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Abstract: A three-dimensional T-shaped flexible beam deformation was investigated using model
experiments and numerical simulations. In the experiment, a beam was placed in a recirculating water
channel with a steady uniform flow in the inlet. A high-speed camera system (HSC) was utilized to
record the T-shaped flexible beam deformation in the cross-flow direction. In addition, a two-way
fluid-structure interaction (FSI) numerical method was employed to simulate the deformation
of the T-shaped flexible beam. A system coupling was used for conjoining the fluid and solid
domain. The dynamic mesh method was used for recreating the mesh. After the validation of the
three-dimensional numerical T-shaped flexible solid beam with the HSC results, deformation and
stress were calculated for different Reynolds numbers. This study exhibited that the deformation of
the T-shaped flexible beam increases by nearly 90% when the velocity is changed from 0.25 to 0.35 m/s,
whereas deformation of the T-shaped flexible beam decreases by nearly 63% when the velocity is
varied from 0.25 to 0.15 m/s.

Keywords: fluid–structure interaction; flexible beam; high speed imaging; system coupling

1. Introduction

Deformation of structures has been an area of interest for engineering. Because the coupling
process between fluid and structure plays an important role in many engineering fields. Interaction of
fluid and structures in underwater flexible beams is a complex problem in industrial applications.
Experimental and numerical research has been conducted to examine fluid–structure interaction (FSI).
A number of previous studies are summarized in this section.

Important FSI problems were simulated numerically by Chimakurthi et al. [1]. The authors applied
Ansys workbench system coupling and two-way fluid–structure interaction to various multiphysics
coupled problems, such as FSI in an oscillating solid structure and sub-sea pipeline vibrations.
This study is important, because it shows that Ansys workbench system coupling is highly suited
to multiphysics coupled problems. Furthermore, the study results were also validated with other
experimental and numerical studies. Gluck et al. [2] studied fluid–structure interaction numerically
in different plate forms, such as vertical and L-shaped plates. The authors used two code samples
for simulation flow and structure, one using the finite volume method for the flow side and the
other using the finite element method for the solid side. The one-way fluid–structure interaction
method was employed for the simulation effect of waves on a ship’s hull by Dhavalikar et al. [3].
It was assumed that the ship’s hull was a rigid body and wave loads were then simulated on a rigid
body. Narayanan et al. [4] numerically investigated flow behavior past a cylinder with a flexible
filament. The commercial software STAR-CCM+ was used for solving the governing equations.
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Large deformation of a flexible rod in fluid flow was studied numerically and experimentally by
Hassani et al. [5]. The authors applied a wind tunnel for testing a flexible rod and a mathematical model
was developed by coupling with the Kirchhoff rod theory. The deformation of plants under different
combinations of wave periods was examined experimentally by Juan et al. [6]. An oscillatory tunnel
and volumetric particle image velocimetry system were used in this study. Results showed the velocity
distribution around plants. Mantecon et al. [7] numerically investigated the fluid–structure interaction
of nuclear fuel plates under axial flow conditions. The authors employed the commercial software
Ansys CFX for modeling the fluid flow and Ansys Mechanical for modeling solid plates. Results showed
the maximum deflection of the plates happened at the leading edge. The fluid–structure interaction of a
square sail was investigated experimentally and numerically by Ghelardi et al. [8]. Initially, the square
sail was tested in a wind tunnel at various velocities and then the ADINA commercial program was
applied for numerical simulation under the same conditions. The authors obtained a good overall
agreement between experimental and numerical results. Liu et al. [9] studied the FSI of a single
flexible cylinder in an axial flow at different inlet velocities. Ansys Fluent commercial software was
applied to the flow field. They used a user-defined function (UDF) code sample for the deformation
of the cylinder. Results showed that increasing or decreasing vibration depends on flow velocity.
Xu et al. [10] applied a new method for solving fluid–structure interaction. The lattice Boltzmann
method (LBM) and immersed boundary method (IBM) were combined in this method. The authors
