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Faculty of Maritime Studies, University of Split, Rud̄era Boškovića 37, 21000 Split, Croatia; jsoda@pfst.hr (J.Š.);
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Abstract: Nowadays, the impact of the ships on the World economy is enormous, considering that
every ship needs fuel to sail from source to destination. It requires a lot of fuel, and therefore, there is
a need to monitor and predict a ship’s average fuel consumption. However, although there are
much models available to predict a ship’s consumption, most of them rely on a uniform time set.
Here we show the model of predicting external influences to ship’s average fuel consumption based
on a non-uniform time set. The model is based on the numeric fitting of recorded data. The first
set of recorded data was used to develop the model, while the second set was used for validation.
Statistical quality measures have been used to choose the optimal fitting function for the model.
According to statistical measures, the Gaussian 7, Fourier 8, and smoothing spline fitting functions
were chosen as optimal algorithms for model development. In addition to extensive data analysis,
there is an algorithm for filter length determination for the preprocessing of raw data. This research
is of interest to corporate logistics departments in charge of ensuring adequate fuel for fleets when
and where required.

Keywords: forecasting of fuel demand; ship fuel consumption; data fitting; statistical quality measures;
signal processing and analysis

1. Introduction

The effects of the marine environment and other causes on fuel consumption can be examined
by various parameters and various approaches. Approaches could be model-based, which is usual
in references or signal-based, which is considered in this paper. Model-based approaches tend to
estimate the exact fuel consumption in the exact engine operating mode, examples of this are [1,2].
Such models are useful in, e.g., dual-fuel engines, when it is possible to calculate how much of fuels
are being spent [1]. ANNs (Artificial Neural Network) in [2] need to be trained and re-trained for
specific ships over time. However, there is no exact real-time monitoring of the hull status, which could
be a problem that increases the error in the calculation during time between maintenances. Namely,
during exploitation and over time, the ship hull is affected by fouling—a natural phenomenon where
marine/aquatic vegetation and microorganisms attach to the hull, creating bio-layers that have an
impact on the ship’s speed and fuel consumption. Other contributing factors may include weather
conditions, cargo, propulsion, engine conditions, etc. Data trend analysis is a suitable approach
for predicting fuel consumption, depending on the biofouling layers as environmental contributors.
In light of current increased efforts to improve energy efficiency, the above-mentioned topic is current,
especially since it includes the use of hybrid technologies [3,4]. As stated in [4], fuel consumption
reduction cannot be established without first exploring standard fuel consumption prediction models.

Instead of focusing on a specific ship, there are a number of references to fuel demand
prediction [5–8] in which the focus is on energy efficiency and ecology [9–11], or predicting global

J. Mar. Sci. Eng. 2020, 8, 625; doi:10.3390/jmse8090625 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0001-6649-1461
https://orcid.org/0000-0002-5825-8026
https://orcid.org/0000-0003-4011-8145
http://dx.doi.org/10.3390/jmse8090625
http://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/8/9/625?type=check_update&version=2


J. Mar. Sci. Eng. 2020, 8, 625 2 of 30

demand and port demand. The dependence of fuel consumption on vessel design was explored
in [12,13], and on vessel speed in [14]. There are new trends in addressing the fuel consumption issue
that could be divided into several research branches. While the effect of biofouling on ship resistance
using CFD (Computational Fluid Dynamics) was the research topic in [15], vessel fuel consumption
prediction was examined in [16], and the authors in [17] used a fuel consumption model based on the
Vehicle Specific Power distribution. Traffic condition prediction was linked with the fuel consumption
model to predict fuel consumption. “Fuel consumption data provided by the On-Board Diagnostic
tool was used to verify the proposed application, with a prediction error under 20%” [17]. A statistical
approach to the ship’s fuel consumption was presented in [18]. This research could be extended to
a speculative approach—can the calculated consumption of the model be subtracted from the total
consumption to obtain its environmental impact? Learning approaches to ship fuel consumption with
ANNs are the most popular, and include [19–23]. On-line fuel consumption prediction was obtained
by machine learning in [19]. Shalow and deep learning was combined in [22]. An outstanding result
was the correlation matrix in [20], which correlated various causes of fuel consumption increase (e.g.,
wind, trim, currents, cargo, etc.). An interesting case study was published in [24], which explored
AI (Artificial Intelligence) driven tools to identify fuel usage anomalies across the company’s entire
fleet. The gray box model was applied to optimize trim and identify the possibility of decreasing
fuel consumption [25]. It was shown that this optimization could decrease fuel consumption up to
2.3% [25].

The subject of this paper is to monitor the daily ships fuel consumption seasonal. The main variable
used is the daily fuel consumption, which is the main indicator of fuel consumption. Concerning the
previously mentioned research problem of ships fuel consumption, the following hypotheses is that the
average daily consumption could be predicted seasonally and yearly. The aim of this paper is to find
the fitting function to establish the dynamics of the ships daily fuel consumption, using a simple and
processing cost-efficient model. The goal of the paper is to find the fitting function that approximates
the ship’s daily fuel consumption.

The paper is organized as follows: the second section defines quality measures and fitting curves
used in the research; the third section explains the methodology, while the fourth presents the results.
The latter are obtained using the known data that do not pertain to consecutive days, but rather cover
an irregular day sequence. The results are produced at yearly and seasonal levels, which is a novelty
of the paper. Finally, the discussion and conclusions are presented.

2. Mathematical Background of Curve Fitting and Prediction

This section presents the mathematical foundations used in the paper, together with related
references. There are several ways to fit the data. As the dataset in the paper is non-uniform, we used
several fitting functions, Equations (1)–(20). First, the data were fitted using the Matlab function “linear
fitting”, which can be described with the following equation [26]:

fLF(x) = a· sin(x−π) + b·(x− 10)2 + c (1)

where x is an independent variable, and a, b, and c are constants that have to be determined. The next
data fitting function is the so-called exponential of the 1st order, which can be defined as [26]:

fe1(x) = ae1·ebe1·x (2)

where x is an independent variable, ae1 and be1 are constant coefficients. The data were tested using the
so-called exponential of the 2nd order, defined as follows [26]:

fe2(x) = ae2·ebe2·x + ce2·ede2·x (3)
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where ae2, be2, ce2, and de2 are coefficients. The next curve fitting functions considered for research are
taken from the Fourier series [26]:

fF∞(x) = a0 +
∞∑

i=1

[ai· cos(i·ω·x) + bi· sin(i·ω·x)] (4)

where coefficients from (4) are: a0 = (2/T)·
∫ T

0 f (x)·dt, ai = (1/T)·
∫ T

0 f (x)· cos(i·ω·x)·dt, and bi =

(1/T)·
∫ T

0 f (x)· sin(i·ω·x)·dt, ω = (2·π)/T, and T is the period or data width. In the analysis, the Fourier
series of the 1st, 2nd, and 8th order were considered, presented with Equations (5)–(7) as follows:

Fourier series of the first order:

fF1(x) = a0 + a1· cos(ω·x) + b1· sin(ω·x) (5)

Fourier series of the second order:

fF2(x) = a0 +
2∑

i=1

[ai· cos(i·ω·x) + bi· sin(i·ω·x)] (6)

and Fourier series of the eighth order:

fF8(x) = a0 +
8∑

i=1

[ai· cos(i·ω·x) + bi· sin(i·ω·x)] (7)

We likewise considered the Gaussian function [26], defined as:

fG(x) =
∞∑

i=1

ai·e−[
(x− bi)/ci]

2
(8)

where ai, bi, and ci are Gaussian function coefficients. From (8), a Gaussian function with one term
(defined in Matlab as Gaussian 1) was considered in the analysis, which could be defined with the
following equation [26]:

fG1(x) = a11·e−[
(x− b11)/c11]

2
(9)

where a11, b11, and c11 are coefficients of the Gaussian function with one term. Next, a Gaussian
function with two terms (Gaussian 2 in Matlab) was considered, defined as [26]:

fG2(x) = a12·e−[
(x− b12)/c12]

2
+ a22·e−[

(x− b22)/c22]
2

(10)

where a12, b12, c12, a22, b22, and c22 are coefficients of the Gaussian function with two terms.
Polynomials-based fitting functions were also considered. First, the polynomial of the first order was
defined as follows [26]:

fP1(x) = p01 + p11·x (11)

where p01 and p11 are first-order polynomial coefficients. Next, the second-order polynomial was
defined as [26]:

fP2(x) = p02 + p12·x + p22·x2 (12)

where p02, p12, and p22 are second-order polynomial coefficients. Third-order polynomials were also
used in the analysis, that could be defined as [26]:

fP3(x) = p03 + p13·x + p23·x2 + p33·x3 (13)
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where p03, p13, p23, and p33 are third-order polynomial coefficients. All coefficients from (11), (12),
and (13) could be calculated by performing the least square method [26]. In the next two equations,
(14) and (15), the so-called first and second power model fitting functions were used, which could be
described with the following equations [26]:

fP1 = α11·xβ11 (14)

where α11 and β11 are coefficients from the so-called first-order power model, and [26]:

fP2 = δ21 + α21·xβ21 (15)

where α21, β21, and δ21 are coefficients of the so-called second-order power model. Furthermore,
Equations (16)–(20) use rational fitting functions, and can be defined as follows; the rational fitting
function 1/1 could be expressed as [26]:

f1/1(x) =
z01 + z11·x

q01 + x
(16)

where z01, z11, and q01 are coefficients of the rational 1/1 fitting function. The rational fitting function
2/1 can be expressed as follows [26]:

f2/1(x) =
z02 + z12·x + z22·x3

q02 + x
(17)

where z02, z12, z22, and q02 are coefficients of the rational 2/1 fitting function. The rational fitting
function 3/1 could be expressed as [26]:

f3/1(x) =
z03 + z13·x + z23·x3 + z33·x4

q04 + x
(18)

where z03, z13, z23, z33, and q03 are coefficients of the rational 2/1 fitting function. Equation (19) describes
the 3/2 rational fitting function as follows [26]:

f3/2(x) =
z05 + z15·x + z25·x3 + z35·x4

q05 + q15·x + x2 (19)

where z05, z15, z25, z35, q05, and q15 are coefficients of the rational 3/2 fitting function. Finally, the rational
5/3 fitting function could be expressed as [26]:

f5/3(x) =
z08 + z18·x + z28·x3 + z38·x4 + z48·x5

q08 + q18·x + q28·x2 + x3 (20)

where z08, z18, z28, z38, z48, q08, q18, and q28 are coefficients of the rational 5/3 fitting function.
In the end, the data were fitted using the smoothing spline s, as in (21), for the specified smoothing

parameter p and specified weights wi [26]. The smoothing spline minimizes the expression:

p·
∑

i

wi·(yi − s(xi))
2 + (1− p)·

∫ (
d2s
dx2

)2

·dx (21)

If the weights are not specified, they are assumed to be 1 for all the data points. Parameter p is
defined between 0 and 1. For p = 0, a least-squares straight-line is produced that fits the data. For p = 1,
a cubic spline interpolant is obtained.

