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Abstract: Analytical method using Rayleigh–Ritz method has not been widely used recently due
to intensive use of finite element analysis (FEA). However as long as suitable mode functions
together with component mode synthesis (CMS) can be provided, Rayleigh–Ritz method is still
useful for the vibration analysis of many local structures in a ship such as tanks and supports for
an equipment. In this study, polynomials which combines a simple and a fixed support have been
proposed for the satisfaction of boundary conditions at a junction. Higher order polynomials have
been generated using those suggested by Bhat. Since higher order polynomials used only satisfy
geometrical boundary conditions, two ways are tried. One neglects moment continuity and the other
satisfies moment continuity by sum of mode polynomials. Numerical analysis have been performed
for typical shapes, which can generate easily more complicated structures. Comparison with FEA
result shows good agreements enough to be used for practical purpose. Frequently dynamic behavior
of one specific subcomponent is more concerned. In this case suitable way to estimate dynamic
and static coupling of subcomponents connected to this specific subcomponent should be provided,
which is not easy task. Elimination of generalized coordinates for subcomponents by mode by mode
satisfaction of boundary conditions has been proposed. These results are still very useful for initial
guidance.

Keywords: mode polynomials; CMS (component mode synthesis); FEA (finite element analysis);
PMSC (proposal of methodology for a simplification of computation)

1. Introduction

Each tank installed on the ship is arranged in the stern and engine room of the ship
considering the cargo loading space, and there is a possibility that excessive vibration
may occur due to the main excitation forces (main engine and propeller) that causes the
ship vibration. If excessive vibration occurs after drying, it occurs significant restrictions
and high cost on reinforcing work such as welding and special painting inside the tank.
Therefore, anti-vibration measures are required at the design stage, along with a commercial
program (MSC Patran/Nastran), in some cases, a calculation program [1,2] that can simply
check the natural frequency has been developed and used.

In order to have an anti-vibration design of structures through calculation methods,
it is necessary to analyze the normal mode for resonance avoidance with the main excitation
force. For the normal mode analysis of structures, analytical methods such as Rayleigh–Ritz
method are widely used together with finite element method. Although the finite element
method is widely used in recent years, the analytical method which can be easily and
simply reviewed at the initial design stage is still useful because the calculation time is
longer than that of the analytical method.
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Analytical methods require an approach that can yield more reliable results. In general,
when the analytical method is applied, the Euler’s beam function is used.

However, since the operation is very complicated, a study has been made on a poly-
nomial having a beam property in order to simplify it. Park and Yang [3] performed the
calculation of the natural frequency of the connected rectangular plate using a polynomial.
Bhat [4] uses a polynomial as mode functions. Han [5,6] analyzed the complex vibration of
the panel using the assumed mode method as an analytical method.

Kim [7] carried out the vibration analysis of the rectangular reinforced plate using
polynomial with Timoshenko beam function property which can consider the rotational
inertia and shear deformation effect of plate and stiffener. However, all calculations in
the above mentioned studies are performed with given boundary conditions. The above
mentioned studies were performed with differentiated boundary condition such as simple
and fixed boundary conditions for a single structure.

However, the ship structure is not a single but a connection structure. Therefore,
it is not appropriate to calculate the connection structure by simply assigning a simple
or fixed boundary condition. CMS (component mode synthesis) method was applied to
calculate the connection structure [8,9]. The first CMS method was presented by Hurty [10]
in 1960. Alessandro Cammarata [11] introduced a wide range of CMS content, described an
algorithm applied to flexible multi-objects, and a method of reducing degrees of freedom.
In order to calculate the normal mode analysis of the connected structure using the CMS
method, it is important to define the constraint at the connection part, and various studies
on the constraint conditions at the junction were performed by Hurty et al. [12–18].

Carrera et al. [19] is developed theory that can be solved by converting a three-
dimensional model for large deformation of a structure into one dimension was developed
and applied to the calculation. Pagani et al. [20] is explained that the natural frequency and
mode shape can be changed significantly when the metal structure is subjected to large
displacement and rotation under geometrical nonlinear conditions.

Further, geometric nonlinear total Lagrange formula including cross-sectional defor-
mation was developed to implement the vibration mode of the composite beam structure
in the nonlinear region [21].

As mentioned above, many studies have been conducted, but it is still important to
find a way to minimize the convergence of boundary conditions at the junction. This study
proposed the following method to minimize the convergence of boundary conditions at
the junction.

Firstly, we have proposed polynomials combining fixed and simple supports to satisfy
boundary condition at junctions between each subsystem. We know that this approach has
never been tried.