used a large-eddy turbulence model (LEM) for high Reynolds numbers. This new method was tested
with different benchmarks. The results proved that it has good accuracy. Wang et al. [11] studied
three different risers (one steel riser and two composite risers) for their Vortex Induced Vibration
(VIV) characteristics using the fluid–structure interaction method. They simulated 2D and 3D models
using the Ansys Fluent commercial software. Deformations of the models were obtained. The results
show that the displacements of the Fiber Reinforced Polymer (FRP) composite risers are significantly
larger than those of other models. The fluid–structure interaction problems of two side-by-side
flexible plates were also numerically investigated by Dong et al. [12]. The authors presented results
of drag force and energy capture performance in a three-dimensional model. A two-dimensional
immersed boundary method was used for simulation fluid–structure interaction of a large structure by
Wang et al. [13]. A finite difference method was applied to solve compressible Navier–Stokes equations.
The authors validated the results using a flexible plate in a hypersonic flow. Good agreement was
found between experimental and numerical data. Turek et al. [14] defined a new benchmark for
comparing various methods in fluid–structure interaction problems. They located an elastic object
in a laminar incompressible channel flow. A good comparison was obtained in this new benchmark
study. Wang et al. [15] investigated the flow past a circular cylinder with a flexible splitter plate. A
two-dimensional model was used for simulation of the fluid–structure interaction using two different
Reynolds numbers. The authors also studied a circular cylinder with a plate, with a gap between
the cylinder and the plate. Zheng et al. [16] used a new fluid–structure interaction method that
coupled a finite-element method and immersed boundary method (IBM) to study the flow-induced
vibrations of the vocal folds during phonation. Wang et al. [17] presented a fluid–structure interaction
(FSI) methodology to simulate flexible submerged vegetation stems and kinetic turbine blades. The
structural dynamic solver was based on the combined finite element method–discrete element method
(FEM-DEM), and solid and fluid solvers were coupled using an immersed boundary method (IBM)
iterative algorithm. The flow solver was a ghost-cell-based sharp-interface immersed boundary
method (IBM) described by Mittal et al. [18]. The unsteady, incompressible Navier–Stokes equations
were solved and a second-order, central-difference scheme was used for all spatial derivatives. The
fluid–structure interaction of a three-dimensional flexible membrane was studied by Nestola et al. [19].
The authors used the immersed boundary method for solving complex structures immersed in laminar,
transitional, and turbulent flows. Peskin [20] applied the immersed boundary method to computer
simulation of fluid–structure interaction. Eulerian and Lagrangian variables were coupled in this
method. A fixed Cartesian mesh for the Eulerian variables and a moving curvilinear mesh for
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the Lagrangian variables have been used in the immersed boundary (IB) method, particularly in
biological fluid dynamics. A monolithic FEM/Multigrid method for the fluid–structure interaction of
an incompressible elastic object in laminar incompressible viscous flow was presented by Hron and
Turek [21]. Griffith and Luo [22] studied a coupling scheme for the immersed boundary method to
link the Lagrangian and Eulerian variables. They used this method for solving FSI problems. The left
ventricle of the heart was stimulated by this method. The arbitrary Lagrangian-Eulerian finite element
method was applied by Nassiri [23]. They used this method for numerical simulation and experimental
investigation of wavy interfacial morphology during high velocity impact welding. Tabatabaei et
al. [24] studied the hydrodynamics behavior of an axisymmetric squid model numerically. They
applied SST k-w turbulence model for simulation. Various fineness ratios, jet propulsion, and drag
force were investigated for different swimming velocities. Squid’s flow characteristics were studied
numerically and experimentally by Olcay et al. [25]. Digital particle image velocimetry (DPIV) was
used for obtaining velocity contours in the experimental region. Ansys Fluent commercial software
was applied for solving governing equations in the flow field. They showed that numerical results
were so close to the experimental data. Hydrodynamic forces of a moving cylinder and fixed cylinder
were investigated numerically by Eren et al. [26]. They used the dynamic mesh method for recreating
mesh and moving a cylinder in the incompressible flow.

