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Abstract: The horizontal wave pressure on the front wall of the caisson protected by armor blocks
on the rubble-mounted core is investigated by carrying out physical experiments. There have been
few previous studies regarding this type of structure, and the characteristics of horizontal wave
pressure on the structure are still unclear. Considering this, a series of experiments were performed
by changing the configuration of the coverage rate in front of the caisson and the shoulder width of
the armor blocks. For each of the different configurations of the model setup, wave pressure on the
caisson was measured under 20 regular waves of different wave periods and heights. By analyzing
the obtained experimental data, it was possible to quantify the effects of the coverage rate and the
shoulder width on the wave pressure. The wave pressure tended to increase up to maximally 1.5
to 2 times at the exposed part of the caisson if it was incompletely protected. In addition, the wave
pressure at the top part of the caisson was substantially reduced with the increase of the shoulder
width of the armor layer. Based on these results, adjustment factors for evaluating such effects have
been suggested, which can be applicable for the practical design of the caisson covered with armor
blocks on the rubble-mounted core.

Keywords: wave pressure; caisson; horizontally composite breakwater; rubble-mounted core;
physical experiment

1. Introduction

Caisson breakwaters are likely to receive impulsive wave loading on their front faces. Hence,
estimation of the horizontal wave pressures on the caisson is the most fundamental and important
factor for the safe design of the structure. Goda’s formula [1,2] is one of the most commonly accepted
methods for estimating wave forces on caissons. The formula predicts a maximum pressure at the still
water level, p1, which is given as follows.

p1 = 0.5(1 + cosθ)(λ1α1 + λ2α
∗ cos2 θ)ρgH (1)

where θ is the wave incidence angle, ρ is the density of the water, g is the gravitational acceleration, λ1

and λ2 are modification factors depending on the geometry of a structure, and α1 and α∗ represent the
coefficients of the pulsating and impulsive wave pressure, respectively.

In some cases, a number of concrete armor blocks are piled up in front of the caisson to reduce the
impulsive wave loading on a caisson, as illustrated in Figure 1, which is referred to as a horizontally
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composite breakwater [3]. The horizontal wave pressure on such a caisson can be estimated by
adjusting the modification factor λ1 of Goda’s formula [4].

λ1 =


1.0 (H/h ≤ 0.3)
1.2− 2(H/h)/3 (0.3 < H/h ≤ 0.3)
0.8 (H/h > 0.3)

(2)
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disclosed section of the caisson [7,8]. In a laboratory experiment, Takayama et al. [9] reported that 
settlement of the armor blocks caused an increase of wave force on the caisson. In addition, Mase et 
al. [10] analyzed the stability of composite breakwater assuming the settlement of armor blocks in 
front of the breakwater, and they demonstrated that the sliding distance of a caisson was reduced 
when the settled blocks were repaired. More recently, Oh et al. [6] carried out experiments of 
measuring wave pressures on a caisson with different coverage rates of tetrapods, showing that the 
wave force on the caisson significantly increased as the coverage rate decreased. 
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Figure 1. A conceptual diagram of a caisson whose front face is covered with armor blocks on the
rubble mound foundation.

The value of λ1 depends on the ratio of the wave height (H) to the water depth (h), varying from
0.8 to 1.0. It is noteworthy that Equation (2) is exclusively applicable when the upright section of a
caisson is fully covered with armor blocks.

In most cases, the crest level of the armor blocks is equal to or slightly higher than the crown of the
caisson as in Figure 1. However, occasionally, the upright section of the caisson is not fully covered up
to the crown level, for example while construction is in progress or when the armor blocks are settled
down or displaced after experiencing repeated wave action [5,6]. In such a case, the horizontal wave
force on the structure can be larger than that on the solid caisson without any protection [2]. In addition,
impulsive wave loading may act on the top exposed section of the caisson, which leads to possible
failure of the structure. Indeed, for instance, the caisson breakwater installed at Mutsu-Ogawara port
in Japan was severely damaged in 1991 because the armor blocks in front of the caisson had been
scattered by storms, which allowed impulsive wave loading on the disclosed section of the caisson [7,8].
In a laboratory experiment, Takayama et al. [9] reported that settlement of the armor blocks caused an
increase of wave force on the caisson. In addition, Mase et al. [10] analyzed the stability of composite
breakwater assuming the settlement of armor blocks in front of the breakwater, and they demonstrated
that the sliding distance of a caisson was reduced when the settled blocks were repaired. More recently,
Oh et al. [6] carried out experiments of measuring wave pressures on a caisson with different coverage
rates of tetrapods, showing that the wave force on the caisson significantly increased as the coverage
rate decreased.