Secondly, although Bhat [4] proposed a fixed and simple support function, the calcula-
tion was performed by applying it to a simple plate. In addition, the function proposed by
Bhat does not satisfy the natural condition in higher order terms of second or higher order.

In this study, in order to compensate for this problem, calculations were performed
for the two cases mentioned below at the connection point and the results were compared
in Section 4.1.

(1) Displacement, slope, and moment continuity (total sum of natural conditions is
continuous);

(2) Displacement, and slope continuity (ignoring natural conditions).

For reference, the geometrical boundary condition mentioned in this manuscript refers
to the boundary condition for displacement and slope, and the natural boundary condition
refers to the boundary condition for moment. [4]

Third, in order to confirm the usefulness of the proposed method, a numerical analysis
was performed on the representative shape of two and three components typical.

In particular, for the two component type, various verifications were performed in the
entire length range 0� x� 1 according to the length ratio (LA:LB).
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Fourth, frequently, only specific subcomponent is more concerned for vibration anal-
ysis. In this case, the suitable boundary conditions to consider the static and dynamic
coupling from the other subcomponent through junctions should be provided. However,
the suggestions for such boundary conditions are hardly found. In this study, in order
to calculate the above case, A simplified method that can reduce the degree of freedom
up to 50% by matching the subcomponent mode and the interest component mode as a
constraint condition at the junctions is also proposed.

The purpose of the simplification method presented in this study is to show that it is
possible to calculate a method that can reduce the degree of freedom by 50%, rather than a
method for comparing numerical calculation results with the existing method. Although
this method is somewhat excessive, as a result, it satisfies the finite element analysis (FEA)
result and the analysis error of 15%, which is appropriate as an approximate numerical
methodology, so it is considered to be efficient for approximate numerical calculation.

In addition, a three component structure was used for the calculation of structures
in which symmetric and asymmetric modes occur repeatedly. A mode function having
an appropriate boundary condition for a three component structure is proposed. The
case of three component structures, fixed-fixed, fixed-simple, simple-fixed, fixed-free,
simple-simple, and displacement functions were used.

A method of simplifying and calculating it for asymmetric and symmetric modes was
proposed.

2. Definition of Assumed Mode Functions

The component mode synthesis is suitable for the vibration analysis of many local
structures in ships such as tanks and supports for equipment, in which structures are
divided into smaller subcomponents.

In the component mode synthesis, each mode function does not need to satisfy the
junction conditions as long as their combined sum allows these junction conditions to be
satisfied.

Nevertheless efficient mode functions to improve convergence are still very important
for the practical use. Polynomials are frequently considered as mode functions [4]. Junction
conditions among subcomponent are neither fixed nor simple support. It is a reasonable
guess for mode functions to be represented by combined sum of functions for fixed and
simple support. To represent the basic ideas of the method of modal synthesis, an example
shown in Figure 1 is used. Vibration only in the plane of paper is considered.
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(a) (b) 

Figure 1. Structure model of two section type connected beam. (a) Simplify model; (b) finite element
analysis (FEA) Model.

2.1. Two Components Type Connected Structure

The beam is separated into two sections OA and OB, whose coordinates are shown as
wA; x and wB; x.

The properties of structures used in the numerical analysis are shown in Table 1.
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Table 1. Properties and cross section of model.

Category WA WB Cross Section

Density [kg/m3] 7850 7850
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Length [m] 5 5/4/2.5
Area [m2] 0.1 0.1

Young’s modulus [N/mm2] 2.10 × 105 2.10 × 105

2nd moment of area [mm4] 3.33 × 108 3.33 × 108

Deflections can be shown as below.

WA(x, t) =
m

∑
i=1

wAi(x) · pAi(t) (1)

WB(x, t) =
n

∑
i=1

wBi(x) · pBi(t) (2)

For the simple explanation of component mode synthesis, Euler beam are assumed
and (EI)A = (EI)B = EI.

Where E and I are Young’s modulus and 2nd moment of area, and LA and LB are
length of beams.

The deflection of subcomponent OA and OB using fixed and simple boundary condi-
tion can be expressed as below.

Where xA and xB are non-dimensional such that ζ = xA
LA

, ξ = xB
LB

:

WA(ζ, t) =
m

∑
i=1

(ψi(ζ)pAi(t) + φi(ζ)qAi(t)) (3)

WB(ξ, t) =
n

∑
j=1

(
ψj(ξ)pBj(t) + φj(ξ)qBj(t)

)
(4)

and pAi(t), qAi(t), pBj(t), qBj(t) are the general coordinate system in the mode function of
beam.