To improve our understanding of fluid–structure interaction methodology for flow past a flexible
beam, we studied the fluid–structure interaction experimentally and numerically for a single flexible
beam. We use a high-speed camera system (HSC) for obtaining the deformation of the beam.
The three-dimensional flexible beam model was then investigated numerically at three different
velocities. Two-way FSI method was applied for numerical simulation, and also, a validation test was
carried out. All in all, this study helps to improve our understanding of flexible beams deformations.
The paper was organized as follows: Section 2 defines experimental setup, computational domain
governing equations, and numerical methods. Section 3 presents validation of deformation T-shaped
flexible beam, numerical results, and discussions. Section 4 contains the conclusions.

2. Materials and Methods

2.1. Experimental Arrangement and Analysis Methodology

Details of the experimental setup are explained in Sections 2.2 and 2.3. Section 2.2 presents the
water channel, the high-speed camera, and the technique of high-speed imaging method. Section 2.3
describes the data analysis of the experiment results.

2.2. Experimental Setup

Experiments were carried out in a recirculating water channel of State Key Laboratory of Hydraulics
and Mountain River Engineering (SKLHMRE) at Sichuan University (SCU), China. The water channel
has a 12 m (length) × 0.5 m (width) × 0.6 m (height) test section with the mean flow velocity up to
0.25 m/s. The water level was maintained at 0.5 m during the experiments and a propeller velocity
meter was used to measure the inflow velocity. Froude number is 0.11 (Fr = 0.11), so flow is subcritical
in this study. Multiple measurement points in the same vertical plane of the channel at different depths
are chosen to measure the velocity in a long period, and the mean flow velocity is calculated by time
averaging and space averaging. A T-shaped flexible beam made of polyurethane was fixed in a vertical
plane facing to the approaching flow. The dimensions of the T-shaped flexible beam are shown in
Figure 1. Water was used for the fluid part and a polyurethane beam was applied for the solid part.
The experiment was conducted indoors; physically essential properties of selected materials at room
temperature are provided in Table 1.
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Figure 1. Schematics showing the dimensions of the beam. 

Table 1. Characteristics of fluid and solid in numerical and experiment methods. 

Water 
Density (࣋) 1000 kg/m3 

Dynamic viscosity (µ) 0.001 kg/m−s 
Flexible Beam 

Density (࢙࣋) 1.17 g/cm3 
Young’s modulus (E) 18 MPa 

Poisson’s ratio (ࣇ) 0.3 

For the beam motion and image recognition process, illumination was provided by an LED light 
sheet, and the beam was marked black. A non-intrusive technique of high-speed imaging method 
was employed to record the deformation of the flexible beam in this study. Images were captured at 
1000 frames per second (fps) using a high-speed camera (Fastcam Mini UX100, Photron Inc., Chiyoda-
Ku, Tokyo, Japan, maximum acquisition rate: 4000 fps with the resolution of 1280 × 1024 pixels). The 
resolution of the images is cut down to 616 pixels × 1024 pixels for saving camera memory space to 
only cover the area where the beam exists, as shown in Figure 2. 
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Figure 1. Schematics showing the dimensions of the beam.

Table 1. Characteristics of fluid and solid in numerical and experiment methods.

Water

Density (ρ) 1000 kg/m3

Dynamic viscosity (µ) 0.001 kg/m−s

Flexible Beam

Density (ρs) 1.17 g/cm3

Young’s modulus (E) 18 MPa
Poisson’s ratio (ν) 0.3

For the beam motion and image recognition process, illumination was provided by an LED light
sheet, and the beam was marked black. A non-intrusive technique of high-speed imaging method
was employed to record the deformation of the flexible beam in this study. Images were captured at
1000 frames per second (fps) using a high-speed camera (Fastcam Mini UX100, Photron Inc., Chiyoda-Ku,
Tokyo, Japan, maximum acquisition rate: 4000 fps with the resolution of 1280 × 1024 pixels).
The resolution of the images is cut down to 616 pixels × 1024 pixels for saving camera memory
space to only cover the area where the beam exists, as shown in Figure 2.
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Figure 2. Schematics of the experiment setup: (a) experimental arrangement in the recirculating water
flume; (b) high-speed camera on one side of the flume; (c) and (d) side views.

The standardization tests were carried out in still water in order to determine the actual distance 
per pixel (Figure 3). The field of view was approximately 12.07 cm × 20.07 cm, leading to a spatial 
resolution of 0.0196 cm pixel−1. 

Figure 3. Standardization test. 

2.3. Data Analysis 

To track the deformation of the T-shaped flexible beam, an image recognition Python code was 
developed to obtain quantitative data from images captured in the experiment (Figure 4). A bilateral 
filter is a basic theory of image noise reduction, and it is better in edge-preserving than other filters,
so we used a bilateral filter to reduce the noise of experimental images. Then, the Canny edge 
detector, which is an edge detection operator that uses a multi-stage algorithm, was used to detect 
edges of the beam in experimental images. Image binarization was set the grayscale value of the pixel 
on the image to 0 or 255, which is the process of presenting the whole image with an obvious black 
and white effect. The erosion, closing operation, and dilation are the morphological operations to 
enhance image features. We used erosion, closing operation, and dilation to make the edges detected 
by the Canny edge detector clearer, then the pixel coordinates of the edges were recorded. The pixel 
size of a picture can be detected. Thus, the scale S of actual distance and Pixel distance can be
calculated through Figure 3. S is defined by S = actual distance/pixel distance. Therefore, the actual
displacement D of the tracking point is calculated by D = S*L, where L is the pixel distance between 
the current and initial position of the tracking point. Details about image processing are illustrated in
Howes [27]. 

Figure 2. Schematics of the experiment setup: (a) experimental arrangement in the recirculating
water flume; (b) high-speed camera on one side of the flume; (c) and (d) side views.