Based on a reproduction experiment for damaged seawalls due to a typhoon, Takahashi et al. [11]
proposed an empirical formula that can be applied for estimating wave pressure on a seawall whose
top section is not fully covered with armor blocks. The formula suggests that the pressure distribution
along the vertical wall is different depending on the three regions as depicted in Figure 2. In the figure,
dp is the height of Region 2 and defined by Equation (3).

dp = min
{
Hs/3, (Rc −Ac)

}
(3)

where Hs is the significant wave height measured at the toe of the structure, Rc is the crest freeboard of
the caisson, and Ac is the crest level of the armor layer from the still water level.
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For each of the three regions, the coefficients of λ1 or λ2 of Equation (1) are differently applied.
In case of Region 1, λ1 = 1.0 and λ2 is given as follows

λ2 =


1.0 (Ac/H < 0)
1.0− 10(Ac/H)/7 (0 ≤ Ac/H ≤ 0.7)
0 (0.7 < Ac/H)

. (4)

For Region 2, λ1 is given as follows, where λ10 is calculated by Equation (2). Meanwhile, λ2 is
obtained the same as Region 1 using Equation (3).

λ1 = λ10λ11 (5)

λ11 =


1.0/λ10 (Ac/H < 0){
1.0− 1.0−λ10

0.35

(
Ac
H

)}
/λ10 (0 ≤ Ac/H ≤ 0.35)

1.0 (0.35 < Ac/H)

. (6)

For Region 3, λ1 is obtained the same as Region 2, where as λ2 = 0.
Meanwhile, another method of reducing wave loading on a caisson is to place the rubble stones

in front of the caisson and cover them with armor blocks, as depicted in Figure 3. Regarding this
type of horizontally composite breakwater, there exists few previous studies of estimating the wave
pressure acting on the structure. In this respect, the present study conducted a series of experiments by
changing the configurations of the protection in front of the caisson, and it proposed a method for
estimating horizontal wave pressure on the caisson.
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The structure of the paper is as follows. First, details of the experimental setup are described in
Section 2. In Section 3, the results of comparison of horizontal wave pressure depending on different
coverage rates are presented with a newly suggested formula. In Section 4, the influence of shoulder
width of the armor layer is discussed. Finally, conclusions are provided in Section 5.

2. Experimental Setup

The experiments were carried out in a wave flume 50 m long, 1.2 m wide, and 1.6 m deep [12,13].
The wave flume is equipped with a piston-type wave maker, which incorporates a function that actively
absorbs the reflected waves. As shown in Figure 4, there is a 1:0.035 slope on the bottom of the flume in
the range of 10 to 20 m from one end of the flume. Caisson models made of acrylic plates were placed
on the 10 cm high rubble mound that was located at a distance of 28 m from the wave paddle. Figure 5
shows the overall geometry of the model and the definitions of the physical parameters used in this
study. The dimensions of the caisson model are 0.45 m long, 0.4 m wide, and either 0.5 or 0.6 m high.
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Following the measurement techniques used in the previous studies [6,14], horizontal wave
loading was measured by using miniscule disk-type pressure transducers. As shown in Figure 6,
the pressure transducers were embedded into the center of each plate to measure the horizontal wave
pressure. Further details of the technical specification and characteristics of the pressure transducers are
described in Oh et al. [6]. As shown in the plan view of Figure 4, two additional dummy caisson models
of the same width (0.4 m) were placed on both sides of the caisson model, for which no measurement
was made. Meanwhile, water surface displacements were measured by using capacitance wave gauges
at 13 locations (E01–E13), as shown in Figure 4.
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3. Horizontal Wave Pressure Depending on Different Coverage Rates

3.1. Experimental Conditions with Different Configurations of the Protection in Front of the Caisson

The experiments were conducted with three different caisson models as listed in Table 1. For the
three caisson models, horizontal wave pressure on the caisson was measured with four different
configurations of the armor blocks on the rubble-mounted core. As illustrated in Figure 7, the case
without any protection in front of the caisson is termed as T01. Meanwhile, the case of full coverage of
tetrapods on the rubble-mounted core up to the crest level is termed as T11, corresponding to 100%
coverage rate (CR = 1.0), which is defined as the rate of the vertical distance protected by tetrapods and
rubble stones to the entire caisson height. The cases corresponding to a lack of protection over the top
15% or 30% of the caisson are termed as T12 or T13, whose coverage rate is namely 85% (CR=0.85) or
70% (CR=0.7), respectively. Figure 8 shows two snapshots of the caisson models with the coverage
rate of 100% and 70% respectively, which were taken under still water-level conditions right after the
preparation of each model.

Table 1. Values of the geometrical parameters of the three test models.

Model ID h (m) hM (m) hc (m) Gc (m) Rc (m)

C12 0.4 0.10 0.5 0.15 0.20
C13 0.5 0.15 0.5 0.15 0.15
C14 0.5 0.10 0.6 0.15 0.20

In summary, a total of 12 different test cases were considered in the experimental campaign, in terms
of the three sets of geometrical parameters shown in Table 1 and the four configurations of the protection
in front of the caisson. For instance, the case identification label of C13T12 corresponds to the 0.5 m high
caisson model that is placed on the 0.15 m high mound (C13), whose front wall coverage rate is 85% (T12).