The polynomials mode function for ψi, φi are suggested such that ψi for fixed-fixed
boundary condition and φi for fixed-simple boundary conditions.

ψ1 can be derived by assuming fourth order polynomial and boundary conditions.
Looking at the process of deriving a fixed-fixed function:

ψ1(ζ) = a0 + a1 × ζ + a2 × ζ2 + a3 × ζ3 + a4 × ζ4 (5)

Applying geometric boundary condition ψ1(0) = 0, ψ1
′(0) = 0, ψ1(1) = 0 and ψ1

′(1) =
0 to Equation (5) yields a fixed-fixed fundamental mode function such as Equation (6).

ψ1(ζ) =
(

ζ4 − 2ζ3 + ζ2
)

A1 (6)

φ1 can be derived by assuming 3rd order (only used geometric boundary condition) and
fourth order (combine used geometric and natural boundary condition) polynomial and
boundary conditions.

First, the fundamental mode function of a third polynomial is

φ1(ζ) = a0 + a1 × ζ + a2 × ζ2 + a3 × ζ3 (7)

Applying φ1(0) = 0, φ1
′(0) = 0 and φ1(1) = 0 to Equation (7) yields a fixed-simple

fundamental mode function such as Equation (8):

φ1(ζ) =
(

ζ3 − ζ2
)

B1 (8)
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and the fundamental mode function of a fixed-simple 4th polynomial is

φ1(ζ) = a0 + a1 × ζ + a2 × ζ2 + a3 × ζ3 + a4 × ζ4 (9)

Applying φ1(0) = 0, φ1
′(0) = 0, φ1(1) = 0 and φ1

′′ (1) = 0 to Equation (9) yields a
fixed-simple fundamental mode function such as Equation (10):

φ1(ζ) = ζ(ζ − 1)
(

2ζ2 − 3ζ
)

B1 (10)

The coefficients A1 and B1 are implemented using the orthogonal formula of the beam
function: ∫ 1

0
ψiψjdζ = δij (11)

∫ 1

0
φiφjdζ = δij (12)

where i, j is the vibration order, and δij is Kronecker delta.

A1 =

∫ 1
0 ψ

2
1dζ√∫ 1

0

(
ζ4 − 2ζ3 + ζ2

)2
dζ

(13)

B1 =

∫ 1
0 φ

2
1dζ√∫ 1

0

(
ζ4 − 2.5ζ3 + 1.5ζ2

)2
dζ

(14)

and the mode function of the second mode or more can be implemented from the following
Equations (15) to (16). The expansion to higher mode is the same regardless of the third or
fourth fundamental mode function:

ψk = Ak

[
ψk−1 × ζ −

k−1

∑
i=1

aki × ψk−1

]
(15)

φk = Bk

[
φk−1 × ζ −

k−1

∑
i=1

bki × φk−1

]
(16)

The coefficients aki, bki can be obtained from the orthogonal relation of the Equations
(15) to (16).

The mass and stiffness matrix was obtained for each of the defined mode functions,
and slope was given as constraint at the connection point to implement the natural fre-
quency and mode of the connected beams.

The mass matrix and stiffness matrix using suggested polynomials are shown in
Equations (17) and (18):

[MA] = mLA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1ψ1 · · · ψ1ψm ψ1φ1 · · · ψ1φm
...

. . .
...

...
...

ψmψ1 · · · ψmψm ψmφ1 · · · ψmφm
φ1ψ1 · · · φ1ψm φ1φ1 · · · ϕ1φm

...
. . .

...
...

...
φmψ1 · · · φmψm φmφ1 · · · φmφm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)
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[KA] =
8EI
L3

A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ
′′
1 ψ
′′
1 · · · ψ

′′
1 ψ
′′
m ψ

′′
1 φ
′′
1 · · · ψ

′′
1 φ
′′
m

...
. . .

...
...

...
ψ
′′
mψ

′′
1 · · · ψ

′′
mψ

′′
m ψ

′′
mφ

′′
1 · · · ψ

′′
mφ

′′
m

φ
′′
1 ψ
′′
1 · · · φ

′′
1 ψ
′′
m φ

′′
1 φ
′′
1 · · · φ

′′
1 φ
′′
m

...
. . .

...
...

...
φ
′′
1 ψ
′′
1 · · · φ

′′
mψ

′′
m φ

′′
m ϕ

′′
1 · · · φ

′′
mφ

′′
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(18)

where m is mass per unit length, we can express the mass matrix as follows by using
orthogonality:

[MA] = mLA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 ψ1φ1 · · · ψ1φm
...

. . .
...

...
...