The standardization tests were carried out in still water in order to determine the actual distance
per pixel (Figure 3). The field of view was approximately 12.07 cm × 20.07 cm, leading to a spatial
resolution of 0.0196 cm pixel−1.
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2.3. Data Analysis

To track the deformation of the T-shaped flexible beam, an image recognition Python code was
developed to obtain quantitative data from images captured in the experiment (Figure 4). A bilateral
filter is a basic theory of image noise reduction, and it is better in edge-preserving than other filters,
so we used a bilateral filter to reduce the noise of experimental images. Then, the Canny edge detector,
which is an edge detection operator that uses a multi-stage algorithm, was used to detect edges of
the beam in experimental images. Image binarization was set the grayscale value of the pixel on the
image to 0 or 255, which is the process of presenting the whole image with an obvious black and white
effect. The erosion, closing operation, and dilation are the morphological operations to enhance image
features. We used erosion, closing operation, and dilation to make the edges detected by the Canny
edge detector clearer, then the pixel coordinates of the edges were recorded. The pixel size of a picture
can be detected. Thus, the scale S of actual distance and Pixel distance can be calculated through
Figure 3. S is defined by S = actual distance/pixel distance. Therefore, the actual displacement D of the
tracking point is calculated by D = S*L, where L is the pixel distance between the current and initial
position of the tracking point. Details about image processing are illustrated in Howes [27].



J. Mar. Sci. Eng. 2020, 8, 714 6 of 21

J. Mar. Sci. Eng. 2020, 8, x 6 of 21 

 

 
Figure 4. Flow chart of image processing program. 

2.4. Numerical Methods 

The two-way fluid-structure interaction (FSI) numerical method is explained in sections 2.5, 2.6, 
2.7, and 2.8. The solution of the three-dimensional fluid domain is described in section 2.5. The 
structural dynamics of the T-shaped flexible beam is explained in section 2.6. Section 2.7 presents 
system coupling between fluid and solid domain. Details of the computational domain and boundary 
conditions are investigated in section 2.8.  

2.5. Computational Fluid Dynamics (CFD) 

The realizable k-ɛ turbulence model was applied for the turbulent flow simulation in the three-
dimensional fluid domain (Olcay et al. [28] and ANSYS Fluent Theory Guide [29]). The governing 
equations representing the continuity and momentum formulas as given below: ߲ݐ߲ߩ + ௜ݔ߲(௜ݑߩ)߲ = ݐ߲(௜ݑߩ)߲ (1) 0 + ௝ݔ߲(௝ݑ௜ݑߩ)߲ = − ௜ݔ߲߲ܲ + ௜݃ߩ + ௝ݔ߲߲ ߤ) + (௧ߤ ቆ߲ݑ௜߲ݔ௝ + ௜ቇݔ௝߲ݑ߲ + ௜ܵ (2) 

where ߩ is the density and ݑ௜	ܽ݊݀	ݑ௝ are the average velocity component of the fluid. P is pressure, ௜ܵ  is the source term for the momentum equation ߤ  is the dynamic viscosity, ߤ௧  is the eddy 
viscosity, and it is defined as ߤ௧ = ఓܥߩ ௞మఌ . The transport equation for ݇	ܽ݊݀	ߝ are for the realizable 
k−ɛ model given as, 

Figure 4. Flow chart of image processing program.

2.4. Numerical Methods

The two-way fluid-structure interaction (FSI) numerical method is explained in Sections 2.5–2.8.
The solution of the three-dimensional fluid domain is described in Section 2.5. The structural dynamics
of the T-shaped flexible beam is explained in Section 2.6. Section 2.7 presents system coupling between
fluid and solid domain. Details of the computational domain and boundary conditions are investigated
in Section 2.8.

2.5. Computational Fluid Dynamics (CFD)

The realizable k-ε turbulence model was applied for the turbulent flow simulation in the
three-dimensional fluid domain (Olcay et al. [28] and ANSYS Fluent Theory Guide [29]). The governing
equations representing the continuity and momentum formulas as given below:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (1)

∂(ρui)

∂t
+
∂
(
ρuiu j

)
∂x j

= −
∂P
∂xi

+ ρgi +
∂
∂x j

(µ+ µt)

(
∂ui
∂x j

+
∂u j

∂xi

)
+ Si (2)

where ρ is the density and ui and u j are the average velocity component of the fluid. P is pressure, Si
is the source term for the momentum equation µ is the dynamic viscosity, µt is the eddy viscosity, and it
is defined as µt = ρCµ k2

ε . The transport equation for k and ε are for the realizable k − ε model given as,

∂
∂t
(ρk) +

∂
∂xi

(
ρkui

)
=

∂
∂x j

[(
µ+

µt

σk

)
∂k
∂x j

]
+ Gk + Gb − ρε−YM + Sk (3)

∂
∂t
(ρε) +

∂
∂xi

(ρεui) =
∂
∂x j

[(
µ+

µt

σε

)
∂ε
∂x j

]
+ C1ε

ε
k
(Gk + C3εGb) −C2ερ

ε2

k
+ Sε (4)
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where k is the turbulent kinetic energy and ε is rate of dissipation. Gk is turbulent kinetic energy
generation because of the mean velocity gradients, Gb is turbulent kinetic energy generation because
of buoyancy, and YM is fluctuating dilatation contribution to the overall dissipation rate. The model
constants for realizable k-ε turbulence model are C1ε = 1.44, C2ε = 1.92, σk = 1.0, Cµ = 0.09,
and σε = 1.3.