The sheer multitude of fitting functions to be tested with the data requires them to be quantified,
and quality measures to be introduced. The following quality measures have been used—the first
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quality measure is the root mean square error (RMSE)—a measure that determines the differences
between samples or population values predicted by the fitting function—that can be described as
follows [27,28]:

RMSE =

√
‖X −Y‖2

N
(22)

where X is the observed vector, Y the predicted vector, and N the number of data measured in the
observed vector space.

The following three quality measures, as in (23), (24), and (25), are statistical measures that describe
the number of variations in the dependent variable. The first quality measure is the sum of the squared
estimate errors (SSE), which can be expressed as [27,28]:

SSE =
∑N

i=1
(yi−

_
y i)

2 (23)

where yi is the i-th value of the variable to be predicted, and
_
y i the predicted value of yi. SSE shows

the measure of discrepancy between the data and the estimation model. The second quality measure is
the total sum of squares (SST), that can be defined as [27–29]:

SST =
∑N

i=1
(yi−y)2 (24)

where yi is the ith value of the variable to be predicted, and y the mean value. SST is defined as a
quality measure that equals the sum of the squared differences between observations and their overall
mean value. The third quality measure used here was the sum of squares due to regression, that could
be defined as [27–29]:

SSR =
∑N

i=1
(
_
y i−y)2 (25)

The following expression is known to be true [27–29]:

SST = SSE + SSR (26)

Furthermore, the R-square measure could be devised from (23), (24), (25), and (26), and defined as:

r2 =
SSR
SST

= 1−
SSE
SST

(27)

It is known in the literature [20–22] as the coefficient of determination that describes the proportion
of dependent variable variance predictable from the independent variable. In addition, there is an
adjusted R-square quality measure, which corrects the possible error in the R-square measure by
increasing the number of samples, described as [27–29]:

r2 = 1− (1− r2)·
N − 1

N − k− 1
= 1− (

SSE
SST

)·
N − 1

N − k− 1
(28)

where N is the number of data samples, and k is the number, which explains the independent variable.
In the next paragraph of this section, the random variable theory used throughout the paper will

be presented. If we consider random variables Xsu, Xa, Xw, Xsp in the vector notation:

Xsu=[xsu1,xsu2, . . . ,xsui] sui = 1, 2, 3, . . . ,N sui ∈ N
Xa=[xa1,xa2, . . . ,xai] ai = 1, 2, 3, . . . ,N ai ∈ N

Xw=[xw1,xw2, . . . ,xwi] wi = 1, 2, 3, . . . ,N wi ∈ N
Xsp=

[
xsp1,xsp2, . . . ,xspi

]
spi = 1, 2, 3, . . . ,N spi ∈ N

(29)
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where Xsu, Xa, Xw, Xsp represent random variables with N data samples measured in the summer (su),
autumn (a), winter (w), and spring (sp) for four years. Standard statistical metrics such as expectation
or average value, standard deviation, standard error, and correlation coefficient were used to study
random variables. The average value of the random variable x or expectation could be represented by
equation [27,29]:

E[x] = x =
1
N
·

N∑
i=1

xi =
1
N
·(X×XT) (30)

where E represents the expectation for a random variable, is the sign for random variable x, and N is the
number of samples measured. The standard deviation of the random variable x could be represented
by equation [27–29]:

σx =

√√√
1

N − 1
·

N∑
i=1

(xi − x)2 =

√
E[x2] − E[x]2 (31)

where σx represents the standard deviation of the random variable x. The transformation of coordinates
from one coordinate system to another is described by the following equation [27–29]:

x∗a =
(xia−xa)
σxa

= 1
σxa
·

(Xia−
¯
Xa

)
×

(
Xia−

¯
Xa

)T
x∗w =

(xiw−xw)
σxw

= 1
σxw
·

(Xiw−
¯
Xw

)
×

(
Xiw−

¯
Xw

)T (32)

where x∗a i x∗w are transformed coordinates of random variables. The statistical metric used to quantify
the similarity and dependence between variables,xa and xw is the correlation coefficient between the
random variables. The correlation coefficient could be calculated using the following equation [27–29]:

r =
1

N − 1
·

N∑
i=1

((xia − xa)·(xiw − xw))

σxa·σxw
=

E[(xa − E[xa])·(xw − E[xw])]

σxa·σxw
=

1
N−1

×

(
X*

a ×X*
w

T
)

(33)

where r represents the correlation coefficient, N is the number of measurements, while σxa and σxw

represent standard deviations of the random variables xa and xw. Furthermore, a model matrix A could
be created using the following equation:

A=


Xsu

Xa

Xw

Xsp

 =


xsu1 xsu2 · · · xsuN

xa1 xa2 · · · xaN

xw1 xw2 · · · xwN

xsp1 xsp2 · · · xspN


(4,N)

(34)

where Xsu, Xa, Xw, Xsp are vectors of random independent variables, together with Equations (29)–(33),
transformed in the correlation matrix Cx into the equation:

CX =
1

N − 1
× (A×AT) =

1
N − 1

·(


xsu1 xsu2 · · · xsuN

xa1 xa2 · · · xaN

xw1 xw2 · · · xwN

xsp1 xsp2 · · · xspN


(4xN)

·



xsu1 xa1 xw1 xsp1

xsu2 xa2 xw2 xsp2

. . · · · .

. . · · · .

. . · · · .

xsuN xaN xwN xspN


(Nx4)

) (35)
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In the example from Equation (29), the correlation matrix Cx has dimensions (4 × 4), as follows:

CX =


cxsu,xsu cxsu,xa cxsu,xw cxsu,xsp

cxa,xsu cxa,xa cxa,xw cxa,xsp

cxw,xsu cxw,xa cxw,xw cxw,xsp

cxsp,xsu cxsp,xa cxsp,xw cxsp,xsp


(4,4)

(36)

The correlation matrix, Cx, shows correlations between variables.
To conclude, this section covers the mathematical background of the fitting functions, from (1)

to (21) that will be used in the prediction. Equations from (22) to (28) describe the quality measures,
which will be used to grade the fitting functions and determine which fitting function is best suited to
predicting the average fuel consumption based on the non-uniform data time set. Finally, the theory of
random variables is introduced in (29) to (36) that will be useful for identifying the optimal fitting
function for prediction.

3. Methodology, Setup, and Preprocessing

This section will cover the data smoothing methodology, otherwise known as data preprocessing.
Owing to the non-uniform set of data and the need to identify the best-suited fitting function,
choosing the “right” window to perform the moving average operation or filtering is of paramount
importance. There are a number of moving average algorithms available that can be used for smoothing,
such as a simple moving average (SMA), a weighted moving average (WMA), an exponential moving
average (EMA), and a weighted exponential moving average method (WEMA). All the mentioned
moving average algorithms have their advantages and disadvantages, but they all require choosing
optimal filter window size, i.e., the number of past and future points that will determine the current
point. The preprocessing procedure can be explained in steps, as shown in Figure 1.
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The first step in the signal processing is noise removal. Although the noise does not exist physically
within the average daily fuel consumption data, it exists from the signal processing point of view.
Namely, as there are sudden spikes in fuel consumption, comparing raw data would be somewhat
misleading. Instead, the moving average or filtering operation is performed on raw data. The first
step is to choose the size of the moving average filter (filter length). It has to be noted that ship
data are not uniformly collected. Hence, there is no year, season, or month with an equal number of
samples. Smoothing at the season level has been performed. The optimal filter length was identified
by developing and performing an algorithm.

First, the R-square analysis of the raw data was performed. In the raw data, R-square is, e.g.,
0.01636 for the Gauss 1 fitting function. As a low R-square measure implies a high noise level,
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raw data should be preprocessed by eliminating the noise. Since we failed to obtain satisfactory results,
we proceeded according to the flow diagram given in Figure 1. First, we detected the filter length
necessary for moving the average operation, and then performed the moving average to denoise the
raw data and obtain enhanced input to the curve fitting operation.

The influence of filter length can be seen in the correlation matrix. The results for the length of
52 points over four years of the moving average filter are as follows (including trends):

1.0000 0.3987 0.3963 0.4210
−0.3987 1.0000 0.3532 0.3311
−0.3963 0.3532 1.0000 0.6988
−0.4210 0.3311 0.6988 0.9999

 (37)

The results for the length of 12 points of the moving average filter are:
0.9999 −0.0235 −0.2615 −0.1486
−0.0235 0.9999 0.1758 0.2552
−0.2615 0.1758 1.0000 0.2785
−0.1486 0.2552 0.2785 0.9999

 (38)

The results for the length of 24 points of the moving average filter are:
1.0000 −0.2436 −0.4057 −0.2353
−0.2436 1.0000 0.2725 0.4084
−0.4057 0.2725 1.0000 0.5211
−0.2353 0.4084 0.5211 1.0000

 (39)

The closer the correlation is to 1, the higher the similarity, and the closer the correlation is to 0,
the lower the similarity. As various results for the correlation matrix are obtained by using different
moving average filter lengths, we implemented an algorithm for identifying the best solution (see below:
Algorithm 1 for optimum moving average filter length identification).

Algorithm 1 for optimum moving average filter length identification.

for kk from 3 to 52
data1_filtered=movemean(data1,kk)
data2_filtered=movemean(data2,kk)
A = [data1(1:length(min(data1, data2)))’
data2(1:length(min(data1, data2)))’];
% alternatively zero padding can be used that all vectors have the same length.
d = (A*A’)/(N − 1);
e = d/max(max(d));
zb(k) = sum(sum(dist(e-ones(size(e)))));

end;
find(zb == min(zb))

where N = length(min(data1, data2)).
Different results were obtained for different seasons (years). An optimum filter length was used

for corresponding data in further analysis.
Data are presented by years (in the first part of the research) and by seasons (in the second part

of the research). Half of the data were used to generate the equation and the other half to test the
prediction hypothesis.

All the calculations were performed in the Matlab application Curve fitting tool [26]. The variables
of interest were input as y-data.
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4. Results

The data obtained consist of 829-time samples that are not uniformly sampled. They are obtained
from a single ship (5 October 2008–28 August 2012), and refer to fuel consumption in 24 h. We used the
first 434 samples (two years) to obtain the fit function, while the remaining 395 samples (two years)
were used for the identification of the fitting function best suited to predict future fuel consumption.
Similar analysis was performed by seasons. The analysis was divided into two parts: analysis by years
known as the vertical analysis and horizontal analysis, where one year was divided into four seasons,
namely, summer, autumn, winter, and spring.