Tetrapods made of concrete with a nominal diameter Dn = 7.5 cm were regularly placed in two
layers, and the fore slope of the armor layers was constant (cotα = 1.5) for all the models. The main
interest of this study was to evaluate the effects of coverage rate and the shoulder width on the
horizontal wave pressure. Hence, parameters such as Dn and cotα were not changed for the entire
experiment. During the measurement, tetrapods scarcely moved because they were stable even for the
maximum wave height. However, if the tetrapods move, they can cause great damage to the pressure
transducers, particularly when the top part of the caisson is not protected. For this reason, the armor
layers were covered with a thin net that is fixed to the ground and the structure to restrict any possible
movement of tetrapods. Meanwhile, rubble stones of Dn50 = 8.5 mm were used to form the core in
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front of the caisson model. In addition, rubble stones of Dn50 = 18 mm were used as a middle layer
between the core and tetrapods.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 5 of 17 

 

3. Horizontal Wave Pressure Depending on Different Coverage Rates 

3.1. Experimental Conditions with Different Configurations of the Protection in Front of the Caisson 

The experiments were conducted with three different caisson models as listed in Table 1. For 
the three caisson models, horizontal wave pressure on the caisson was measured with four different 
configurations of the armor blocks on the rubble-mounted core. As illustrated in Figure 7, the case 
without any protection in front of the caisson is termed as T01. Meanwhile, the case of full coverage 
of tetrapods on the rubble-mounted core up to the crest level is termed as T11, corresponding to 
100% coverage rate (ܥோ = 1.0), which is defined as the rate of the vertical distance protected by 
tetrapods and rubble stones to the entire caisson height. The cases corresponding to a lack of 
protection over the top 15% or 30% of the caisson are termed as T12 or T13, whose coverage rate is 
namely 85% (ܥோ=0.85) or 70% (ܥோ=0.7), respectively. Figure 8 shows two snapshots of the caisson 
models with the coverage rate of 100% and 70% respectively, which were taken under still 
water-level conditions right after the preparation of each model. 

Table 1. Values of the geometrical parameters of the three test models. 

Model ID 
 ࢎ

(m) 
 ࡹࢎ

(m) 
 ࢉࢎ

(m) 
 ࢉࡳ
(m) 

 ࢉࡾ
(m) 

C12 0.4 0.10 0.5 0.15 0.20 
C13 0.5 0.15 0.5 0.15 0.15 
C14 0.5 0.10 0.6 0.15 0.20 

 

  

  

Figure 7. Four different configurations in terms of protection in front of the caisson model of C14. (a) 
C14T01 (coverage rate: 0%), (b) C14T11 (coverage rate: 100%), (c) C14T12 (coverage rate: 85%), (d) 
C14T13 (coverage rate: 70%). 

  

Figure 7. Four different configurations in terms of protection in front of the caisson model of C14.
(a) C14T01 (coverage rate: 0%), (b) C14T11 (coverage rate: 100%), (c) C14T12 (coverage rate: 85%),
(d) C14T13 (coverage rate: 70%).J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 17 

 

  

Figure 8. Snapshots of (a) C14T11 and (b) C14T13 models taken before receiving wave action. 

In summary, a total of 12 different test cases were considered in the experimental campaign, in 
terms of the three sets of geometrical parameters shown in Table 1 and the four configurations of 
the protection in front of the caisson. For instance, the case identification label of C13T12 
corresponds to the 0.5 m high caisson model that is placed on the 0.15 m high mound (C13), whose 
front wall coverage rate is 85% (T12). 

Tetrapods made of concrete with a nominal diameter ܦ௡ = 7.5 cm were regularly placed in 
two layers, and the fore slope of the armor layers was constant (cot  for all the models. The (1.5 = ߙ
main interest of this study was to evaluate the effects of coverage rate and the shoulder width on the 
horizontal wave pressure. Hence, parameters such as ܦ௡ and cot  were not changed for the entire ߙ
experiment. During the measurement, tetrapods scarcely moved because they were stable even for 
the maximum wave height. However, if the tetrapods move, they can cause great damage to the 
pressure transducers, particularly when the top part of the caisson is not protected. For this reason, 
the armor layers were covered with a thin net that is fixed to the ground and the structure to restrict 
any possible movement of tetrapods. Meanwhile, rubble stones of ܦ௡ହ଴ = 8.5 mm were used to form 
the core in front of the caisson model. In addition, rubble stones of ܦ௡ହ଴ = 18 mm were used as a 
middle layer between the core and tetrapods. 

For each of the 12 test cases, 20 different regular waves were generated for the measurement. 
The wave period ranged from 1.5 to 2.5 s at an interval of 0.25 s, while four different wave heights 
in the range shown in Table 2 were generated for each wave period. Table 2 illustrates the test wave 
conditions including the wave steepness (ݏ) and the surf similarity parameter (ߦ), which is defined 
as ߦ = tanα/ඥܮ/ܪ where α is the angle of the fore slope of the structure. The wave generation 
time was 60 s for all the cases, during which the data from all the sensors were recorded at a 
sampling rate of 600 Hz. 

Table 2. Summary of the test wave conditions. 