2.6. Computational Structural Dynamics (CSD)

Deformation of a three-dimensional flexible solid structure is described by the equation of motion,
which can be expressed as follows:

[M]
{ ..
u
}
+ [C]

{ .
u
}
+ [K]{u} = {F} (5)

where [M] is the structural mass matrix, [C] is the structural damping matrix, [K] is the structural
stiffness matrix, and {F} is the applied load vector acting on the structure caused by fluid.

{ ..
u
}

is the

nodal acceleration vector,
{ .
u
}

is the nodal velocity vector, and {u} is the nodal displacement vector.
Newmark time integration method with an improved algorithm (HHT) was used for the solution of
Equation (5). The Newmark method and HHT method were applied for implicit transient analyses.
The Newmark method applies finite-difference expansions in the time interval ∆t. It is presumed that
(Bathe [30]): { .

un+1
}
=

{ .
un

}
+

[
(1− δ)

{ ..
un

}
+ δ

{ ..
un+1

}]
∆t (6){

un+1
}
= {un}+ {un}∆t +

[(1
2
− α

){ ..
un

}
+ α

{ ..
un+1

}]
∆t2 (7)

where α and δ are Newmark integration parameters, ∆t is tn+1 − tn, {un} is the nodal displacement
vector at time tn,

{ .
un

}
is the nodal velocity vector at time tn,

{ ..
un

}
is the nodal acceleration vector at time

tn,
{ ..
un+1

}
is the nodal acceleration vector at time tn+1,

{ .
un+1

}
is the nodal velocity vector at time tn+1,

and
{
un+1

}
is the nodal displacement vector at time tn+1.

Since the primary aim is the calculation of displacement
{
un+1

}
, the governing Equation (5) can be

computed at time tn+1 as:
[M]

{ ..
un+1

}
+ [C]

{ .
un+1

}
+ [K]

{
un+1

}
= {F} (8)

The solution of displacement at time tn+1 can be obtained by first rearranging Equations (6) and (7),
such that: { ..

un+1
}
= a0(

{
un+1

}
− {un}) − a2

{ .
un

}
− a3

{ ..
un

}
(9){ .

un+1
}
=

{ .
un

}
+ a6

{ ..
un

}
+ a7

{ ..
un+1

}
(10)

where a0 = 1
α∆t2 , a2 = 1

α∆t , a3 = 1
2α − 1, a6 = ∆t(1− δ), a7 = δ∆t.

Once a solution is obtained for
{
un+1

}
, velocities and accelerations are computed as defined

Equations (9) and (10). For the nodes where the velocity or the acceleration is obtained, a displacement
constraint is computed from Equation (7). The HHT time integration method can help to have the
desired property for the numerical damping in the full transient analysis (Chung and Hulbert [31]).

The basic form of the HHT method is defined as Equation (11)

[M]
{ ..
un+1−αm

}
+ [C]

{ .
un+1−α f

}
+ [K]

{
un+1−α f

}
=

{
Fn+1−α f

}
(11)

where αm and α f are two extra integration parameters for the interpolation of the acceleration and the
displacement, velocity, and loads. It was also realized that the transient dynamic equilibrium equation
considered in the HHT method is a linear combination of two successive time steps of n and n + 1 after
comparing Equations (5) and (11).
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2.7. CFD-CSD Coupling

We used Ansys Workbench-system coupling for simulation two-way fluid–structure interactions
(Chimakurthi et al. [1]). Fluid Flow (Ansys Fluent) and the Transient Structural systems (Ansys
Mechanical) are connected in system coupling. Reynolds-averaged Navier-Stokes (RANS) equations
with the realizable k-ε turbulence model are solved in the computational domain by using the CFD
solver (Fluent), and also, transient structural analysis is used to solve the T-shaped flexible beam
deformation under the action of loads. Forces or stresses on the fluid side of the interface are
transformed on to the solid side, and also, displacements or velocities on the solid side of the interface
are transformed on to the fluid side in the system coupling method. Transferring in this system coupling
includes the computation of weights and their subsequent use in the interpolation of data. It can
happen between topologically similar and/or dissimilar element types, distributions, and dimensions
such as surface to surface, volume to volume, point to volume, surface to volume, and vice-versa.
Figure 5 shows the calculation procedure and detailed overview of the partitioned system coupling.
The induced force on the beam was obtained after the flow field was calculated by using CFD solver
from Ansys Fluent. Then, the displacement of the beam was solved by using a structure transient from
Ansys Mechanical. This process gets continued until convergence is obtained in system coupling.
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2.8. Computational Model Geometry, Boundary Conditions, and Meshing