4.1. Analysis by Year

The correlation matrix for the first two years is:[
1.0000 0.9661
0.9661 0.9361

]
(40)

From (40), it can be seen that the correlation between the first, and the second year was 96.61%.
For four years, the smoothed data had the following correlation:

1.0000 0.9600 0.9595 0.8379
0.9600 0.9237 0.9231 0.8064
0.9595 0.9231 0.9235 0.8064
0.8379 0.8064 0.8064 0.7048

 (41)

As the lowest correlations were between the second and the fourth year, the third and the fourth,
and within the fourth year itself, there was obviously a fundamental occurrence in the 4th year, as can
be seen from (41). The results obtained suggest that denoised data are suitable for further research.

Table A1 indicates the coefficients obtained. As in the case of the fitting function called Rational
1/1 (16), the fit computation did not converge, Matlab stopped fitting, because the number of iterations
or function evaluations exceeded the specified maximum. The results for the other fitting functions are
presented in Table A2. Table A2 shows the results for years 1 and 2, where the fit was examined by
SSE, R-square, RMSE, and the adjusted R-square. The table is sorted by R-square (the best on the top).
Negative results denoted with “*” imply the invalidity of the model. It can be seen that the best fit
(other than the smoothing spline curves) was obtained by Fourier 8. Table A3 shows the results of the
prediction for various fitting functions. Table A3 is sorted by R-square in the prediction interval (the
best on the top). The measure of quality is the R-square coefficient. The best result after smoothing
splines was obtained by Gaussian 7.

Figures 2 and 3 show examples of the results. The dots are real samples, and the full lines are the
estimated curve. Since the data are obtained by non-uniform daily sampling, the x-axes are marked as
“indexed time” in all figures in the Results section. Hence, the numbers on the x-axes are not time units,
but the number of daily samples, which have no units. Figures 2a and 3a present the first two years,
denoised (y12m), and the fitted data (y_years12_ f it). Figures 2b and 3b show the same for years 3 and 4,
and Figures 2c and 3c the same for all data (four years).
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4.2. Analysis by Seasons

Optimal filter length for the available data set in the summer is 21. By using the result from the
algorithm, the correlation matrixes for summers 2 and 4 are:[

1.0000 0.8915
0.8915 0.7984

]
, (42)


1.0000 0.9007 0.9859 0.8006
0.9007 0.8132 0.8931 0.7200
0.9859 0.8931 0.9858 0.7863
0.8006 0.7200 0.7863 0.6419

. (43)

The obtained coefficients for the considered fitting functions are given in Table A4 (see Appendix A).
As the fit computation for the Gaussian 7 function did not converge, the fitting was discontinued since
the number of iterations or function evaluations exceeded the specified maximum.

The obtained measures of similarity with the fitting functions are given in Table A5, sorted by the
R-square (the best on the top row). In spite of the calculation problems, Gaussian 7 yielded the best fit
under the R-square criterion. Table A6 shows R-square results for the domain used to extrapolate the
fitting function parameters, predicted curve, and total range, sorted by the predicted R-square domain.
The Gaussian 7 fitting function could be observed to be the best fit in the prediction interval. Figures 4
and 5 show examples of the results for the summer.
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Figure 5. Smoothing spline for p = 0.9987: (a) summers 1–2, (b) summers 3–4, (c) summers 1–4.

After the summers, the analysis by season turned to autumns. The algorithm for the optimal
length of the moving average filter gave the length of 42 in case of autumn. The correlation matrix for
the first two autumns is: [

0.9734 0.9828
0.9828 1.0000

]
(44)

In case of all four autumns, the correlation matrix is:
0.9734 0.9828 0.9432 0.8338
0.9828 1.0000 0.9557 0.8436
0.9432 0.9557 0.9155 0.8088
0.8338 0.8436 0.8088 0.7147

 (45)

The obtained coefficients are given in Table A7 (see Appendix A). There was a problem with the
Gaussian 7 function, where the fit computation did not converge and Matlab stopped fitting because
the number of iterations or function evaluations exceeded the specified maximum.

Table A8 shows the results for level of fit. Data were sorted by the R-square parameter. The best
results (after the smoothing splines) were obtained by the Gaussian 8 and Fourier 7. Table A9 shows
R-square for autumns 1 and 2, autumns 3 and 4, and autumns 1–4. Data are sorted by prediction interval,
with the Gaussian 7 fitting function giving the best prediction (after the smoothing spline functions).

Figures 6 and 7 show examples of the results, with real data illustrated with dots, and fitted curves
with full lines. In this case, Gaussian 7 is chosen for Figure 6, and Rational 3/2 function for Figure 7.
Figure 6b,c and Figure 7b,c show discontinuities in the middle of the graph.
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Correlations for two winters are: [
1.0000 0.9513
0.9513 0.9049

]
(46)

and for all winters: 
1.0000 0.9513 0.9647 0.8458
0.9513 0.9049 0.9176 0.8045
0.9647 0.9176 0.9306 0.8160
0.8458 0.8045 0.8160 0.7157

 (47)

The obtained coefficients (for fitting functions) for winters 1 and 2 are given in Table A10
(see Appendix A). For the Gaussian 7 fitting function, the fit computation did not converge and the
fitting was halted. The results in the table are the last obtained in this case.

Table A11, sorted by the R-square parameter, shows quality measures for winters 1 and 2. The best
fit was obtained with Gaussian 7 (if the smoothing splines were excluded). Table A12, sorted by
the predicted domain, shows R-squares for winters 1–2, 3–4, and 1–4. Gaussian 7 is the best for the
prediction (when smoothing splines are excluded).

Figure 8 shows an example of the results in the case of the Gaussian 7 fitting function.
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In the case of the two springs, the optimal length for the moving average filter was 47. Correlations
for the two springs are: [

0.9780 0.9885
0.9885 1.0000

]
(48)
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and for four springs: 
0.8157 0.8332 0.9025 0.6972
0.8332 0.8515 0.9226 0.7113
0.9025 0.9226 1.0000 0.7700
0.6972 0.7113 0.7700 0.5974

 (49)

The results for two springs are given. The obtained coefficients for the fitting functions are
presented in Table A13 (see Appendix A).

The results for quality measures in case of springs 1 and 2 are shown in Table A14, which is sorted
by the best R-square. Better results are for rougher smoothing spline (p closer to 1), which is not
favorable. On the contrary, smoother splines are welcome and the achieved results are not as good.
Apart from the smoothing splines, the best result was obtained with Gaussian 7. Table A15, sorted by
the best fits in the prediction interval, shows the results for springs 1–2, 3–4, 1–4. Fourier 8 was shown
as the best for the prediction purposes in the case of springs.

Figures 9 and 10 show examples of the results for springs. Fourier 8 clearly exhibits discontinuity
around the middle of the dataset.
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5. Discussion and Conclusions

The paper presents a black-box approach to ship fuel consumption based on signal (daily fuel
consumption) analysis. The real data were analyzed. The fitting function should enable the easy
build in of the possible tools/software in the future, which is simple and requires low processor power.
This fitting function should reflect the coupling between data and sources. Due to nonlinearities,
various data were transformed to the same coordinates. This is important, because monthly, seasonally,
or yearly data do not have the same length. The explored approach should include aspects of
de-trending, coupling, nonlinearities, unreliable data, and different lengths of data within the same
time period. Finally, the fitting function would enable the prediction of fuel consumption and
differentiate it from the actual consumption. If an anomaly is detected, the company could investigate
whether the cause is the weather, fouling, or even fraud. During the research, it was assumed that fuel
consumption would grow linearly over time. Such dependence would make possible to use some
linear regression methods (e.g., [20,29]). However, the results did not show that consumption had
actually decreased, which could be associated with the following factors:

• non-uniform time sampling (leading to wrong curve angle between the interpolating points), and
• average (which depends on the route the ship was sailing at the time of data acquisition, and the

sailing hours on a specific day).

It was obvious from the results of the R-square and the adjusted R-square measures that the data
were not well conditioned for the correct analysis. Hence, different approaches were used. Firstly,
the data were preprocessed with filters, which resulted in better R-square and adjusted R-square
metrics. The next step was to use a bank of fitting functions to find the best match. Higher-order
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functions were observed to result in a better fit. The best functions to choose for the model were the
smoothing splines, but in the so-called rougher (not smoother) versions (parameter p closer to 1), as
rougher splines fit better sampling points, although they were not suitable for real-world applications.
Instead, the Gaussian, Fourier or rational functions were chosen for the prediction model. In this case,
the best fit of the predicted data (samples for 3rd and 4th year/season) was obtained by Gaussian,
Fourier, and rational functions that generally tend to be represented by the first-order polynomial.
Higher order functions tend to oscillate around the sampled data more tightly. That reduces the error,
and it could lead to the conclusion that such functions (i.e., Gaussian 7) could be used in any ship
by simply adjusting the function parameters, which is the advantage in our signal-based approach.
The result was obtained easily and fast, which is an advantage over methods that attempt to estimate
real fuel consumption by examining engine characteristics and parameters.

In the analysis, we explored comparisons between years, and comparisons between seasons.
The worst correlations were obtained between the second and the fourth year, the third and the fourth,
and within the fourth year itself, suggesting a relevant event of some sort in the fourth year. Likewise,
the correlation between summers, autumns, and winters was above 80%. On the other hand, springs
were less correlated, presumably due to the state of the ship’s hull after wintertime, and the great
oscillations in weather conditions that typically occur in springtime.

Finally, there were two contributions of this paper. The main contribution, as far as the authors are
aware, was that this was the first time that seasons (so called horizontal analysis) were considered for
prediction purposes. A minor contribution of the paper was the algorithm for identifying the optimum
moving average filter length.

The prediction formula takes into account environmental and biological influences, as well as
cargo mass, and all other possible fuel consumption factors. We strongly believe that it could be used
to detect potential frauds (fuel theft), which may be of interest to various authorities. Furthermore,
the proposed prediction model is simple and fast to use, and can be used to check deviations in fuel
consumption by comparing the predicted and deviated consumption. A deviation could be caused by
fraud or by environmental factors such as fouling.