0 · · · 1 ψmφ1 · · · ψmφm
φ1ψ1 · · · φ1ψm 1 · · · 0

...
. . .

...
...

. . .
...

φmψ1 · · · φmψm 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(19)

and MB, KB can be expressed in a similar.
Therefore, the mass and stiffness matrix of the subcomponents in Figure 1 can be

expressed as in Equations (20) and (21):

[M] =

∣∣∣∣ MA 0
0 MB

∣∣∣∣ (20)

[K] =
∣∣∣∣ KA 0

0 KB

∣∣∣∣ (21)

Note that no coupling between the displacement of OA and that of OB.
Note that the number of generalized coordinates shall be 2 (m + n), in order to simplify

the calculation process, only slope was assigned as a constraint condition at the connection
point.

The coordinate system reflecting the constraints is expressed in Equation (22); where
α is the ratio of length for subcomponents (α = LB/LA):

pA1
...

pAm
qA1

...
qAm
pB1

...
pBn
qB1

...
qBn



=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 α
φ′1
φ′n

· · · α
φ′m
φ′n

0 · · · 0 − φ′1
φ′n

· · · − φ′n−1
φ′n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



pA1
...

pAm
qA1

...
qAm
pB1

...
pBn−1

qB1
...

qBn−1



(22)

the [M], [K], and [C] matrix obtained in this way were substituted into the Lagrange
equation of motion to calculate the natural frequencies, and the results are mentioned in
Section 4.
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2.2. Three Components Type Connected Structure

The beam is separated into three sections AB, BD, and CD, whose coordinates are
shown as wA; x, wB; x, and wC; x.

The properties of structures used in the numerical analysis are shown in Table 2.

Table 2. Properties & cross section of model.

Category WA WB WC Cross Section

Density [kg/m3] 7850 7850 7850
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The deflection of subcomponent AB, CD and BD using fixed and simple boundary condi-

tion can be expressed as below: 

𝑊𝐴(𝜁, 𝑡) = ∑(𝜓𝑖(𝜁)𝑝𝐴𝑖(𝑡) + 𝜙i(𝜁)𝑞𝐴𝑖(𝑡) + 𝛾𝑖(𝜁)𝑟𝐴𝑖(𝑡))

𝑚

𝑖=1

 (26) 

𝑊𝐵(𝜉, 𝑡) = ∑(𝜙j(𝜉)𝑞𝐵𝑗(𝑡) + 𝜐𝑗(𝜉)𝑠𝐵𝑗(𝑡) + 𝜆𝑗(𝜉)𝑜𝐵𝑗(𝑡))

𝑛

𝑗=1

 (27) 

𝑊𝐶(𝜂, 𝑡) = ∑(𝜓𝑘(𝜂)𝑝𝐶𝑘(𝑡) + 𝜙k(𝜂)𝑞𝐶𝑘(𝑡) + 𝛾𝑘(𝜂)𝑟𝐶𝑘(𝑡))

𝑠

𝑘=1

 (28) 

𝑈𝐵0(𝜉, 𝑡) = 𝑢𝑏0(𝑡) (29) 

𝑈𝐵1(𝜉, 𝑡) = 𝑢𝑏1(𝑡) (30) 

where 𝑥𝐴 , 𝑥𝐵 , and 𝑥𝑐  are non-dimensional such that ζ =
𝑥𝐴

𝐿𝐴
, 𝜉 =

𝑥𝐵

𝐿𝐵
, 𝜂 =

𝑥𝐶

𝐿𝐶
. 

𝑝𝐴𝑖(𝑡), 𝑞𝐴𝑖(𝑡), 𝑟𝐴𝑖(𝑡), 𝑞𝐵𝑗(𝑡), 𝑠𝐵𝑗(𝑡), 𝑜𝐵𝑗(𝑡), 𝑝𝐶𝑘(𝑡), 𝑞𝐶𝑘(𝑡), 𝑟𝐶𝑘(𝑡), 𝑢𝑏0(𝑡),𝑢𝑏1(𝑡) are the general 

coordinate system in the mode function of beams, and 𝑈𝐵0 and 𝑈𝐵1 are displacement 

functions of both sides in horizontal beam. 𝐿𝐴, 𝐿𝐵 and 𝐿𝐶  are length of beams, separately. 

Polynomial mode functions 𝜓𝑖  and 𝜙i are mentioned in Section 2.1. Where γ𝑖, 𝜈𝑗, and 𝜆𝑗 

are functions for fixed-free, simple-fixed, and simple-simple boundary conditions, respec-

tively. 

The fundamental mode function reflecting each boundary condition is shown in Ta-

bles 3–5. 