The T-shaped flexible beam was fixed on the channel bottom wall. Figure 6 shows the
computational domain and boundary conditions schematically. The height (H) of the T-shaped
flexible beam is 0.17 m. The beam was put on a cuboid-shape computational domain. The height,
length, and width of the domain were defined as 5 H, 20 H, and 10 H. The velocity inlet boundary
condition was located at 5H upstream of the beam, and the pressure outlet boundary condition was
located at 15 H downstream of the T-shaped flexible beam. No slip boundary condition was selected
for walls (bottom wall and T-shaped flexible beam). Free slip boundary condition was applied for top
and to the sides of the computational. Dimensions and material properties of T-shaped flexible beam
and flow properties that were used in all simulations were the same with experiment case Table 1.
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The non-dimensional Reynolds number was applied for defining flow characteristics in this study.
The Reynolds number was defined as Equation (12)

Re =
ρUL
µ

(12)

where ρ is density, µ dynamic viscosity of the fluid, U free stream velocity, and L is the characteristic
length (i.e., height of beam). The highest water velocity was 0.25 m/s in the experimental setup,
because the close-circuit water channel could supply 0.25 m/s as the highest water velocity throughout
the channel. In the numerical study, three different velocities were used for the understanding of beam
behaviors in various velocities. U = 0.15, 0.25, and 0.35 m/s were chosen for numerical simulations
after validation. The Reynolds numbers were defined as 25,500, 42,500, and 59,500 for U = 0.15, 0.25,
and 0.35 m/s Table 2. Commercial computational fluid dynamic (CFD) code Ansys Fluent and Ansys
Mechanical programs were employed to solve the flow domain and solid part. A system coupling
method was used to connect between flow domain and solid part. The coupled scheme was selected
among five pressure–velocity coupling algorithms. The second-order upwind scheme was used for
discretization of advective terms of the transport equations. Criteria of convergence were set to 10-6 for
the continuity and momentum equations. The solution of continuity and momentum equations were
continued until criteria of convergence were achieved.

Table 2. Shows the relation between velocities and applied models.

Velocity (m/s) Reynolds Number Applied

0.15 25,500 Numerical model

0.25 42,500 Numerical and experimental
model

0.35 59,500 Numerical model

Tetrahedron and prism with triangle base elements were set for meshing the fluid solution
domain with high-density mesh near walls, and Tetrahedron mesh was used for the solid
domain. The dynamic mesh method was applied to simulate the deformation of the T-shaped
flexible beam. Totally 800,000–1,200,000 elements were employed to solve the fluid domain,
and 21,210–73,000 elements were used to solve the solid domain, as illustrated in Figure 7. A mesh
sensitivity study was also carried out for all models in the fluid domain. Table 3 shows the variety of
total deformation along with the various number of elements at 0.25 m/s inlet velocity. It was identified
that 1,200,000 elements for the fluid solution domain, and 72,425 elements for the solid domain were
needed for obtaining good results at maximum velocity in our study. Three different coupling time
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steps were inspected at 0.01, 0.001, and 0.0001. All simulations were run for a total time of 10 s in this
study. A time step of 0.001 was selected for all simulations after mesh refinement studies.
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Table 3. Mesh convergence study for the computational domain.

Mesh Resolution Deformation at t = 10 s

810,000 0.022400
890,000 0.01989
920,000 0.01934

1,020,000 0.019147
1,040,000 0.019144

3. Results and Discussion

3.1. Comparison between Experimental and Numerical Results

High-speed camera (HSC) measurements were carried out for the three-dimensional flexible beam
model at one Reynolds number (42,500). The close-circuit water channel could supply 0.25 m/s as the
highest velocity, so the highest Reynolds number for flexible beam was 42,500 in this experiment work.
The numerical simulation was done at the same conditions, as used for the experiment. The results of
numerical and experimental data were compared regarding the total deformation, Figure 8. The total
deformation shape in the numerical model agrees well with the deformation obtained from HSC
measurements for a Reynolds number of 42,500. A point (red point) was selected at the top of
the T-shaped flexible beam for the tracking maximum displacement of the T-shaped flexible beam.
When the T-shaped flexible beam has a vertical position, the red point is at position 1. After deformation,
the red point changes from position 1 to position 2. The maximum displacement is the distance
between position 1 and position 2. Table 4 shows the maximum deformation of the T-shaped flexible
beam at t = 6 s and t = 10 s for numerical and experimental models.
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Figure 8. Comparison of total deformation of T-shaped flexible beam for Re = 42,500 and t = 6 s.
(a) Experiment (high-speed camera system (HSC)), (b) experiment (HSC) with image track program,
and (c) numerical (CFD). Comparison of total deformation of T-shaped flexible beam for Re = 42,500
and t = 10 s. (d) Experiment (HSC), (e) experiment (HSC) with image track program, and (f) numerical
(CFD).