 ࣈ ࢙ (m) ࡴ (s) ࢀ (m) ࢎ
0.4 1.5~2.5 0.10~0.25 0.02–0.09 2.13–4.25 
0.5 1.5~2.5 0.16~0.33 0.03–0.10 2.07–3.61 

3.2. Horizontal Pressure Distributions Depending on the Coverage Rate 

Figure 9 shows an example distribution of the measured wave pressure along the caisson 
according to the four different coverage rates. It is clear that the wave pressure significantly reduced 
over the entire caisson when it was fully covered with tetrapods and rubble stones. However, when 
the caisson was partially covered, huge wave pressure acted on the exposed portion of the caisson. 
More specifically, the peak pressure appeared at just above the crest level of the armored section. 
For the C14T12 case, the highest pressure was observed at the top pressure transducer. Meanwhile, 
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Figure 8. Snapshots of (a) C14T11 and (b) C14T13 models taken before receiving wave action.

For each of the 12 test cases, 20 different regular waves were generated for the measurement.
The wave period ranged from 1.5 to 2.5 s at an interval of 0.25 s, while four different wave heights
in the range shown in Table 2 were generated for each wave period. Table 2 illustrates the test wave
conditions including the wave steepness (s) and the surf similarity parameter (ξ), which is defined as
ξ = tanα/

√
H/L where α is the angle of the fore slope of the structure. The wave generation time was

60 s for all the cases, during which the data from all the sensors were recorded at a sampling rate of 600 Hz.

Table 2. Summary of the test wave conditions.

h (m) T (s) H (m) s ξ

0.4 1.5~2.5 0.10~0.25 0.02–0.09 2.13–4.25
0.5 1.5~2.5 0.16~0.33 0.03–0.10 2.07–3.61

3.2. Horizontal Pressure Distributions Depending on the Coverage Rate

Figure 9 shows an example distribution of the measured wave pressure along the caisson according
to the four different coverage rates. It is clear that the wave pressure significantly reduced over the entire
caisson when it was fully covered with tetrapods and rubble stones. However, when the caisson was
partially covered, huge wave pressure acted on the exposed portion of the caisson. More specifically,
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the peak pressure appeared at just above the crest level of the armored section. For the C14T12 case,
the highest pressure was observed at the top pressure transducer. Meanwhile, the magnitude of
measured pressure reached a maximum at the pressure transducer right above the still water level.
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the wave pressure on the caisson whose front wall is not fully covered with armor blocks. Although 
the experimental model in this study, which is compositely covered with armor blocks and rubble 

Figure 9. Horizontal wave pressures on the caisson model of C14 for the different coverage rates when
T = 1.5 s and H = 0.26 m. (a) T01, (b) T11, (c) T12, and (d) T13.

Figure 10a shows a comparison of the four pressure distributions illustrated in Figure 9. It is very
clear that pressure distribution along the caisson model varied due to the change of the coverage rate.
In particular, the horizontal pressures over the upper portion of the caisson showed greater variation
depending on the different coverage rates than the lower portion of the caisson. It is noteworthy that
the overall magnitude of the wave pressures becomes even larger when the caisson was partially
covered (T12 and T13) than when the caisson was uncovered (T01). Such a phenomenon was commonly
observed for the rest of test cases, as shown in another example of Figure 10b, where the result for
a different wave condition is displayed. The reason for this is due to occurrence of impulsive wave
loading on the structure incurred by wave breaking over the fore slope of the caisson when the caisson
was partially covered by rubble stones and tetrapods.
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3.3. Comparison of Measured Pressures with Takahashi’s Formula

As described in the above, Takahashi et al. [11] proposed an empirical formula for calculating the
wave pressure on the caisson whose front wall is not fully covered with armor blocks. Although the
experimental model in this study, which is compositely covered with armor blocks and rubble stones
as well, is different from the structure studied in Takahashi et al. [11], it may be possible to apply
this formula because it is the only formula available to estimate the wave pressure on a partially
protected caisson. Figure 11 shows two example results of comparing the pressure distribution
calculated by the formula with profiles of the measured pressure for the case of C14T12. Takahashi’s
formula tends to overestimate the measured pressure in Regions 2 and 3, whereas it underestimates
the impulsively-acting wave pressure in Region 1. Meanwhile, Figure 12 shows another comparison
between the formula and measurement for the case of C14T13. In this case, Takahashi’s formula
overestimates the wave pressure for entire regions. In particular, the discrepancy between the estimation
and measurement is the largest in Region 2.
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By integrating the pressures over the entire height of the caisson, it was possible to obtain the
total horizontal force on the caisson. Then, it is possible to compare the measured force and the
calculated force based on Takahashi’s formula. Figure 13 shows such a result, where the measured
horizontal forces (FH,Measured) are compared with the calculated horizontal forces by Takahashi’s
formula (FH,Takahashi) by using all the data from C14 model. It is clear that Takahashi’s formula tends to
overestimate the measured force regardless of the coverage rate. For the four models shown in Table 1,
similar results were obtained that indicate overestimation of the formula to the measured forces.
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3.4. Parameterization of Vertical Profiles of the Horizontal Pressure

Vertical profiles of the horizontal wave pressure on the caisson significantly changed according
to the coverage rate, but there exists no adequate formula to estimate such variations of the vertical
profiles depending on different coverage rates. Considering this, efforts were made to represent the
measured pressure as a function of the relative vertical position along the front wall of the caisson,
hp/hc, where hp refers to the vertical distance from the caisson bottom, and hc refers to the caisson
height. Hence, the value of hp/hc ranges from 0 to 1. In addition, the pressures measured with
protection in front of the caisson (T11, T12, or T13) were normalized by the corresponding values with
the same condition but without any protection of the caisson (T01). Then, all the data from the models
C12 to C14 were plotted in a single figure.