  

Length [m] 5 5/2.5 5
Area [m2] 0.1 0.1 0.1

Young’s modulus [N/mm2] 2.10 × 105 2.10 × 105 2.10 × 105

2nd moment of area [mm4] 3.33 × 108 3.33 × 108 3.33 × 108

Deflections can be shown as below

WA(x, t) =
m

∑
i=1

wAi(x) · pAi(t) (23)

WB(x, t) =
n

∑
i=1

wBi(x) · pBi(t) (24)

WC(x, t) =
k

∑
i=1

wCi(x) · pCi(t) (25)

The deflection of subcomponent AB, CD and BD using fixed and simple boundary
condition can be expressed as below:

WA(ζ, t) =
m

∑
i=1

(ψi(ζ)pAi(t) + φi(ζ)qAi(t) + γi(ζ)rAi(t)) (26)

WB(ξ, t) =
n

∑
j=1

(
φj(ξ)qBj(t) + υj(ξ)sBj(t) + λj(ξ)oBj(t)

)
(27)

WC(η, t) =
s

∑
k=1

(ψk(η)pCk(t) + φk(η)qCk(t) + γk(η)rCk(t)) (28)

UB0(ξ, t) = ub0(t) (29)

UB1(ξ, t) = ub1(t) (30)

where xA, xB, and xc are non-dimensional such that ζ = xA
LA

, ξ = xB
LB

, η = xC
LC

. pAi(t), qAi(t),
rAi(t), qBj(t), sBj(t), oBj(t), pCk(t), qCk(t), rCk(t), ub0(t),ub1(t) are the general coordinate
system in the mode function of beams, and UB0 and UB1 are displacement functions
of both sides in horizontal beam. LA, LB and LC are length of beams, separately.

Polynomial mode functions ψi and φi are mentioned in Section 2.1. Where γi, νj,
and λj are functions for fixed-free, simple-fixed, and simple-simple boundary conditions,
respectively.

The fundamental mode function reflecting each boundary condition is shown in
Tables 3–5.
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Table 3. Fixed-free fundamental mode function (γ1).

Boundary Condition Mathematical Expression Fundamental Mode Function

GBC (2) + NBC (2) γ1(0) = 0, γ1
′(0) = 0 ζ4 − 4ζ3 + 6ζ2

γ1
′′ (1) = 0, γ1

′′′ (1) = 0

GBC (2): Geometric Boundary Condition (number of boundary condition). NBC (2): Natural Bound-
ary Condition (number of boundary condition).

Table 4. Simple-fixed fundamental mode function (υ1).

Boundary Condition Mathematical Expression Fundamental Mode Function

GBC (3) + NBC (1) υ1
′′ (0) = 0, υ1(0) = 0 ξ4 − 1.5ξ3 + 0.5ξ

υ1(1) = 0, υ1
′(1) = 0

Table 5. Simple-simple fundamental mode function (λ1).

Boundary Condition Mathematical Expression Fundamental Mode Function

GBC (2) + NBC (2) λ1(0) = 0, λ1(1) = 0 ξ4 − 2ξ3 + ξ
λ1
′′ (0) = 0, λ1

′′ (1) = 0

The expansion to the higher-order term for the fundamental mode function for each
boundary condition defined in Tables 3–5 is the same as the method mentioned in Equations
(11) to (16). It shows the mass and stiffness matrix for the vertical member among the
three component structures with the expanded mode function, as shown in Equations (31)
and (32):

[MA] = mLA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1ψ1 · · · ψ1ψm ψ1φ1 · · · ψ1φm ψ1γ1 · · · ψ1γm
...

. . .
...

...
. . .

...
...

. . .
...

ψmψ1 · · · ψmψm ψmφ1 · · · ψmφm ψmγ1 · · · ψmγm
φ1ψ1 · · · φ1ψm φ1φ1 · · · φ1φm φ1γ1 · · · φ1γm

...
. . .

...
...

. . .
...

...
. . .

...
φmψ1 · · · φmψm φmφ1 · · · φmφm φmγ1 · · · φmγm
γ1ψ1 · · · γ1ψm γ1φ1 · · · γ1φm γ1γ1 · · · γ1γm

...
. . .

...
...

. . .
...

...
. . .

...
γmψ1 · · · γmψm γmφ1 · · · γmφm γmγ1 · · · γmγm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(31)

[KA] =
8EI
L3

A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ
′′
1 ψ
′′
1 · · · ψ

′′
1 ψ
′′
m ψ

′′
1 φ
′′
1 · · · ψ

′′
1 φ
′′
m ψ

′′
1 γ
′′
1 · · · ψ

′′
1 γ
′′
m

...
. . .