Table 4. Comparison of maximum deformation of T-shaped flexible beam for Re = 42,500, t = 6 s,
and t = 10 s.

Re = 42,500 t = 6 s (Figure 8a–c) t = 10 s (Figure 8d–f)

Experimental model deformation (m) 0.0205 ± 0.001 0.0202 ± 0.001
Numerical model deformation (m) 0.0193 0.0191

3.2. Deformation and Stress Study

The T-shaped flexible beam was validated at a Reynolds number of 42,500 (U = 0.25 m/s), and
then, it was investigated at two different Reynolds numbers of 25,500 (U = 0.15 m/s) and 59,500
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(U = 0.35 m/s). Totally, The T-shaped flexible beam was studied in three various Reynolds numbers
numerically. Total deformation was calculated numerically in this study. Total deformation can be
computed by using Equation (13)

U =
√

U2
x + U2

y + U2
z (13)

where Ux is component deformation in the x direction, Uy is component deformation in the y direction,
Uz is component deformation in the z direction. Figure 9 shows total deformation record from t = 0 s
to t = 10 s at three different velocities of 0.15, 0.25, and 0.35 m/s. In all velocities, deformation of the
T-shaped flexible beam increased in time, then it started to decrease and, finally, it had a constant value.
The deformation of the T-shaped flexible beam increased with increasing velocity. The outer load
also changed with velocity. The T-shaped flexible beam bent more and more when velocity increases.
It seems that the maximum value of deformation happens early for minimum velocity. We can observe
that the maximum value of deformation occurs at t = 0.47 s when velocity is U = 0.15 m/s, and also,
it occurs at t = 0.511 s when velocity is U = 0.35 m/s. Maximum stress (Von Mises stress) of the T-shaped
flexible beam happened at maximum inlet velocity between three different inlet velocities.
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Von Mises stress was calculated numerically in this study. Von Mises stress can be calculated by
using Equation (14)

σe =

 (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

2

1/2

(14)

where σ1 stress statestress in the x direction, σ2 is stress statestress in the y direction, and σ3 is stress
statestress in the z direction. The maximum stress and maximum deformation of the beam have similar
behavior, so we can figure out that stress changes like deformation in all velocities. Figure 10 shows
maximum stress of beam that changes by time, and it occurs obviously on the bottom of the beam.
Figure 11a–c show maximum principal stress, middle principal stress, and minimum principal stress
of beam that changes by time.
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Equivalent strain was computed numerically in this study. Equivalent strain can be calculated by
using Equation (15)

εe =
1

1 + υ′

(1
2

[
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2
]) 1

2
(15)
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where ε1 is principal strain in the x direction, ε2 is principal strain in the y direction, ε3 is principal
strain in the z direction, and υ′ is effective Poisson’s ratio. Figure 12 shows equivalent strain of beam
that changes by time.

J. Mar. Sci. Eng. 2020, 8, x 15 of 21 

 

where εଵ is principal strain in the x direction, εଶ is principal strain in the y direction, εଷ is principal 
strain in the z direction, and ߭ᇱ is effective Poisson’s ratio. Figure 12 shows equivalent strain of beam 
that changes by time. 

 
Figure 12. Variation of equivalent strain of T-shaped flexible beam between t = 0 s and 10 s. 

3.3. Contours Plots of Numerical Study 

Deformation of the T-shaped flexible beam was shown for three different Reynolds numbers of 
25,500 (U = 0.15 m/s), 42,500 (U = 0.25 m/s), and 59,500 (U = 0.35 m/s) at t = 10 s, Figure 13. The stress 
of the T-shaped flexible beam was illustrated for three different Reynolds numbers of 25,500, 42,500, 
and 59,500 at t = 10 s, Figure 14. It was realized that maximum deformation and stress occurred at the 
maximum Reynolds number, because the T-shaped flexible beam has a large pressure in the front 
surface. 

  
(a) (b) 

Figure 12. Variation of equivalent strain of T-shaped flexible beam between t = 0 s and 10 s.