Figure 14a shows such a representation of the data from T11 and T01 that are marked as blue dots,
where pT11/pT01 denotes the horizontal wave pressures from T11 normalized by the corresponding
pressures from T01. It is very clear that most values of pT11/pT01 are less than unity, which implies a
reduction of horizontal wave pressure by the protection with armor blocks on the rubble-mounted core.
Another noteworthy feature of the data is that data scattering becomes less for relatively smaller values
of hp/hc. In Figure 14, the black line shows the profile of mean value (µ) plus half of the standard
deviation (σ) of the data. Statistically, this curve means the upper 33% value of the data, which gives a
more conservative evaluation of the wave pressure, compared to the average of the data.

Figure 14b shows a similar figure drawn by using the data from T12 and T01. Unlike the previous
figure, the values of pT12/pT01 are greater than unity over the upper part of the caisson, reaching up to
approximately 2 at the top of the caisson. This demonstrates that the partially covered caisson receives
significantly higher pressures on the unprotected part of the front face than the simple solid caisson,
which is probably due to impulsive wave loading on the structure. Meanwhile, the wave pressure
ratios over the lower part of the caisson, protected by the armor blocks, are less than unity, as in the
previous figure.

Figure 15 represents another similar result for the data from T13 and T01. In this case, the extent
of greater value of pT13/pT01 than unity is further larger than Figure 14b. In addition, the peak value of
pT13/pT01 occurs at a slightly lower elevation from the top of the caisson. This is because impulsive
wave loading tends to act at a comparatively lower location than T12 as a result of the lower crest level
of armor blocks in this case. It is noteworthy that the wave pressures at close to the caisson bottom is
almost the same as those in the previous figure.
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Figure 15. Parameterization of vertical profiles of the normalized wave pressures of (a) T11, (b) T12,
and (c) T13.

In Figure 15, the black line shown in Figure 14a–c is presented as a black dotted line in each of the
images in Figure 15a–c. Meanwhile, the red line in each of the figures shows a fitted curve that gives
a parameterization of the dotted line in Figure 15a–c, which is expressed as an empirical formula in
Equations (7)–(9). Hence, values of pT11, pT12, or pT13 can be obtained by applying Equations (7)–(9) to
pT01, which is readily obtained from Goda’s formula. That is, it is possible to estimate the distribution of
horizontal pressure on the caisson covered with armor blocks on the rubble-mounted core, depending
on the coverage rates from 70% to 100%.

pT11

pT01
=

 0.75 0 <
hp
hc
≤ 0.85

0.96− 1.37
(
1−

hp
hc

)
0.85 <

hp
hc
≤ 1.0

(7)

pT12

pT01
=


0.75 0 <

hp
hc
≤ 0.3

1.2− 0.64
(
1−

hp
hc

)
0.3 <

hp
hc
≤ 0.85

2.0− 6.0
(
1−

hp
hc

)
0.85 <

hp
hc
≤ 1.0

(8)

pT13

pT01
=



0.85 0 <
hp
hc
≤ 0.3

1.4− 0.79
(
1−

hp
hc

)
0.3 <

hp
hc
≤ 0.7

2.35− 3.94
(
1−

hp
hc

)
0.7 <

hp
hc
≤ 0.85

1.53 + 1.49
(
1−

hp
hc

)
0.85 <

hp
hc
≤ 1.0

(9)



J. Mar. Sci. Eng. 2020, 8, 691 11 of 17

As illustrated in Figure 15, each of the normalized profiles of wave pressure is discriminated
according to the four zones, which are classified as the range of 0 < hp/hc ≤ 0.3, 0.3 < hp/hc ≤ 0.7,
0.7 < hp/hc ≤ 0.85, and 0.85 < hp/hc ≤ 1.0, respectively. Note that the value of pT11/pT01 is the same as
a constant over Zone 1 to 3, but it is expressed as a function of hp/hc for Zone 4. Meanwhile, pT12/pT01

is a constant only for Zone 1, and it is expressed as a different function of hp/hc either for Zones 2 and
3 or Zone 4. Finally, the profile of pT13/pT01 is completely different for each of the four zones.

Table 3 shows the mean values of the normalized wave pressures of pT11/pT01, pT12/pT01,
and pT13/pT01 for the four zones. It is noteworthy that the values in the table are augmented with an
increase of hp/hc but with a decrease of CR. Such a trend is very clear in Figure 16, where the abscissa
is the coverage rate (CR) and the ordinate is the adjustment factor (λC) that explains the change of
horizontal wave pressure due to a different coverage rate. λC is basically equivalent to the values
of pT1x/pT01 with x = 1, 2, or 3, depending on the coverage rate. Then, it is possible to draw fitted
lines for each of the four zones that follow the data, as shown in Figure 16, and to obtain simplified
relationships between λC and CR based on the fitted lines, as suggested in Equation (10).

