parameters
and regimes of vessel’s motion. These regimes represent the most popular options for
movement on quiet water and under the action of sea waves.

The results of simulation are presented in Figures 4–6 as the graphs of corresponding
functions, which reflect control signals and the vessel’s state variables for the transient
process. This process is determined by the aforementioned reference motion, which is
realized with the help of the designed tracking controllers. Initial conditions for all variables
are zero with the exception of forward speed and heading angle. By these variables, the
initial conditions Vx(0) = 4 m/s and ϕ(0) = −10◦ are accepted to distinguish them from
the reference motion.
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Let us note that the dynamical quality of the presented transient process seems to be
quite satisfactory. In addition, it is suitable to illustrate the dynamics of the closed-loop
connection under the action of sea wave external disturbance. Figure 7 shows the same
control process for the forward speed Vx, taking into account presence the approximate
representation of sea waves with an intensity of 5 on the Beaufort scale.
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Here, the symmetrical matrix 0S >  is a solution of the algebraic Riccati equation, 398 
which is used in the range of LQR controller (37) synthesis: 399 


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
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
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
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
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



−

−

−

−−−

=

98.222.197.2141.0

22.127.159.2102.0

97.259.204.7243.0

141.0102.0243.00107.0

S . 

Let us notice that the introduced function )(xV  satisfy the relationships 400 
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Figure 7. Forward speed Vx = Vxb(t), Vxρ(t), and Vx(t) = Vx(t)−Vxρ(t) under sea waves action.

Finally, let us analyze the stability of the closed-loop system (17), (35), (41) with
synthesized tracking controllers. One can easily see that in order to provide aforementioned
analysis, it is sufficient to consider the zero-equilibrium stability for the closed-loop system
(27), (33) presented in deflections from the reference motion.

It is obvious that systems (27), (33) have zero equilibrium, and to investigate its
stability features, let us introduces the following Lyapunov function candidate:

V = V(x) = λ2V2
x + ξTSξ = xTS1x, S1 =

(
λ2 0
0 S

)
, x :=

(
Vx
ξ

)
. (42)

Here, the symmetrical matrix S > 0 is a solution of the algebraic Riccati equation,
which is used in the range of LQR controller (37) synthesis:

S =


0.0107 −0.243 −0.102 −0.141
−0.243 7.04 2.59 2.97
−0.102 2.59 1.27 1.22
−0.141 2.97 1.22 2.98

.
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Let us notice that the introduced function V(x) satisfy the relationships

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), ∀x ∈ E5, (43)

with the following K-class functions:

α1(‖x‖) = σmin(S1) · ‖x‖2, α2(‖x‖) = σmax(S1) · ‖x‖2,

where σmin = 0.00115 and σmax = 100 are the minimum and maximum eigenvalues of the
matrix S1, respectively.

Using the additional function α3(‖x‖) ≡ ‖x‖ ∈ K, one can check if the following
inequality is valid

W(t, x) =
dV
dt

∣∣∣∣
(27), (33)

≤ −α3(‖x‖), ∀t ≥ 0, ∀x ∈ Bx, (44)

where Bx is a box, determined by the relationships:

Bx(t) =
{

x ∈ E5 : |xi| ≤ xim(t), i = 1, 5
}

,

x1m(t) = 0.01Pρ|Vxρ(t)|, x2m(t) = 0.01Pρ
∣∣Vyρ(t)

∣∣,x3m(t) = 0.01Pρ|ωρ(t)|, x4m(t) = 0.01Pρ|ϕρ(t)|,

x5m(t) = 0.01Pρ|δρ(t)| .

Here, the variable Pρ determines the relative width of the box Bx compared to the
current values of the reference signals. This variable was increased to such a value that the
condition (44) was met. The obtained value Pρ = 25% seems to be still admissible in the
range of (43), (44) [4,5], determining the region of the local uniform asymptotic stability for
the reference motion, which is realized by tracking controllers (35), (41).

4. Discussion

The main goal of this work was to propose constructive methods for marine tracking
controllers’ design taking into account the real conditions of a vessel’s motions. We focused
our main attention on a situation where the rudders’ deflections and the forward speed are
presented by initially given reference signals to be realized using tracking feedback controls.

This problem can be solved using different popular optimization approaches (Bell-
man’s theory, MPC technique, sliding mode control, etc.). Nevertheless, we propose a
new specific method for tracking controllers’ design, which ensures the desirable reference
motion of the vessel along the forward speed and heading angle.

This method is based on the optimal damping concept, which has certain advantages
related to the practical requirements for the dynamic features of a closed-loop connection.
The main advantage of the aforementioned approach is that the numerical solution of the
optimization problems is essentially simplified. In contrast to well-known approaches [1–4],
we applied OD tracking feedback as a control law with special features that allow it to be
adjusted and implemented in real-time regime of motion.

The main result of this study is the development of the optimal damping concept to
ensure its practical applicability and effectiveness that is illustrated by a controller design
for a transport ship.

The investigations presented above could be further developed to consider the robust
features of the tracking control laws, information about the measurement noise, and the
presence of transport delays [24]. The results of the executed research could also be
implemented to provide desirable reference motion of the dynamic positioning systems
for marine vessels [26,27]. Certain attention may be given to the multipurpose control
laws applications [22–25]. As for direct development of this study, it is possible to also use
OD controller for the vertical rudders. The extension of the proposed approach to various
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robotic systems is also of considerable interest. The scope of the proposed approach may
additionally include remotely operated vehicles [11] and offshore structures [12].
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