3.3. Contours Plots of Numerical Study

Deformation of the T-shaped flexible beam was shown for three different Reynolds numbers of
25,500 (U = 0.15 m/s), 42,500 (U = 0.25 m/s), and 59,500 (U = 0.35 m/s) at t = 10 s, Figure 13. The stress
of the T-shaped flexible beam was illustrated for three different Reynolds numbers of 25,500, 42,500,
and 59,500 at t = 10 s, Figure 14. It was realized that maximum deformation and stress occurred
at the maximum Reynolds number, because the T-shaped flexible beam has a large pressure in the
front surface.
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flexible beams. Figure 16 also showed lower pressure regions at the top region of the T-shaped 
flexible beam implying flow separation. It was noted that the pressure difference between the front 
and back surface of T-shaped flexible beams was large. In addition to pressure contours, streamline 
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Figure 14. Stress (Pa) of T-shaped flexible beam at t = 10 s (a) Re = 25,500, (b) Re = 42,500,
and (c) Re = 59,500.

Pressure contours at the solution domain were plotted in Figure 15 for t = 10 s. When flow around
a T-shaped flexible beam was studied, there was a large pressure on the front surface of T-shaped
flexible beams. Figure 16 also showed lower pressure regions at the top region of the T-shaped flexible
beam implying flow separation. It was noted that the pressure difference between the front and back
surface of T-shaped flexible beams was large. In addition to pressure contours, streamline contours
were plotted in Figure 16 for t = 10 s. It was revealed that recirculation regions were formed behind the
T-shaped flexible beams. Recirculation regions were near the top region of the T-shaped flexible beam,
because the separation happened near the head of the T-shaped flexible beam.
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3.4. Drag Coefficients Study

When the body locates in fluid flow, it can experience a certain amount of drag force
(Olcay et al. [28], Batchelor [32], and Vasudev et al. [33]). Drag force was given by

FD = FD_pressure + FD_viscous =

∮
Pn̂ .êddS +

∮
τwt̂ .êddS (16)



J. Mar. Sci. Eng. 2020, 8, 714 19 of 21

where FD_pressure and FD_viscous are drag forces in the x-direction due to the pressure and viscous effects.
Here, p is the pressure on the T-shaped flexible beam, and τw is the wall shear stress on the surface of
T-shaped flexible beam.

Drag force studies are shown in Table 5 for t = 6 s and t = 10 s. It was noted that the drag force
increased with increased Reynolds numbers for T-shaped flexible beam.

Table 5. Change in drag force with the Reynolds numbers for t = 6 s and t = 10 s.

Reynolds Umbers Drag Force, t = 6 s Drag Force, t = 10 s

25,500 (U = 0.15 m/s) 0.09591 0.09563
42,500 (U = 0.25 m/s) 0.25932 0.25663
59,500 (U = 0.35 m/s) 0.48103 0.47961

Once the drag force was obtained, the drag coefficient was studied using Equation (9).

Cd =
FDrag

1
2ρU2A

(17)

where Cd is drag coefficient, FDrag is Drag force, ρ is density of the fluid, U is velocity of fluid, and A
is the reference area (the frontal area of the body). Drag coefficient was plotted in Figure 17. It was
also realized that the drag coefficient decreased with increased Reynolds numbers for T-shaped
flexible beam.
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4. Conclusions

In this study, the deformation of a T-shaped flexible beam was investigated at 0.25 m/s inlet
velocity. A three-dimensional T-shaped flexible beam was placed into a close-circuit water channel
for high-speed camera system (HSC) measurements. The results of a three-dimensional T-shaped
flexible beam agreed well with the results of HSC measurements for 0.25 m/s inlet velocity. Then,
two additional inlet velocities were noticed for a flexible beam, and those velocities were examined for
the T-shaped flexible beam. A two-way FSI coupling method was employed for solving fluid and solid
parts. The dynamic mesh method was used for grid, and mesh was updated in every time step in
fluid and solid sides. Deformation, maximum stress, and minimum stress of the T-shaped flexible
beam were calculated, and also, velocity distribution and pressure distribution of the flow around
the T-shaped flexible beam were computed at various velocities in the numerical model. The results
reveal that deformation and stress in the flexible beam has increased with increasing velocity. It was
also found that a large pressure region was created on the front surface of the T-shaped flexible beam
and flow separation happened in the head of the T-shaped flexible beam. It was concluded that high
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velocity caused the drag force to be larger when compared with low velocity, so high drag force caused
a large deformation and high stress in the T-shaped flexible beam. We carried out a validation study.
The results of experimental and numerical methods were compared in the present study. In this study,
the percent error of maximum deformation between experimental and numerical methods is nearly
4%~5%. The study also revealed that the system coupling method can be used in fluid–structure
interaction applications and a two-way FSI coupling method has high efficiency, so this method can be
employed in various engineering fields such as mechanical, civil, and ocean engineering.
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agreed to the published version of the manuscript.
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