λC =


max{0.75, 1.55−CR} 0 < hp/hc ≤ 0.3
1.58− 0.83CR 0.3 < hp/hc ≤ 0.7
3.05− 2.3CR 0.7 < hp/hc ≤ 0.85
min{1.6, 5.82− 4.97CR} 0.85 < hp/hc ≤ 1.0

for 0.7 ≤ CR ≤ 1.0 (10)

Table 3. Mean values of the normalized horizontal wave pressures from Zone 1 to 4.

Zone 1 Zone 2 Zone 3 Zone 4

pT11/pT01 (CR = 1.0) 0.75 0.75 0.75 0.86
pT12/pT01 (CR = 0.85) 0.75 0.87 1.05 1.55
pT13/pT01 (CR = 0.7) 0.85 1.00 1.46 1.65

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 17 

 

ଵଷ்݌

଴ଵ்݌
=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧0.85 0 <

ℎ௣

ℎ௖
≤ 0.3

1.4 − 0.79 ቆ1 −
ℎ௣

ℎ௖
ቇ 0.3 <

ℎ௣

ℎ௖
≤ 0.7

2.35 − 3.94 ቆ1 −
ℎ௣

ℎ௖
ቇ 0.7 <

ℎ௣

ℎ௖
≤ 0.85

1.53 + 1.49 ቆ1 −
ℎ௣

ℎ௖
ቇ 0.85 <

ℎ௣

ℎ௖
≤ 1.0

 (9) 

As illustrated in Figure 15, each of the normalized profiles of wave pressure is discriminated 
according to the four zones, which are classified as the range of 0 < ℎ௣/ℎ௖ ≤ 0.3, 0.3 < ℎ௣/ℎ௖ ≤ 0.7, 
0.7 < ℎ௣/ℎ௖ ≤ 0.85, and 0.85 < ℎ௣/ℎ௖ ≤ 1.0, respectively. Note that the value of ்݌ଵଵ/்݌଴ଵ is the 
same as a constant over Zone 1 to 3, but it is expressed as a function of ℎ௣/ℎ௖  for Zone 4. 
Meanwhile, ்݌ଵଶ/்݌଴ଵ is a constant only for Zone 1, and it is expressed as a different function of 
ℎ௣/ℎ௖ either for Zones 2 and 3 or Zone 4. Finally, the profile of ்݌ଵଷ/்݌଴ଵ is completely different 
for each of the four zones. 

Table 3 shows the mean values of the normalized wave pressures of ்݌ଵଵ/்݌଴ଵ, ்݌ଵଶ/்݌଴ଵ, and 
 ଴ଵ for the four zones. It is noteworthy that the values in the table are augmented with an்݌/ଵଷ்݌
increase of ℎ௣/ℎ௖ but with a decrease of ܥோ. Such a trend is very clear in Figure 16, where the abscissa 
is the coverage rate (ܥோ) and the ordinate is the adjustment factor (ߣେ) that explains the change of 
horizontal wave pressure due to a different coverage rate. ߣେ is basically equivalent to the values of 
 or 3, depending on the coverage rate. Then, it is possible to draw fitted lines for ,2 ,1 = ݔ ଴ଵ with்݌/ଵ௫்݌
each of the four zones that follow the data, as shown in Figure 16, and to obtain simplified relationships 
between ߣେ and ܥோ based on the fitted lines, as suggested in Equation (10). 

Table 3. Mean values of the normalized horizontal wave pressures from Zone 1 to 4. 

 Zone 1 Zone 2 Zone 3 Zone 4 
ோܥ) ଴ଵ்݌/ଵଵ்݌ = 1.0) 0.75 0.75 0.75 0.86 

ோܥ) ଴ଵ்݌/ଵଶ்݌ = 0.85) 0.75 0.87 1.05 1.55 
ோܥ) ଴ଵ்݌/ଵଷ்݌ = 0.7) 0.85 1.00 1.46 1.65 

 
Figure 16. The adjustment factor of horizontal pressure depending on different coverage rates. 

େߣ =

⎩
⎪
⎨

⎪
⎧

max{0.75,1.55 − {ோܥ 0 < ℎ௣ ℎ௖⁄ ≤ 0.3

1.58 − ோܥ0.83 0.3 < ℎ௣ ℎ௖⁄ ≤ 0.7

3.05 − ோܥ2.3 0.7 < ℎ௣ ℎ௖⁄ ≤ 0.85

min{1.6, 5.82 − {ோܥ4.97 0.85 < ℎ௣ ℎ௖⁄ ≤ 1.0

    for 0.7 ≤ Cோ ≤ 1.0 (10) 

Figure 16. The adjustment factor of horizontal pressure depending on different coverage rates.