There are additional differences between this paper and references. For example, the results
in [19] are obtained by excluding suspicious data in the preprocessing stage. We used all available
data to obtain our results. Most of the references used a deep learning approach with ANNs [19–23].
On the other hand, it was not necessary to use ANNs always. It was popular, but not necessary. Hence,
further research could include the identification of factors that cause unplanned fuel consumption and
modeling fuel consumption by artificial neural networks (ANN) and hybrid models of velocity and
fuel consumption.
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agreed to the published version of the manuscript.
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Appendix A

The obtained coefficients of the fitting functions are given in this Appendix. To simplify the tables,
several additional equations are used. The expression for Fourier 8 is:

f (x) = a0 + a1· cos(x·ω) + b1· sin(x·ω) + a2· cos(2x·ω) + b2· sin(2x·ω)+
+a3· cos(3x·ω) + b3· sin(3x·ω) + a4· cos(4x·ω) + b4· sin(4x·ω)+
+a5· cos(5x·ω) + b5· sin(5x·ω) + a6· cos(6x·ω) + b6· sin(6x·ω)+
+a7· cos(7x·ω) + b7· sin(7x·ω) + a8· cos(8x·ω) + b8· sin(8x·ω)

(A1)
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The expression for Gaussian 3 is:

f (x) = a1e−((x−b1)/c1)
2
+ a2e−((x−b2)/c2)

2
+ a3e−((x−b3)/c3)

2
(A2)

The expression for Gaussian 7 is:

f (x) = a1e−((x−b1)/c1)
2
+ a2e−((x−b2)/c2)

2
+ a3e−((x−b3)/c3)

2
+ a4e−((x−b4)/c4)

2
+

+a5e−((x−b5)/c5)
2
+ a6e−((x−b6)/c6)

2
+ a7e−((x−b7)/c7)

2 (A3)

If we take Table A1, the first row, for the fitting function described by (1), it was found that the
coefficients (with 95% confidence bounds) are: a = 0.01021 (−0.1528, 0.1732), b = 2.519·10−6 (confidence
bounds: 3.792·10−7, 4.658·10−6), c = 28.91 (28.74, 29.08) and the test function is therefore:

f (t) = 0.01021 ∗ (sin(t−π)) + 2.519·10−6
·(t− 10)2 + 28.91 (A4)

for the first two years. Variable t denotes samples, not physical time.
For the fitting exponential function described by (2), the coefficients are: a = 29.25 (bounds: 29.02,

29.48), b = −3.011·10−5 (95% confidence bounds: −6.18·10−5, 1.573·10−6):

f (t) = 29.25e−3.011·10−5
(A5)

For the fitting function in (3), the coefficients are: a = 30.39 (30.22, 30.57), b = −0.00035 (−0.0003961,
−0.0003039), c = 0.002414 (−0.0005264, 0.005354), d = 0.01832 (0.01554, 0.02109):

f (t) = 30.39e−0.00035t + 0.002414e−0.01832t (A6)

For Fourier 1 (12), the fitting function coefficients are: a0 = 6.872·107 (−1.162·1015, 1.162·1015), a1

= −6.872·107 (−1.162·1015, 1.162·1015), b1 = 2.12·104 (−1.792·1011, 1.7921011), ω = −1.377·10−6 (−11.64,
11.64). The final fitting function is:

f(t) = 6.872·107
−6.872·107 cos(t·ω) + 2.12·104 sin(t·ω) (A7)

The detailed results on the coefficients and fitting are presented in the appendix. Tables A2, A3,
A5, A6, A8, A9, A11, A12, A14 and A15 present the results of the fitting, and Tables A1, A4, A7, A10
and A13 results for the obtained coefficients.



J. Mar. Sci. Eng. 2020, 8, 625 19 of 30

Table A1. Obtained coefficients for the considered functions (year 1–2 interval), values in brackets are
confidence bounds for 95%.

Linear fitting (1) a = 0.01021 (−0.1528, 0.1732), b = 2.519·10−6 (3.792·10−7, 4.658·10−6), c = 28.91 (28.74, 29.08)

Exponential of 1st order (2) a = 29.25 (29.02, 29.48), b = −3.011·10−5 (−6.18·10−5, 1.573·10−6)

Exponential of 2nd order (3) a = 30.39 (30.22, 30.57), b = −0.00035 (−0.0003961, −0.0003039), c = 0.002414 (−0.0005264,
0.005354), d = 0.01832 (0.01554, 0.02109)

Fourier 1 (5) a0 = 6.872·107 (−1.162·1015, 1.162·1015), a1 = −6.872·107 (−1.162·1015, 1.162·1015), b1 = 2.12·104

(−1.792·1011, 1.792·1011), ω = −1.377·10−6 (−11.64, 11.64)

Fourier 2 (6)
a0 = 4.758·109 (−2.346·1014, 2.346·1014), a1 = −6.344e+09 (−3.128·1014, 3.127·1014),
b1 = −5.466·107 (−2.021·1012, 2.021·1012), a2 = 1.586·109 (−7.818·1013, 7.818·1013),
b2 = 2.733·107 (−1.011·1012, 1.011·1012), ω = 4.293·10−5 (−0.529, 0.5291)

Fourier 8 (7)

a0 = −8.62·106 (−5.631·107, 3.907·107), a1 = 6.305·106 (−3.368·107, 4.629·107),
b1 = 1.433·107 (−6.25·107, 9.116·107), a2 = 7.899·106 (−2.917·107, 4.497·107),
b2 = −8.618·106 (−6.156·107, 4.432·107), a3 = −6.728·106 (−4.564·107, 3.218·107),
b3 = −2.288·106 (−7.388·106, 2.812·106), a4 = 2.967·105 (−6.255·106, 6.848·106),
b4 = 3.439·106 (−1.443·107, 2.131·107), a5 = 1.139·106 (−3.655·106, 5.932·106),
b5 = −6.212·105 (−5.908·106, 4.665·106), a6 = −2.82·105 (−2.176·106, 1.612·106),
b6 = −2.183·105 (−7.059·105, 2.694·105), a7 = −1.572·104 (−9.789·104, 6.645·104),
b7 = 6.237·104 (−2.793·105, 4.041·105), a8 = 5689 (−1.772·104, 2.909·104),
b8 = −940.6 (−2.177·104, 1.988·104), ω = 0.00524 (0.003601, 0.006878)

Gaussian 1 (9) a1 = 3.427·1014 (−3.9·1020, 3.9·1020), b1 = −2.005·106 (−7.582·1010, 7.581·1010),
c1 = 3.655·105 (−6.909·109, 6.91·109)

Gaussian 2 (10)
a1 = 2.511·1013 (−7.073·1016, 7.078·1016), b1 = 5051 (−4.541·105, 4.642·105),
c1 = 861.5 (−4.259·104, 4.431·104), a2 = 31.26 (23, 39.52), b2 = −239 (−1875, 1397), c2 = 1316
(−3279, 5910)

Gaussian 3 (A2)
a1 = 4.832·1013 (−2.725·1017, 2.726·1017), b1 = 6316 (−1.167·106, 1.18·106),
c1 = 1096 (−1.102·105, 1.124·105), a2 = 4.068 (0.9324, 7.204), b2 = 1.883 (−16.1, 19.86), c2 = 43.76
(23.13, 64.38), a3 = 28.29 (9.087, 47.5), b3 = 104 (−323, 531.1), c3 = 473.6 (−422.7, 1370)

Gaussian 7 (A3)

a1 = 67.24 (−1483, 1617), b1 = 1033 (−1.778·104, 1.985·104), c1 = 705.8 (−1.017·104, 1.159·104),
a2 = 23.55 (−64.26, 111.4), b2 = −9.979 (−35.28, 15.32), c2 = 138.8 (−90.6, 368.3), a3 = 10.09
(−10.02, 30.2), b3 = 171.9 (140.2, 203.6), c3 = 58.59 (9.888, 107.3),
a4 = −7.617 (−2314, 2298), b4 = 284.8 (−70.82, 640.5), c4 = 43.15 (−808.4, 894.7),
a5 = 2.474 (−0.5536, 5.502), b5 = 100.5 (93.52, 107.4), c5 = 29.94 (17.49, 42.39), a6 = 1.201
(−19.26, 21.66), b6 = 349.6 (252.2, 447), c6 = 30.59 (−61.28, 122.5),
a7 = 14.42 (−2241, 2269), b7 = 277.2 (−838.6, 1393), c7 = 48.2 (−165.1, 261.5)

Polynomial 1 (11) p1 = −0.0008497 (−0.001771, 7.112·10−5), p2 = 29.25 (29.01, 29.48)

Polynomial 2 (12) p1 = 6.516·10−5 (5.972·10−5, 7.061·10−5), p2 = −0.0292 (−0.03164, −0.02675), p3 = 31.31
(31.07, 31.54)

Polynomial 3 (13) p1 = 1.807·10−7 (1.343·10−7, 2.272·10−7), p2 = −5.277·10−5 (−8.352·10−5, −2.202·10−5),
p3 = −0.008652 (−0.01441, −0.002893), p4 = 30.56 (30.27, 30.85)

Power 1 (14) a = 31.41 (30.8, 32.01), b = −0.01529 (−0.01903, −0.01156)

Power 2 (15) a= 5.338 (4.078, 6.597), b = −0.3466 (−0.5568, −0.1364), c = 28.08 (27.17, 28.98)

Rational 1/1 (16) p1 = 26.56 (25.81, 27.31), p2 = −14.02 (−19.49, −8.555), q1 = −2.457 (−2.51, −2.404)

Rational 2/1 (17) p1 = −0.0007214 (−0.001646, 0.0002029), p2 = 29.21 (28.97, 29.44),
p3 = −80.3 (−95.63, −64.96), q1 = −2.77 (−3.257, −2.283)

Rational 3/1 (18) p1 = 6.501·10−5 (5.95·10−5, 7.051·10−5), p2 = −0.02954 (−0.03205, −0.02703), p3 = 31.49 (31.24,
31.73), p4 = −208.4 (−255.8, −161.1), q1 = −6.665 (−8.17, −5.161)

Rational 3/2 (19) p1 = −0.0006458 (−0.001574, 0.0002824), p2 = 29.19 (28.94, 29.43), p3 = −279.9 (−305.2,
−254.6), p4 = 645.2 (522.9, 767.4), q1 = −9.623 (−10.42, −8.825), q2 = 22.25 (18.36, 26.14)

Rational 5/3 (20)

p1 = 6.325·10−5 (5.593·10−5, 7.057·10−5), p2 = −0.02889 (−0.03347, −0.02431), p3 = 31.51 (30.55,
32.47), p4 = −371.8 (−993.9, 250.3), p5 = 1140 (−5307, 7586),
p6 = 184.8 (−1.71·104, 1.747·104), q1 = −11.96 (−31.33, 7.415), q2 = 37.02 (−166.3, 240.4),
q3 = 5.183 (−543.4, 553.8)
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Table A2. Quality measures for the considered functions (year 1–2 interval).