...
...

. . .
...

...
. . .

...
ψ
′′
mψ

′′
1 · · · ψ

′′
mψ

′′
m ψ

′′
mφ

′′
1 · · · ψ

′′
mφ

′′
m ψ

′′
mγ

′′
1 · · · ψ

′′
mγ

′′
m

φ
′′
1 ψ
′′
1 · · · φ

′′
1 ψ
′′
m φ

′′
1 φ
′′
1 · · · φ

′′
1 φ
′′
m φ

′′
1 γ
′′
1 · · · φ

′′
1 γ
′′
m

...
. . .

...
...

. . .
...

...
. . .

...
φ
′′
mψ

′′
1 · · · φ

′′
mψ

′′
m φ

′′
mφ

′′
1 · · · φ

′′
mφ

′′
m φ

′′
mγ

′′
1 · · · φ

′′
mγ

′′
m

γ
′′
1 ψ
′′
1 · · · γ

′′
1 ψ
′′
m γ

′′
1 φ
′′
1 · · · γ

′′
1 φ
′′
m γ

′′
1 γ
′′
1 · · · γ

′′
1 γ
′′
m

...
. . .

...
...

. . .
...

...
. . .

...
γ
′′
mψ

′′
1 · · · γ

′′
mψ

′′
m γ

′′
mφ

′′
1 · · · γ

′′
mφ

′′
m γ

′′
mγ

′′
1 · · · γ

′′
mγ

′′
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(32)
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where we can express the mass matrix as Equation (33) by using orthogonality:

[MA] = mLA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 ψ1φ1 · · · ψ1φm ψ1γ1 · · · ψ1γm
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 1 ψmφ1 · · · ψmφm ψmγ1 · · · ψmγm
φ1ψ1 · · · φ1ψm 1 · · · 0 φ1γ1 · · · φ1γm

...
. . .

...
...

. . .
...

...
. . .

...
φmψ1 · · · φmψm 0 · · · 1 φmγ1 · · · φmγm
γ1ψ1 · · · γ1ψm γ1φ1 · · · γ1φm 1 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
γmψ1 · · · γmψm γmφ1 · · · γmφm 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(33)

and MB, MC, and KB, KC can be expressed similarly to Equations (31) and (32).
Therefore, the mass and stiffness matrix of the subcomponents in Figure 2 can be

expressed as in Equations (34) and (35).

[M] =

∣∣∣∣∣∣
MA 0 0

0 MB 0
0 0 MC

∣∣∣∣∣∣ (34)

[K] =

∣∣∣∣∣∣
KA 0 0
0 KB 0
0 0 KC

∣∣∣∣∣∣ (35)
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Figure 2. Structure model of three components type connected beam, (a) simplified model (b) FEA
model.

Note that the number of generalized coordinates shall be 3 (m + n + k), since the
number of constraints at junction B, D are 2, separately.

Displacement continuity:

wA(1)− uB(0) = 0 (36)

wC(1)− uB(1) = 0 (37)

Slope continuity:
wA
′(1)− wB

′(0) = 0 (38)

wA
′(1)− wB

′(1) = 0 (39)



J. Mar. Sci. Eng. 2021, 9, 20 10 of 17

The coordinate system reflecting the constraints is expressed in Equation (40):

pA1
...

pAm
qA1

...
qAm
rA1

...
rAm
qB1

...
qBm
SB1

...
SBn
OB1

...
OBn
pC1

...
pCk
qC1

...
qCk
rC1

...
rCk
ub0
ub1



= [C]



pA1
...

pAm
qA1

...
qAm
rA1

...
rAm
qB1

...
qBn−1
SB1

...
SBn−1
OB1

...
OBn
pC1

...
pCk
qC1

...
qCk
rC1

...
rCk



(40)

where the [C] matrix represents a constraint and is implemented in the same way as
Equation (18).

The [M], [K], and [C] matrices implemented in this way were substituted into the
Lagrange equation of motion to calculate the natural frequencies, and the results are
mentioned in Section 4.

3. Proposal of Methodology for Simplification of Computation
3.1. Two Components Type Connected Structure

Frequently, we may more concern about the vibration of one subcomponent. Suppose
we concern the vibration of part OA in Figure 1.