Figure 17 shows a comparison of the horizontal wave forces calculated by using Equation (10)
with the measurement, which gives good agreement between the calculation and the measurement.
In particular, compared to the prediction by Takahashi’s formula presented in Figure 13, the suggested
equation provides apparently better performance in predicting the measured forces.
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4. Influence of Shoulder Width of the Armor Layer

4.1. Experimental Conditions with Different Shoulder Widths of the Armor Layer

The three models investigated in the previous chapter have the same shoulder width of Gc =

0.15 m, which corresponds to two times of the nominal diameter of the tetrapod that is used in the
experiment. However, in some cases, more than two armor units are placed on the shoulder to further
reduce the wave loading on the caisson. In order to examine such an influence, additional experiments
were carried out with a wider shoulder width than C14. Figure 18 is a schematic diagram illustrating
the difference of the two additional models, termed C17 and C18, from C14. The shoulder width of
the C17 and C18 models are Gc = 0.225 m and 0.30 m, which correspond to three and four times the
nominal diameter of the tetrapod, respectively. Except for the shoulder width, all the other geometrical
parameters of the two models were the same as those in C14. Table 4 summarizes the parameters of
the two additional models. For the C17 and C18 models, only the case with full protection in front of
the caisson (T11) was subject to the experiment. This is because partial protection (T12 or T13) would
not be a recommended design concept, which results in a significant increase of the horizontal wave
loading on the top disclosed section of the caisson, as elucidated in the previous chapter.
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Table 4. Values of the geometrical parameters of the two models of wider shoulder width.

Model ID h (m) hM (m) hc (m) Gc (m) Rc (m)

C17 0.50 0.10 0.60 0.225 0.20
C18 0.50 0.10 0.60 0.300 0.20

4.2. The Effect of Shoulder Widths on the Measured Forces and Pressures

First, the effect of shoulder width was investigated for the wave forces obtained by integration of
the horizontal pressures over the front face of the caisson. Figure 19 shows the horizontal wave forces
on the caisson of C17 or C18 models (FH,C17 or FH,C18) that are compared with the corresponding forces
on C14 model (FH,C14). In general, the wave forces likely decrease as the shoulder width increases,
especially when the forces are comparatively small. As the magnitude of measured forces increases,
the effect of the shoulder width becomes less significant.
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Then, pressure distributions under different shoulder widths were compared as shown in Figure 20,
which shows the measured pressures of either the C17 or C18 model that are normalized by the
corresponding values of the C14 model. Although data scattering is comparatively larger for higher
values of hp/hc, the mean profile of the normalized data, presented as a black line in the figure, apparently
illustrates a decrease of the wave pressures with an increase of the shoulder width, especially over the
upper part of the caisson.
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The two normalized pressure profiles in Figure 20 are shown together in Figure 21, where λW is the
adjustment factor for horizontal wave pressure considering the effect of shoulder width. λW is basically
equivalent to the values of pC17/pC14 or pC18/pC14. As illustrated in Figure 21, the normalized pressure
profiles can be simplified as fitted lines that vary according to the three zones of 0 < hp/hc ≤ 0.7,
0.7 < hp/hc ≤ 0.85, and 0.85 < hp/hc ≤ 1.0, respectively. These three zones are correspondent to Zone 1
plus Zone 2, Zone 3, and Zone 4 described in Section 3.4, respectively.
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4.3. Parameterization of the Effect of Shoulder Width

Although we obtained fitted lines that explain the adjustment factor for the effect of shoulder width,
it is only usable for the specific shoulder width corresponding to C17 or C18 models. Hence, it is required
to develop a methodology that can be applicable for an arbitrary shoulder width. In this respect, there
have been efforts to find a parameter that shows a recognizable relationship between the modification
factor λW and the shoulder width. Then, it was disclosed that λW shows a decreasing trend when it is
represented as a function of a dimensionless parameter, Gc/L ∗ ξ, as illustrated in Figure 22. The figure
contains three panels that show the data points corresponding to hp/hc = 0.7, 0.85, and 1.0, respectively.
Those data points at each of the three values of hp/hc come from interpolation/extrapolation of all the
individual profiles of pC17/pC14 and pC18/pC14, which are already shown in Figure 20. The black solid
lines in each panel of Figure 22 denote suggested simplification of the data, the formulations of which
are given in Equations (11)–(13). It is noteworthy that the simplification of λW is given as a constant for
Gc/L·ξ > 0.28 for all the three values of hp/hc. Although there exists no available data in the present
experiment over this range, we may conjecture that values of λW are likely to further decrease down to
zero with any increase of Gc/L·ξ. However, λW is assumed to be constant when Gc/L·ξ > 0.28 in view
of the conservative consideration regarding the effect of shoulder width on wave force reduction.

λW =


1.0 0 < Gc/L·ξ ≤ 0.15
−4.62Gc/L·ξ+ 1.69 0.15 < Gc/L·ξ ≤ 0.28
0.4 0.28 < Gc/L·ξ

when hp/hc = 0.7 (11)

λW =


1.0 0 < Gc/L·ξ ≤ 0.15
−7.46Gc/L·ξ+ 2.12 0.15 < Gc/L·ξ ≤ 0.28
0.03 0.28 < Gc/L·ξ

when hp/hc = 0.85 (12)

λW =


1.0 0 < Gc/L·ξ ≤ 0.15
−6.85Gc/L·ξ+ 2.03 0.15 < Gc/L·ξ ≤ 0.28
0.11 0.28 < Gc/L·ξ

when hp/hc = 1.0 (13)
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Based on the three equations above, formulations of the modification factor (λW) can be obtained
for the entire range of hp/hc from zero to unity, as tabulated in Table 5. The value of λW is unity
regardless of hp/hc when Gc/L·ξ is less than or equal to 0.15. In the range of 0.15 < Gc/L·ξ ≤ 0.28, λW

is represented as a function of both Gc/L·ξ and hp/hc with different coefficient values depending on the
ranges of hp/hc. Finally, when Gc/L·ξ is greater than 0.28, λW is expressed as a sole function of hp/hc.