Fitness Function SSE R-Square RMSE Adjusted R-Square

Smoothing spline, p = 0.99876718875 0.0003582 1 0.006983 1
p = 0.9 0.1907 0.9997 0.03309 0.9993

p = 0.309432 0.9227 0.9986 0.05477 0.998
Fourier 8 39.79 0.9389 0.3093 0.9364

Gaussian 7 44.33 0.9319 0.3276 0.9286
Gaussian 3 152.1 0.7663 0.5983 0.7619
Fourier 2 159.1 0.7556 0.6097 0.7527

Exponential of 2nd order 205.2 0.6848 0.6907 0.6826
Gaussian 2 217.1 0.6665 0.7121 0.6626

Polynomial 3 248.9 0.6176 0.7608 0.6149
Rational 5/3 281.3 0.5679 0.8135 0.5598
Rational 3/1 282.4 0.5661 0.8113 0.5621

Fourier 1 282.7 0.5656 0.8109 0.5626
Polynomial 2 282.7 0.5656 0.8099 0.5636

Power 2 549.4 0.1559 1.129 0.152
Power 1 569.2 0.1255 1.148 0.1235

Rational 3/2 634 0.02602 1.217 0.01464
Rational 2/1 638.2 0.01947 1.218 0.01263

Linear fitting 642.9 0.01231 1.221 0.007731
Exponential of 1st order 645.8 0.007776 1.223 0.005479

Gaussian 1 645.8 0.007772 1.224 0.003168
Polynomial 1 646 0.007557 1.223 0.00526
Rational 1/1 2.66 × 104 −39.87 * 7.856 −40.06 *

* model results are not well conditioned by Matlab because the model is not good for this data.

Table A3. R-square for the domain used to fit, prediction interval, and total range.

Fitness Function Fit-Domain
(Samples 1–434)

Prediction Interval
(Samples 435–829)

Total Range
(Samples 1–829) Comment

Smoothing spline, p = 0.99876718875 1 1 1 The best fit
p = 0.9 0.9997 0.9987 0.9919 Near the best fit

p = 0.309432 0.9986 0.9955 0.9501 Near the best fit

Gaussian 7 0.9319 0.9599 0.6899 The best fit if smoothing splines
are not taken into account

Fourier 8 0.9389 0.934 0.7713
Gaussian 3 0.7663 0.7583 0.5583
Rational 5/3 0.56 0.6949 0.5008
Rational 3/2 0.5656 0.6666 −3.154 * Not good for calculations

Fourier 2 0.7556 0.6513 0.6933
Gaussian 2 0.6665 0.6462 0.504

Polynomial 3 0.6176 0.6247 0.4774
Fourier 1 0.5656 0.6236 0.5708

Exponential 2 0.6848 0.5763 0.5848
Power 2 0.1559 0.5335 0.4715

Gaussian 1 0.007772 0.5297 0.5667
Rational 3/1 0.5659 0.529 0.4613
Rational 2/1 0.01768 0.5283 0.5817 Too low

Polynomial 2 0.5656 0.5282 0.4597
Polynomial 1 0.007557 0.5272 0.3788 Too low for column1
Exponential 1 0.007776 0.5256 0.486 Too low for column1
Linear fitting 0.01231 0.5023 0.5635 Too low for column1

Power 1 0.1255 0.3073 0.1848
Rational 1/1 0.008808 0.003205 0.1977 Too low

* Matlab warning: A negative R-square is possible if the model does not contain a constant term, and the fit is poor
(worse than just fitting the mean). Try changing the model or using a different start point.
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Table A4. Obtained coefficients for the considered functions (summers 1–2 interval), values in brackets
are confidence bounds for 95%.

Linear fitting (1) a = 0.01683 (−0.4147, 0.4484), b = −0.000439 (−0.0005423, −0.0003357),
c = 30.13 (29.7, 30.57)

Exponential of 1st order (2) a = 31.25 (30.63, 31.87), b = −0.001501 (−0.001827, −0.001175)

Exponential of 2nd order (3) a = 31.57 (30.81, 32.33), b = −0.00183 (−0.002467, −0.001192),
c = 7.661·10−5 (−0.001465, 0.001618), d = 0.09373 (−0.09131, 0.2788)

Fourier 1 (5) a0 = 28.8 (28.6, 29.01), a1 = 0.09534 (−0.4701, 0.6608), b1 = 2.519 (2.217, 2.821),
ω = 0.05844 (0.05501, 0.06188)

Fourier 2 (6) a0 = 28.82 (28.67, 28.96), a1 = 0.1301 (−0.1963, 0.4566), b1 = 2.519 (2.301, 2.736), a2 = −1.042
(−1.245, −0.8392), b2 = 0.02157 (−0.2299, 0.273), ω = 0.05837 (0.05573, 0.061)

Fourier 8 (7)

a0 = −1.122·1012 (−7.808·1013, 7.584·1013), a1 = 1.699·1012 (−1.173·1014, 1.207·1014),
b1 = 1.061·1012 (−6.774·1013, 6.986·1013), a2 = −6.233·1011 (−4.929·1013, 4.805·1013),
b2 = −1.278·1012 (−8.583·1013, 8.327·1013), a3 = −8.302·1010 (−1.999·1011, 3.384·1010),
b3 = 7.891·1011 (−5.367·1013, 5.525·1013), a4 = 2.104·1011 (−1.157·1013, 1.199·1013),
b4 = −2.69·1011 (−2.053·1013, 1.999·1013), a5 = −1.03·1011 (−6.63·1012, 6.424·1012),
b5 = 3.73·1010 (−3.696·1012, 3.771·1012), a6 = 2.414·1010 (−1.672·1012, 1.72·1012), b6 = 5.209·109

(−4.283·109, 1.47·1010), a7 = −2.504·109 (−2.098·1011, 2.047·1011),
b7 = −2.443·109 (−1.241·1011, 1.192·1011), a8 = 5.484·107 (−7.873·109, 7.982·109), b8 = 2.28·108

(−1.38·1010, 1.426·1010), ω = 0.009698 (−0.03157, 0.05097)

Gaussian 1 (9) a1 = 34.57 (12.13, 57), b1 = −183.4 (−1057, 689.9), c1 = 561.6 (−470.3, 1594)

Gaussian 2 (10) a1 = 26.05 (15.26, 36.83), b1 = 14.46 (8.582, 20.34), c1 = 44.1 (35.12, 53.08), a2 = 27.11 (25.91,
28.31), b2 = 103.9 (98.54, 109.3), c2 = 70.06 (27.97, 112.2)

Gaussian 3 (A2)
a1 = 5.155 (4.873, 5.437), b1 = 26.16 (25.76, 26.57), c1 = 9.728 (9.011, 10.44),
a2 = −1.671 (−1.947, −1.396), b2 = 72.03 (70.63, 73.44), c2 = 12.67 (9.922, 15.43), a3 = 28.78
(28.59, 28.98), b3 = 14.29 (−15.42, 44), c3 = 410.3 (269.1, 551.6)

Gaussian 7 (A3)

a1 = 4.437 (3.671, 5.202), b1 = 26.49 (25.87, 27.11), c1 = 8.597 (7.324, 9.869), a2 = 29.6 (28.86,
30.34), b2 = 22.63 (13.09, 32.18), c2 = 107 (68.95, 145.1), a3 = 0.4699 (−0.03077, 0.9705),
b3 = 42.14 (40.67, 43.6), c3 = 1.975 (−0.6027, 4.552), a4 = 1.863 (0.6962, 3.029), b4 = 55.07 (54.4,
55.75), c4 = 3.957 (2.218, 5.697), a5 = 12.85 (−13.58, 39.29),
b5 = 119 (62.36, 175.7), c5 = 29.6 (−249.7, 308.9), a6 = 2.819 (−70.61, 76.25), b6 = 85.94 (23.4,
148.5), c6 = 17.51 (−73.16, 108.2), a7 = 0.6927 (−0.2962, 1.682), b7 = 65.57 (63.04, 68.1), c7 =
4.351 (0.2728, 8.43)

Polynomial 1 (11) p1 = −0.04331 (−0.05269, −0.03393), p2 = 31.19 (30.6, 31.78)

Polynomial 2 (12) p1 = −7.924·10−6 (−0.0003428, 0.000327), p2 = −0.04244 (−0.08046, −0.004409), p3 = 31.17
(30.27, 32.08)

Polynomial 3 (13) p1 = 4.488·10−5 (3.633·10−5, 5.342·10−5), p2 = −0.007412 (−0.008842, −0.005983), p3 = 0.2848
(0.217, 0.3527), p4 = 28.11 (27.24, 28.97)

Power 1 (14) a = 32.62 (31.08, 34.16), b = −0.03351 (−0.04599, −0.02103)

Power 2 (15) a = −0.0117 (−0.05463, 0.03122), b = 1.274 (0.5054, 2.042), c = 30.86 (29.9, 31.81)

Rational 1/1 (16) p1 = 28.8 (28.39, 29.2), p2 = −45.01 (−143.4, 53.39), q1 = −1.57 (−4.969, 1.828)

Rational 2/1 (17) p1 = −0.04398 (−0.05356, −0.0344), p2 = 31.59 (30.91, 32.27),
p3 = −257.8 (−277.1, −238.4), q1 = −8.275 (−8.957, −7.593)

Rational 3/1 (18) p1 = 4.597e−05 (−0.0002944, 0.0003864), p2 = −0.04994 (−0.08985, −0.01003), p3 = 31.54 (30.5,
32.58), p4 = −91.31 (−111.2, −71.39), q1 = −2.9 (−3.59, −2.21)

Rational 3/2 (19) p1 = −0.04523 (−0.05495, −0.03552), p2 = 31.92 (31.18, 32.66), p3 = −416.9 (−443.9, −390),
p4 = 1157 (972.2, 1342), q1 = −13.28 (−14.23, −12.32), q2 = 37.01 (30.4, 43.63)

Rational 5/3 (20)

p1 = 0.0004295 (0.0002086, 0.0006504), p2 = −0.08024 (−0.1215, −0.03895), p3 = 31.99 (29.48,
34.49), p4 = −1545 (−1626, −1465), p5 = 2.44·104 (2.175·104, 2.704·104),
p6 = −4.617·104 (−6.472·104, −2.762·104), q1 = −52.8 (−55.81, −49.79), q2 = 841.7 (747.9, 935.5),
q3 = −1592 (−2210, −973.6)
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Table A5. Quality measures for the considered functions (summers 1 and 2).