The suitable boundary conditions at junction O can be obtained by removal of gener-
alized coordinates of subcomponent OB through satisfaction of constraints at junction O as
shown in Equations (41) and (42):

qBj = αqAi (41)

pBj = −α2 pAi for i = 1 to m (m = n) (42)
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where α is the ratio of length for subcomponents (α = LB/LA):

WA(ζ, t) =
m

∑
i=1

(ψi(ζ)pAi(t) + φi(ζ)qAi(t)) (43)

WB(ξ, t) =
n

∑
j=1

(
ψj(ξ)×−α2 pAi(t) + φj(ξ)× αqAi(t)

)
(44)

Although the assumption of simplification by the constraint at the junction O is
excessive, the natural frequency and mode shape in the range α = 0 to 1 are similar to the
FEA results. Therefore, we may expect that this will give reasonable result for all cases (0
≤ α ≤ 1).

[M] = mLA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1ψ1
(
1 + α5) · · · ψ1ψn

(
1 + α5) ψ1φ1

(
1− α4) · · · ψ1φn

(
1− α4)

...
. . .

...
...

...
ψmψ1

(
1 + α5) · · · ψmψn

(
1 + α5) ψmφ1

(
1− α4) · · · ψmφn

(
1− α4)

φ1ψ1
(
1− α4) · · · φ1ψn

(
1− α4) φ1φ1

(
1 + α3) · · · φ1φn

(
1 + α3)

...
. . .

...
...

...
φmψ1

(
1− α4) · · · φmψn

(
1− α4) φmφ1

(
1 + α3) · · · φmφn

(
1 + α3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(45)

[K] =
16EI
L3

A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ
′′
1 ψ
′′
1 (1 + α) · · · ψ

′′
1 ψ
′′
n (1 + α) 0 · · · 0

...
. . .

...
...

...
ψ
′′
mψ

′′
1 (1 + α) · · · ψ

′′
mψ

′′
n (1 + α) 0 · · · 0

0 · · · 0 φ
′′
1 φ
′′
1

(
1 + 1

α

)
· · · φ

′′
1 φ
′′
n

(
1 + 1

α

)
...

. . .
...

...
...

0 · · · 0 φ
′′
mφ

′′
1

(
1 + 1

α

)
· · · φ

′′
mφ

′′
n

(
1 + 1

α

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(46)

The mass and stiffness matrix can be created from Equations (43) and (44). Then, the degree
of freedom can reduce 50% compared to the previous calculation method, and mass and
stiffness matrix are shown in Equations (45) and (46).

The [M] and [K] matrices were substituted into the Lagrange equation of motion to
calculate the natural frequencies, and the results are mentioned in Section 4.

3.2. Three Components Type Connected Structure

In the case of a structures in Figure 2, these structures have the symmetric and asym-
metric modes as like Figure 3. In order to reflect the behavior of the structure and simplify
the calculation, the mode function was applied separately according to the symmetric and
asymmetric modes.

Firstly, in the case of asymmetry, the structure has a mode shape similar to the simple
support condition affected by the slope at the middle point of the horizontal member, and
in the case of symmetry, it has a mode similar to the fixed support with the slope close to 0
at the middle point.

Of course, it is not strictly a fixed condition because deflection occurs at the middle
point, but it is suitable as a simplification method as it satisfies the allowable range of
analysis when calculated considering the fixed boundary condition.

This can be seen visually in the FEA results.
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|

|

|
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analysis when calculated considering the fixed boundary condition. 

This can be seen visually in the FEA results. 

  

(a) (b) 

  
(c) (d) 

Figure 3. FEA Result of n-type structure: (a) 1st mode—asymmetry; (b) 2nd mode—symmetry; (c)
3rd mode—asymmetry; (d) 4th mode—symmetry.

In the case of three components type structure, Figures 4 and 5 show the shape of the
symmetric and asymmetric modes in the intermediate position. It can be concluded that
this can be implemented by a combination of mode functions suitable for conditions in
symmetrical and asymmetry.
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condition of 1/2 L (L: the length of horizontal beam) length is used for the horizontal
member to the mode function of the existing vertical member, and in the case of Figure 5,
the mode function of the fixed boundary condition is used to compare the results. The
results performed in Section 4.2 were shown valid results within 15%.

In Table 6, the mode shapes for length ratios of 5 m:2.5 m:5 m are shown, the mode of
5 m:5 m:5 m is similar to the previous case.

Table 6. The mode shape for each length ratio (LA:LB:Lc = 5 m:2.5 m:5 m).

Order FEA CMS

1st
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Table 7. The case of study for two components type.

Case WA WB Junction Constraint

Case 1 F-F (4) + F-S (3) F-F (4) + F-S (3)

Slope and MomentCase 2 F-F (4) + F-S (4)

Case 3 F-F (4) + F-S (4) F-F (4) + F-S (3)
Case 4 F-F (4) + F-S (4)

Case 5 F-F (4) + F-S (3) F-F (4) + F-S (3)

Slope OnlyCase 6 F-F (4) + F-S (4)

Case 7 F-F (4) + F-S (4) F-F (4) + F-S (3)
Case 8 F-F (4) + F-S (4)

Table 8. The result of numerical calculation for fundamental mode of two components type.