Table 5. The reduction factors due to the shoulder width (λW) of the armor layer.

Gc/L·ξ≤0.15 0.15 < Gc/L·ξ≤ 0.28 0.28 < Gc/L·ξ

0.85 < hp/hc ≤ 1.0 1.0
−10.6(Gc/L·ξ− 0.24)

+4.11(Gc/L·ξ− 0.15)
hp

hc

−0.42 + 0.53
hp

hc

0.7 < hp/hc ≤ 0.85 1.0
8.62(Gc/L·ξ− 0.035)

−18.9(Gc/L·ξ− 0.15)
hp

hc

2.13− 2.47
hp

hc

hp/hc ≤ 0.7 1.0
1.0−

6.58(Gc/L·ξ− 0.15)
hp

hc

1.0− 0.85
hp

hc

Figure 23 presents two examples showing a comparison of the measured pressure profiles from
either the C17T11 or C18T11 model with the calculation by multiplying λW to the pressure profiles of
C14T11. As shown in Figure 23, the calculated profiles generally agree well with the measured profiles,
indicating that the effects of the shoulder width are properly taken into account with the modification
factor λW .
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Figure 23 presents two examples showing a comparison of the measured pressure profiles 
from either the C17T11 or C18T11 model with the calculation by multiplying ߣௐ to the pressure 
profiles of C14T11. As shown in Figure 23, the calculated profiles generally agree well with the 
measured profiles, indicating that the effects of the shoulder width are properly taken into account 
with the modification factor ߣௐ. 

Figure 23. Comparison of vertical profiles of horizontal wave pressure from the measurement of (a) 
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4.4. Verification of Applying the Two Modification Factors Together 

For the entire 20 wave conditions of the C17T11 and C18T11 models, the measured wave forces 
are compared with the forces of C14T01 that are multiplied by ߣ஼  and ߣௐ. Figure 24 shows such a 
comparison of the horizontal wave forces acquired by integration of the pressures along the caisson 
height between the measurement and estimation. The agreement between the measured and 

Figure 23. Comparison of vertical profiles of horizontal wave pressure from the measurement of
(a) C17T11 and (b) C18T11 with the calculated results obtained by applying λW to C14T11.
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4.4. Verification of Applying the Two Modification Factors Together

For the entire 20 wave conditions of the C17T11 and C18T11 models, the measured wave forces
are compared with the forces of C14T01 that are multiplied by λC and λW . Figure 24 shows such a
comparison of the horizontal wave forces acquired by integration of the pressures along the caisson
height between the measurement and estimation. The agreement between the measured and calculated
wave forces is fairly good, and the correlation coefficient (R) is 0.93. This implies that the two
modification factors provide a reasonable estimation of the wave forces on a caisson that is partially
covered with armor blocks of arbitrary shoulder width on the rubble-mounted core caisson.
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5. Conclusions

This paper experimentally investigated characteristics of the wave loading on the front wall of the
caisson covered with armor blocks on the rubble-mounted core. Analysis of the experimental data
showed that horizontal wave pressure on the caisson apparently increases when the caisson was not
fully covered. This is because impulsive loading, incurred by wave breaking over the fore slope of the
caisson, is likely to act on the unprotected section of the caisson. This demonstrates the importance
and necessity of full protection of the caisson up to the crest level, as imperfect protection may result in
even greater wave loading than a simple solid caisson without any protection.

For seeking a quantification of the measured pressure under different coverage rates, the measured
wave pressure was first compared with a formula suggested by Takahashi et al. [11], although it has
been suggested for a caisson that is entirely protected by armor blocks without rubble-mounted core.
In general, the formula tends to overestimate the measured pressure on the lower part of the caisson
that is well protected, whereas it underestimates the upper part of the caisson that is unprotected by
the armor blocks. Then, we suggest a new formula based on the parameterization of vertical profiles of
the measured horizontal pressure. The main idea of the parameterization is to find a representative
profile of the normalized pressure as a function of relative vertical position along the front wall of
the caisson (hp/hc), from which an adjustment factor (λC) was introduced considering the effects of
the coverage rate (CR). The influence of the shoulder width of the armor layer was also examined,
which showed a decrease of the wave pressures on the caisson with the increase of the shoulder width,
especially over the upper part of the caisson. In order to quantify such an influence due to the shoulder
width, another adjustment factor (λW) has been proposed, which is presented as the functions of two
parameters Gc/L ∗ ξ and hp/hc.

The adequacy of the two suggested that the adjustment factors were verified by using the
experimental data, indicating that the factors can be used to estimate horizontal wave pressures on a
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caisson that is protected by armor blocks on the rubble-mounted core within the ranges of physical
parameters investigated in this study.
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