Fitness Function SSE R-Square RMSE Adjusted R-Square

Smoothing spline, p = 0.99876718875 0.0008646 1 0.02183 0.9999
Smoothing spline, p = 0.9 0.4474 0.999 0.1018 0.9976

p = 0.309432 1.994 0.9957 0.1614 0.9939
Gaussian 7 5.886 0.9872 0.2586 0.9843
Fourier 8 7.823 0.983 0.2932 0.9799

Gaussian 3 11.01 0.9761 0.3319 0.9742
Rational 5/3 19.51 0.9577 0.4418 0.9543

Fourier 2 59.3 0.8713 0.7588 0.8651
Gaussian 2 64.52 0.86 0.7915 0.8532
Fourier 1 119.1 0.7415 1.065 0.7341

Polynomial 3 127.1 0.7241 1.1 0.7163
Rational 3/2 245.1 0.4683 1.542 0.4425

Exponential of 2nd order 246.9 0.4642 1.533 0.4489
Rational 2/1 251.7 0.4538 1.548 0.4382
Rational 3/1 251.9 0.4533 1.556 0.4323

Power 2 254.9 0.447 1.551 0.4365
Gaussian 1 258 0.4402 1.56 0.4297

Polynomial 1 258.5 0.4392 1.554 0.4339
Polynomial 2 258.5 0.4392 1.561 0.4286

Exponential of 1st order 258.7 0.4387 1.555 0.4334
Linear fitting 275.9 0.4014 1.613 0.3901

Power 1 363.9 0.2103 1.844 0.2029
Rational 1/1 460.4 0.0009077 2.084 −0.01794

Table A6. R-square for the domain used to fit, prediction interval, and total range in case of summers.

Fitness Function Fit-Domain
(Summers 1 and 2)

Prediction Interval
(Summers 3 and 4)

Total Range (all
4 Summers) Comment

Smoothing spline p = 0.9987671 1 1 0.9995 The best fit
Smoothing spline p = 0.9 0.999 0.9978 0.996 Near best fit

Gaussian 7 0.9872 0.9931 0.9267 Best results when smoothing splines are excluded
Smoothing spline p = 0.3094 0.9957 0.9922 0.9858 Near best fit

Fourier 8 0.983 0.9873 0.9442 Best results when smoothing splines are excluded
Gaussian 3 0.9761 0.9555 0.8218
Fourier 2 0.8713 0.9418 0.8169

Exponential of 2nd order 0.4642 0.8828 0.5431
Gaussian 2 0.86 0.8828 0.7003
Rational 2/1 0.4516 0.8823 0.5421

Polynomial 3 0.7241 0.8804 0.5431
Rational 5/3 0.7961 0.8794 −4.337 **
Rational 3/1 0.4539 0.8785 0.5471

Fourier 1 0.7415 0.8784 0.5373
Polynomial 2 0.4392 0.8784 0.5431
Rational 1/1 0.0009076 0.8244 0.004622

Power 1 0.2103 0.7884 0.3223
Power 2 0.447 0.7884 0.5442

Exponential of 1st order 0.4387 0.5604 0.5334
Rational 3/2 0.5441 0.5583 0.5466

Polynomial 1 0.4392 0.5289 0.5376
Linear fitting 0.4014 0.2454 0.5263
Gaussian 1 0.4402 N/A * 0.543

* Infinity computed by the model function; fitting cannot continue. ** Results are not reliable due to data being not
suitable for the function.
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Table A7. Obtained coefficients for the considered functions (autumns 1–2 interval), values in brackets
are confidence bounds for 95%.

Linear fitting (1) a = −0.04539 (−0.3596, 0.2688), b = 0.0002863 (0.000223, 0.0003495), c = 28.74 (28.42, 29.06)

Exponential of 1st order (2) a = 28.59 (28.07, 29.1), b = 0.0006785 (0.0004205, 0.0009364)

Exponential of 2nd order (3) a = 20.28 (13.76, 26.8), b = −0.01133 (−0.01737, −0.005289), c = 11.39 (4.565, 18.22), and d = 0.007709
(0.004173, 0.01125)

Fourier 1 (5) a0 = 30.23 (29.9, 30.56), a1 = 1.47 (1.117, 1.824), b1 = −1.839 (−2.402, −1.276), ω = 0.04373
(0.03873, 0.04873)

Fourier 2 (6) a0 = 30.1 (29.93, 30.27), a1 = 1.146 (0.4727, 1.819), b1 = −1.75 (−2.099, −1.401), a2 = −0.4874 (−0.729,
−0.2458), b2 = 0.3735 (−0.194, 0.9409), ω = 0.04314 (0.03784, 0.04844)

Fourier 8 (7)

a0 = 29.82 (29.8, 29.84), a1 = 1.851 (1.794, 1.907), b1 = −0.9324 (−1.015, −0.8492), a2 = −0.3776 (−0.4395,
−0.3156), b2 = −0.3376 (−0.3814, −0.2937), a3 = 0.1491 (0.07512, 0.2231), b3 = −0.4124 (−0.4374, −0.3874),
a4 = −0.04963 (−0.1024, 0.003145), b4 = −0.07979 (−0.1323, −0.02726), a5 = −0.2298 (−0.2614, −0.1982),
b5 = 0.1685 (0.101, 0.236), a6 = −0.01184 (−0.06022, 0.03655), b6 = −0.1228 (−0.1505, −0.09501),
a7 = −0.1947 (−0.2209, −0.1685), b7 = −0.005933 (−0.09148, 0.07961), a8 = −0.07079 (−0.1274, −0.0142),
b8 = 0.09574 (0.05283, 0.1386), ω = 0.05152 (0.05085, 0.05219)

Gaussian 1 (9) a1 = 4.026·1096 (−1.429·10103, 1.429·10103), b1 = 6.461·105 (−1.047·1010, 1.047·1010), c1 = 4.365·104

(−3.536·108, 3.536·108)

Gaussian 2 (10) a1 = 25.59 (17.38, 33.79), b1 = 123.3 (120.4, 126.3), c1 = 55.5 (43.33, 67.67), a2 = 30.31 (29.55, 31.07),
b2 = 1.598 (−2.844, 6.039), c2 = 95.27 (56.39, 134.1)

Gaussian 3 (A2)
a1 = 32.85 (32.26, 33.43), b1 = 130 (116.7, 143.3), c1 = 155 (126, 184), a2 = 12.88 (10.6, 15.15), b2 = −1.083
(−3.304, 1.138), c2 = 17.47 (11.68, 23.26), a3 = 7.65 (4.925, 10.38), b3 = 27.5 (21.28, 33.73), c3 = 20.62
(15.55, 25.69)

Gaussian 7 (A3)

a1 = 32.69 (30.32, 35.06), b1 = 112.7 (108.1, 117.4), c1 = 27.42 (18.18, 36.67), a2 = 30.76 (29.99, 31.53),
b2 = 3.096 (−2.256, 8.448), c2 = 45.15 (8.354, 81.94), a3 = 10.8 (−35.29, 56.89), b3 = 82.33 (80.03, 84.63),
c3 = 11.69 (2.008, 21.37), a4 = 1.048 (−92.15, 94.25), b4 = 26.08 (−82.89, 135.1), c4 = 11.07 (−89.58, 111.7),
a5 = 20.26 (−1.597, 42.11), b5 = 63.03 (56, 70.06), c5 = 20.46 (−48.7, 89.62), a6 = 7.41 (−95.68, 110.5),
b6 = 37.05 (−22.28, 96.38), c6 = 14.19 (−81.59, 110), a7 = 4.07 (1.256, 6.884), b7 = 95.85 (94.26, 97.43),
c7 = 7.985 (6.273, 9.697)

Polynomial 1 (11) p1 = 0.01943 (0.01172, 0.02714), p2 = 28.62 (28.09, 29.15)

Polynomial 2 (12) p1 = 0.001234 (0.001121, 0.001347), p2 = −0.1274 (−0.1412, −0.1136), p3 = 31.56 (31.2, 31.91)

Polynomial 3 (13) p1 = −1.947·10−6 (−5.712·10−6, 1.818·10−6), p2 = 0.001581 (0.0009001, 0.002263),
p3 = −0.144 (−0.179, −0.109), p4 = 31.72 (31.24, 32.21)

Power 1 (14) a = 29.11 (27.92, 30.3), b = 0.005937 (−0.004536, 0.01641)

Power 2 (15) a = 1.284·10−10 (−9.654·10−10, 1.222·10−10), b = 5.096 (3.291, 6.901), c = 28.99 (28.72, 29.27)

Rational 1/1 (16) p1 = 29.69 (29.3, 30.08), p2 = 17.66 (−236.1, 271.4), q1 = 0.5237 (−7.731, 8.778)

Rational 2/1 (17) p1 = 1.366 (−3.127, 5.859), p2 = −110.5 (−574.6, 353.7), p3 = 3.269·104 (−8.198·104, 1.474·105), q1 = 1033
(−2601, 4666)

Rational 3/1 (18) p1 = 0.001356 (0.001122, 0.001589), p2 = −0.142 (−0.166, −0.1181), p3 = 31.82 (30.7, 32.94), p4 = 111.7
(−392.1, 615.4), q1 = 3.678 (−12.62, 19.98)

Rational 3/2 (19) p1 = 0.01698 (0.004851, 0.02911), p2 = 29.55 (27.51, 31.58), p3 = −3671 (95% confidence bounds: −4079,
−3263), p4 = 1.327·105 (1.116·105, 1.539·105), q1 = −118.8 (−129.5, −108.1), q2 = 4350 (3678, 5021)

Rational 5/3 (20)
p1 = 0.00135 (0.001112, 0.001588), p2 = −0.1589 (−0.1877, −0.1301), p3 = 33.7 (31.57, 35.84), p4 = −317.1
(−1029, 394.7), p5 = 38.35 (−6943, 7020), p6 = 3728 (−1.678e+04, 2.424e+04), q1 = −9.637 (−32.02, 12.74),
q2 = −0.6917 (−224.9, 223.5), q3 = 123 (−541, 786.9)
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Table A8. Quality measures for the considered functions (autumns 1 and 2).

Fitness Function SSE R-Square RMSE Adjusted R-Square

Smoothing spline, p = 0.99876718875 0.0001338 1 0.008246 1
p = 0.9 0.07389 0.9997 0.03972 0.9994

p = 0.309432 0.4007 0.9986 0.0695 0.9981
Fourier 8 0.9464 0.9968 0.09728 0.9962

Gaussian 7 0.9249 0.9968 0.09765 0.9962
Gaussian 3 9.53 0.9674 0.2957 0.965
Rational 3/2 14.8 0.9494 0.3635 0.9471

Fourier 2 17.1 0.9415 0.3907 0.9389
Gaussian 2 19.35 0.9338 0.4157 0.9308
Fourier 1 32.92 0.8874 0.5374 0.8844

Rational 5/3 45.34 0.8449 0.6449 0.8335
Rational 3/1 45.43 0.8446 0.6341 0.8391

Polynomial 3 46.8 0.8399 0.6407 0.8357
Rational 2/1 46.98 0.8393 0.6419 0.8351

Polynomial 2 47.23 0.8384 0.6409 0.8356
Exponential of 2nd order 47.87 0.8362 0.648 0.8319

Power 2 126.3 0.5678 1.048 0.5603
Linear fitting 172.1 0.4114 1.223 0.4011

Exponential of 1st order 238.6 0.1838 1.434 0.1767
Gaussian 1 238.6 0.1838 1.44 0.1696

Polynomial 1 240.7 0.1767 1.44 0.1696
Rational 1/1 289.1 0.01099 1.586 −0.00621

Power 1 289.3 0.01042 1.579 0.001884

Table A9. R-square for domain used to fit, prediction interval, and total range (autumns).