LA:LB Order FEA Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1:1
1 29.1 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4
2 41.9 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6
3 92.9 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3

1:0.6
1 35.2 39.2 39.2 39.2 39.2 39.1 39.1 39.1 39.1
2 86.5 85.8 85.8 85.8 85.8 85.6 85.6 85.6 85.6
3 112.7 119.6 119.6 119.6 119.6 119.5 119.5 119.5 119.5

1:0.4
1 36.8 42.6 42.6 42.6 42.6 42.5 42.5 42.5 42.5
2 101.8 116.1 116.1 116.1 116.1 116.0 116.0 116.0 116.0
3 180.6 187.3 187.3 187.3 187.3 187.3 187.3 187.3 187.3

From the result of above study, it can be seen that the contribution of the geometric
boundary condition to the natural frequency is dominant than the natural boundary
condition. In addition, it was confirmed that the influence was insignificant even when
moment continuity was considered as a constraint condition at the junction.

4.2. Two Components Type Connected Structure

The properties of structures used in the numerical analysis are shown in Table 1.
Table 9 shows the results of component mode synthesis using the proposed polynomial
function and the numerical results using the proposed simplification method.

Table 9. Comparison of numerical result (Unit:Hz).

Ratio (LA:LB) 1st 2nd 3rd Ratio (LA:LB) 1st 2nd 3rd

1:1
FEA 29.1 41.9 92.9

1:0.5
FEA 36.0 97.8 136.8

CMS 29.1 42.5 95.2 CMS 36.3 100.7 146.8
PMSC 29.3 42.5 98.8 PMSC 36.4 101.6 147.5

1:0.8
FEA 33.2 56.5 102.6

1:0.4
FEA 36.8 101.8 180.6

CMS 33.3 57.6 106.2 CMS 37.1 105.4 197.3
PMSC 33.5 57.7 108.9 PMSC 37.2 106.3 200.9

1:0.6
FEA 35.2 86.5 112.7

1:0.2
FEA 38.4 105.9 205.6

CMS 35.4 88.7 118.8 CMS 39.2 110.9 224.8
PMSC 35.6 89.2 120.1 PMSC 39.3 111.5 233.8

CMS: Component mode synthesis. PMSC: Proposal of methodology for simplification of computation.

In Tables 10 and 11, the mode shapes for length ratios of 1:1, 1:0.5 are shown, respec-
tively.
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Table 10. The mode shape for each length ratio (LA:LB = 1:1).

Order FEA CMS PMSC

1st
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4.3. Three Components Type Connected Structure

The properties of structures used in the numerical analysis are shown in Table 2.
Table 12 shows the results of component mode synthesis using the proposed polynomial
function and the numerical results using the proposed simplification method, and the
mode shape is shown in Section 3.2.

Table 12. Comparison of numerical result (Unit:Hz).

Ratio (LA:LB:LC) Calculation Method 1st 2nd 3rd 4th

5 m:5 m:5 m
FEA 6.1 23.9 38.9 41.9
CMS 6.7 20.8 37.4 42.0

PMSC 6.8 21.2 37.7 42.4

5 m:2.5 m:5 m
FEA 7.7 33.5 44.6 87.4
CMS 7.0 38.1 42.1 84.5

PMSC 7.3 41.2 44.3 86.2

5. Conclusions

We proposed the use of polynomials that can satisfy the boundary conditions at the
junction between subcomponents, and a method that can be calculated by dramatically
reducing the infinitely increasing degree of freedom.

To do this, numerical results of a structural subcomponent OA considering dynamic
and static coupling of subcomponent OB are also given, and these numerical results are
also compared with result of FEA. Numerical results prove the following:

1. In the two and three components, which are the typical shapes of the structure, it is
proposed that the effective boundary conditions of the junction can be implemented
by a combination of the appropriate boundary conditions of fixed, simple, and free.

2. Proposed polynomial mode functions allows wide and mode effective application of
component mode synthesis for the vibration analysis of many ship local structures.

3. Numerical results based on the suggested method to reflect the dynamic and static
coupling of connected subcomponent are proved to show very good agreement.

4. The proposed polynomial function is efficient enough to be compared with the FEA
results in terms of natural frequency and mode.

5. The application of method suggested can be easily expanded for the analysis of
Timoshenko beam or other more complicated structures such as reinforced plates.
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