Fitness Function Fit-Domain
(Autumns 1 and 2)

Prediction Interval
(Autumns 3 and 4)

Total Range (all
4 Autumns) Comment

Smoothing spline, p = 0.99876718875 1 1 1 The best fit
p = 0.9 0.9997 0.9971 0.9984

p = 0.309432 0.9986 0.9897 0.9942

Gaussian 7 0.9968 0.9859 0.9742 Best choice when smoothing
splices are excluded.

Rational 3/2 0.9494 0.9741 0.6388

Fourier 8 0.9968 0.9733 0.9494 Near best choice when
smoothing splices are excluded.

Gaussian 3 0.9674 0.9484 0.8847
Rational 5/3 0.8449 0.8914 0.6214

Fourier 2 0.9415 0.8814 0.791
Gaussian 2 0.9338 0.8795 0.7352
Fourier 1 0.8874 0.8713 0.6388

Polynomial 3 0.8399 0.865 0.6507
Exponential of 2nd order 0.8362 0.8287 −4.861 * * Matlab warning

Power 2 0.5678 0.7995 0.6424
Gaussian 1 0.1838 0.7959 0.6381
Rational 3/1 0.8446 0.7953 0.6968

Polynomial 2 0.8384 0.7931 0.6388
Rational 2/1 0.8393 0.7909 0.4735

Polynomial 1 0.1767 0.7858 0.473
Exponential of 1st order 0.1838 0.7812 0.4593

Linear fitting 0.4114 0.7609 0.5964
Power 1 0.01042 0.4893 0.2602

Rational 1/1 0.01099 0.02938 0.4729
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Table A10. Obtained coefficients for the considered functions (winters 1–2 interval), values in brackets
are confidence bounds for 95%.

Linear fitting (1) a = −0.02188 (−0.2189, 0.1752), b = 6.907·10−5 (1.449·10−5, 0.0001237), c = 28.12 (27.92, 28.32)

Exponential of 1st order (2) a = 28.31 (bounds: 28.02, 28.6), and b = −6.32·10−6 (−0.0001787, 0.0001661)

Exponential of 2nd order (3) a = 28.79 (27.71, 29.87), b = −0.00243 (−0.003808, −0.001053), c = 0.6529 (−0.5924, 1.898),
d = 0.02388 (0.01006, 0.0377)

Fourier 1 (5) a0 = 28.16 (28.09, 28.23), a1 = 0.5406 (0.3579, 0.7233), b1 = 0.7318 (0.5792, 0.8843), ω = 0.07365
(0.06925, 0.07804)

Fourier 2 (6) a0 = 28.44 (28.31, 28.56), a1 = 0.8091 (0.4632, 1.155), b1 = −0.3872 (−0.8644, 0.09007), a2 = −0.3317
(−0.4104, −0.2531), b2 = 0.1166 (−0.3926, 0.6258), ω = 0.05057 (0.04012, 0.06102)

Fourier 8 (7)

a0 = 28.4 (28.31, 28.49), a1 = 0.9113 (0.755, 1.068), b1 = −0.2112 (−0.4711, 0.04881), a2 = −0.2993
(−0.4587, −0.1399), b2 = −0.06535 (−0.2176, 0.08691), a3 = −0.04238 (−0.1884, 0.1037),
b3 = −0.1498 (−0.2659, −0.03362), a4 = 0.09473 (−0.03816, 0.2276),
b4 = −0.01995 (−0.1303, 0.09044), a5 = −0.1726 (−0.2623, −0.0828), b5 = 0.1299 (−0.1434, 0.4033),
a6 = −0.02845 (−0.09781, 0.04091), b6 = 0.0155 (−0.07253, 0.1035), a7 = 0.07436 (−0.0176, 0.1663),
b7 = −0.004225 (−0.09292, 0.08447), a8 = −0.06261 (−0.2146, 0.08941), b8 = 0.1033 (−0.0578,
0.2644), ω = 0.05442 (0.05006, 0.05879)

Gaussian 1 (9) a1 = 28.35 (−60.17, 116.9), b1 = −637.7 (−1.061·106, 1.06·106), c1 = 1.529·104 (−1.175·107, 1.178·107)

Gaussian 2 (10) a1 = 19.57 (7.279, 31.86), b1 = 116.5 (110.4, 122.6), c1 = 51.55 (32.7, 70.41), a2 = 28.71 (27.94, 29.48),
b2 = 7.058 (0.8335, 13.28), c2 = 97.94 (51.13, 144.8)

Gaussian 3 (A2)
a1 = 29.18 (26.94, 31.43), b1 = 113 (106.9, 119.2), c1 = 102.8 (15.34, 190.2), a2 = 21.12 (3.491, 38.75),
b2 = −13.39 (−19.73, −7.037), c2 = 61.1 (34.01, 88.18), a3 = 1.117 (0.893, 1.34), b3 = 31.73 (30.94,
32.53), c3 = 5.535 (4.146, 6.924)

Gaussian 7 (A3)

a1 = 29.83 (28.1, 31.57), b1 = 117.1 (64.29, 170), c1 = 140.8 (−85.14, 366.8), a2 = 14.57 (−13.05, 42.2),
b2 = −9.303 (−34.14, 15.53), c2 = 44.71 (−6.636, 96.06), a3 = 1.096 (0.7929, 1.4), b3 = 34.79 (34.52,
35.07), c3 = 1.847 (1.272, 2.422), a4 = 0.5781 (−0.6638, 1.82), b4 = 46.14 (42.81, 49.47), c4 = 6.095
(0.2361, 11.95), a5 = 1.61 (−0.7591, 3.98), b5 = 29.99 (26.84, 33.14), c5 = 9.895 (3.158, 16.63),
a6 = 0.8952 (−1.199, 2.99), b6 = 56.75 (46.22, 67.27), c6 = 11.02 (−5.995, 28.03), a7 = 0.6716 (0.3439,
0.9993), b7 = 79 (78.26, 79.75), c7 = 4.245 (2.401, 6.089)

Polynomial 1 (11) p1 = −0.0001754 (−0.005053, 0.004702), p2 = 28.31 (28.02, 28.6)

Polynomial 2 (12) p1 = 0.0007765 (0.0006731, 0.0008799), p2 = −0.08015 (−0.09115, −0.06916), p3 = 29.69
(29.45, 29.94)

Polynomial 3 (13) p1 = 8.683e−06 (5.058e−06, 1.231e−05), p2 = −0.000565 (−0.001133, 2.833e−06),
p3 = −0.02461 (−0.04985, 0.0006242), p4 = 29.2 (28.9, 29.51)

Power 1 (14) a = 28.99 (28.41, 29.57), b = −0.006629 (−0.01191, −0.001349)

Power 2 (15) a = 1.526 (bounds: 0.4475, 2.604), b = −0.4284 (−1.337, 0.4801), and c = 27.95 (26.86, 29.03)

Rational 1/1 (16) p1 = 28.28 (28.14, 28.43), p2 = −50.27 (−80.95, −19.59), q1 = −1.783 (−2.842, −0.7249)

Rational 2/1 (17) p1 = 0.0004235 (bounds: −0.00459, 0.005437), p2 = 28.26 (27.95, 28.57),
p3 = −50.2 (−80.05, −20.35), q1 = −1.782 (−2.812, −0.7532)

Rational 3/1 (18) p1 = 0.001457 (0.0008546, 0.002059), p2 = −0.1586 (−0.2211, −0.09621), p3 = 31.29 (30.13, 32.46),
p4 = 735.3 (−433.5, 1904), q1 = 25.65 (−14.72, 66.02)

Rational 3/2 (19)
p1 = 0.0005795 (−0.004503, 0.005662), p2 = 28.25 (27.88, 28.61),
p3 = −338.4 (−388.7, −288.1), p4 = 894 (bounds: 596.2, 1192),
q1 = −11.98 (−13.69, −10.27), q2 = 31.66 (21.45, 41.86)

Rational 5/3 (20)
p1 = 0.001389 (0.0009086, 0.001869), p2 = −0.1762 (−0.2345, −0.1179), p3 = 34.02 (32.02, 36.01),
p4 = −70.51 (−935, 793.9), p5 = −2716 (−1.161·104, 6177), p6 = 1.366·104 (bounds: −1.202·104,
3.934·104), q1 = −0.4298 (−30.31, 29.45), q2 = −103.4 (−412.6, 205.8), q3 = 487.4 (−412.4, 1387)
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Table A11. Quality measures for the considered functions (winters 1 and 2).

Fitness Function SSE R-Square RMSE Adjusted R-Square

Smoothing spline, p = 0.99876718875 0.0005719 1 0.01837 0.9994
p = 0.9 0.2665 0.995 0.08124 0.9875

p = 0.309432 0.9664 0.9819 0.1162 0.9745
Gaussian 7 1.102 0.9794 0.1167 0.9743
Fourier 8 1.997 0.9626 0.1542 0.9551
Fourier 2 7.085 0.8675 0.2717 0.8605

Gaussian 2 8.046 0.8495 0.2895 0.8416
Fourier 1 8.601 0.8391 0.2962 0.8342

Rational 5/3 11.54 0.7841 0.3523 0.7655
Rational 3/1 11.6 0.7831 0.3457 0.7741

Polynomial 3 13.4 0.7494 0.3697 0.7417
Exponential of 2nd order 14.6 0.7268 0.386 0.7184

Polynomial 2 16.49 0.6916 0.4081 0.6853
Linear fitting 50.23 0.06032 0.7123 0.04134

Power 1 50.38 0.05741 0.7098 0.04798
Rational 3/2 52.47 0.01834 0.7393 −0.03279 *
Rational 2/1 52.78 0.01254 0.7339 −0.01768 *
Rational 1/1 52.8 0.01226 0.7303 −0.007692 *
Gaussian 3 3.794 0.929 0.202 0.9229

Power 2 49.4 0.0758 0.7064 0.05713
Exponential of 1st order 53.45 5.189·10−5 0.7311 −0.009948 *

Polynomial 1 53.45 5.09·10−5 0.7311 −0.009949 *
Gaussian 1 53.46 −0.0001639 * 0.7348 −0.02037 *

* only calculated data by Matlab without interpretation (negative numbers should be impossible).

Table A12. R-square for the domain used to fit, prediction interval, and total range for winters.

Fitness Function Fit-Domain
(Winters 1–2)

Prediction Interval
(Winters 3–4)

Total Range (all
4 Winters) Comment

Smoothing spline, p = 0.99876718875 1 1 1 The best fit
p = 0.9 0.995 0.9978 0.9985

Gaussian 7 0.9794 0.9931 0.9267
Smoothing spline p = 0.309432 0.9819 0.9922 0.9945

Fourier 8 0.9626 0.9873 0.9761
Gaussian 3 0.929 0.9555 0.9466
Fourier 2 0.8675 0.9418 0.9354

Rational 5/3 0.7841 0.8829 0.9429
Exponential of 2nd order 0.7268 0.8828 0.8571

Gaussian 2 0.8495 0.8828 0.9104
Polynomial 3 0.7494 0.8804 0.8665

Fourier 1 0.8391 0.8784 0.8458
Polynomial 2 0.6916 0.8784 0.8458
Rational 3/1 0.7831 0.881 0.8477

Power 1 0.05741 0.7884 0.3671
Power 2 0.0758 0.7884 0.8614

Exponential of 1st order 5.189·10−5 0.5604 0.656
Rational 3/2 0.01834 0.5397 0.9403
Rational 2/1 0.01254 0.5332 0.6771

Polynomial 1 5.09·10−5 0.5289 0.6745
Linear fitting 0.06032 0.2454 0.816
Rational 1/1 0.01226 0.01329 0.0109

Gaussian 1 −0.0001639 * N/A 0.841 Inf computed by model function,
fitting cannot continue.

* Matlab warning: A negative R-square is possible if the model does not contain a constant term and the fit is poor
(worse than just fitting the mean). Try changing the model or using a different start point.
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Table A13. Obtained coefficients for the considered functions (springs 1–2 interval), values in brackets
are confidence bounds for 95%.

Linear fitting (1) a = −0.001745 (−0.1453, 0.1418), b = −2.716·10−5 (−6.444·10−5, 1.011·10−5), c = 29.09 (28.94, 29.23)

Exponential of 1st order (2) a = 28.97 (28.77, 29.18), b = 2.768·10−5 (−8.86·10−5, 0.000144)

Exponential of 2nd order (3) a = −0.01843 (−0.07621, 0.03936), b = 0.04838 (0.02118, 0.07558), c = 28.47 (28.28, 28.65),
d = 0.0007368 (0.0003567, 0.001117)

Fourier 1 (5) a0 = 29.09 (29.02, 29.16), a1 = 0.02635 (−0.1644, 0.2171),
b1 = −0.5724 (−0.6691, −0.4757), ω = 0.07486 (0.06923, 0.08049)

Fourier 2 (6) a0 = 29.12 (29.06, 29.17), a1 = 0.0604 (−0.05226, 0.1731), b1 = −0.5426 (−0.6154, −0.4699),
a2 = −0.1226 (−0.2415, −0.003689), b2 = −0.3169 (−0.4064, −0.2273), ω= 0.07436 (0.07171, 0.077)

Fourier 8 (7)

a0 = 28.99 (28.94, 29.04), a1 = −0.502 (−0.5794, −0.4245), b1 = −0.1689 (−0.3016, −0.03619),
a2 = −0.0574 (−0.2131, 0.09831), b2 = 0.3611 (0.3103, 0.412), a3 = 0.199 0.1409, 0.2571), b3 = −0.03921
(−0.1616, 0.08319), a4 = −0.03603 (−0.08402, 0.01196), b4 = 0.09401 (0.05168, 0.1363), a5 = 0.08342
(−0.07823, 0.2451), b5 = −0.1118 (−0.17, −0.05353), a6 = −0.1135 (−0.2218, −0.005219), b6 = 0.1204
(−0.04748, 0.2884), a7 = 0.06244 (0.02226, 0.1026), b7 = −0.004121 (−0.08272, 0.07448), a8 = −0.01616
(−0.09508, 0.06275), b8 = 0.07005 (0.02402, 0.1161), ω = 0.05696 (0.05373, 0.06018)

Gaussian 1 (9) a1 = 29.38 (29.26, 29.5), b1 = 54.13 (50.75, 57.51), c1 = 270 (236.6, 303.5)

Gaussian 2 (10) a1 = 29.57 (29.36, 29.77), b1 = 68.9 (59.9, 77.91), c1 = 144.9 (107.5, 182.2), a2 = 6.047 (−1.507, 13.6),
b2 = −15.25 (−45.87, 15.36), c2 = 36.4 (8.628, 64.18)

Gaussian 3 (A2)
a1 = 1.419 (0.35, 2.487), b1 = 70.92 (66.05, 75.8), c1 = 14.86 (9.047, 20.67), a2 = 78.21 (−4.145·105,
4.147·105), b2 = 6155 (−3.252·107, 3.253·107), c2 = 6144 (−1.623·107, 1.625·107), a3 = −1.338 (−44.12,
41.44), b3 = 101.9 (−435.5, 639.2), c3 = 41.61 (−449.4, 532.6)

Gaussian 7 (A3)

a1 = 1.073 (0.8171, 1.329), b1 = 60.96 (60.51, 61.42), c1 = 3.182 (2.307, 4.057), a2 = 29.82 (29.74, 29.9),
b2 = 71.53 (70.08, 72.99), c2 = 79.17 (66.86, 91.48),
a3 = 1.615 (−19.11, 22.34), b3 = 43.72 (27.25, 60.19), c3 = 7.56 (−7.447, 22.57), a4 = 15.4 (−58.75,
89.55), b4 = −4.202 (−90.21, 81.8), c4 = 18.05 (−271.1, 307.2),
a5 = 6.021 (−266.5, 278.5), b5 = 18.45 (−40.3, 77.2), c5 = 13.43 (−288.4, 315.2),
a6 = 3.458 (1.835, 5.081), b6 = 107.5 (103.7, 111.3), c6 = 10.99 (7.16, 14.81),
a7 = 3.096 (−142.1, 148.3), b7 = 32.69 (−91.44, 156.8), c7 = 10.67 (−113.4, 134.8)

Polynomial 1 (11) p1 = 0.0008112 (−0.002563, 0.004185), p2 = 28.97 (28.77, 29.18)

Polynomial 2 (12) p1 = −0.0003957 (−0.0004937, −0.0002976), p2 = 0.04275 (0.03203, 0.05348), p3 = 28.22 (27.98, 28.47)

Polynomial 3 (13) p1 = −1.111·10−5 (−1.41·10−5, −8.131·10−6), p2 = 0.001371 (0.0008905, 0.001852),
p3 = −0.03252 (−0.05451, −0.01053), p4 = 28.9 (28.63, 29.17)

Power 1 (14) a = 28.65 (28.23, 29.06), b = 0.003467 (−0.0003017, 0.007236)

Power 2 (15) a = −0.8686 (−3.288, 1.551), b = −0.2256 (−1.632, 1.181), c = 29.4 (26.49, 32.32)

Rational 1/1 (16) p1 = 29.02 (confidence bounds: 28.91, 29.12), p2 = −50.97 (−125.8, 23.84), q1 = −1.755 (−4.35, 0.8403)

Rational 2/1 (17) p1 = 0.0006562 (confidence bounds: −0.002789, 0.004101), p2 = 28.98 (28.74, 29.22), p3 = −257
(−303.3, −210.7), q1 = −8.865 (−10.48, −7.253)

Rational 3/1 (18) p1 = −0.000405 (−0.0005055, −0.0003045), p2 = 0.0456 (0.03414, 0.05707), p3 = 28.01 (27.72, 28.31),
p4 = −116.4 (−147.3, −85.38), q1 = −4.125 (−5.196, −3.054)

Rational 3/2 (19)
p1 = −18.77 (−8290, 8252), p2 = 2122 (−9.201·105, 9.244·105), p3 = 1.299·106 (−5.72·108, 5.746·108),
p4 = −3.706·106 (−1.638·109, 1.631·109), q1 = 4.631·104 (−2.038·107, 2.048·107), q2 = −1.316·105

(−5.817·107, 5.791·107)

Rational 5/3 (20)

p1 = −8.931·10−5 (−0.0003049, 0.0001263), p2 = 0.01715 (−0.03251, 0.0668), p3 = 27.42 (23.49, 31.35),
p4 = −4117 (−4561, −3673), p5 = 1.603e+05 (1.304·105, 1.902·105),
p6 = −2.4·105 (−4.535·105, −2.649·104), q1 = −145 (bounds: −158.3, −131.6), q2 = 5597 (4569, 6624),
q3 = −8388 (−1.586·104, −918.6)
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Table A14. Quality measures for the considered functions (domain used for prediction) for springs 1–2.

Fitness Function SSE R-Square RMSE Adjusted R-Square

Smoothing spline, p = 0.99876718875 0.0005042 1 0.01699 0.999
p = 0.9 0.2488 0.9914 0.07735 0.9784

p = 0.309432 0.8244 0.9714 0.1058 0.9596
Gaussian 7 1.407 0.9512 0.1294 0.9395
Fourier 8 1.705 0.9408 0.14 0.9293

Gaussian 3 5.626 0.8047 0.2421 0.7885
Rational 5/3 6.391 0.7782 0.258 0.7598

Fourier 2 6.445 0.7763 0.2552 0.765
Gaussian 2 10.64 0.6307 0.3278 0.6121

Polynomial 3 11.46 0.6023 0.3368 0.5905
Fourier 1 12.16 0.5781 0.347 0.5655

Exponential of 2nd order 13.64 0.5265 0.3675 0.5125
Rational 3/1 17.45 0.3945 0.4177 0.3703
Rational 3/2 17.48 0.3933 0.4202 0.3627
Gaussian 1 17.63 0.3882 0.4157 0.3762

Polynomial 2 17.66 0.3872 0.4161 0.3752
Power 2 27.83 0.03406 0.5224 0.01512
Power 1 27.91 0.03153 0.5205 0.02213

Linear fitting 28.24 0.0201 0.5261 0.0008901
Rational 2/1 28.62 0.006746 0.5323 −0.02276

Polynomial 1 28.75 0.002203 0.5284 −0.007485
Exponential of 1st order 28.75 0.002181 0.5284 −0.007507 *

Rational 1/1 28.76 0.001936 0.531 −0.01763

* Matlab warning: A negative R-square is possible if the model does not contain a constant term and the fit is poor
(worse than just fitting the mean). Try changing the model or using a different start point.

Table A15. R-square for the domain used to fit, prediction interval, and total range in case of springs.

Fitness Function Fit-Domain
(Springs 1–2)

Prediction Interval
(Springs 3–4)

Total Range (all
4 Springs) Comment

Smoothing spline, p = 0.99876718875 1 1 1 The best fit
p = 0.9 0.9914 0.995 0.9918

p = 0.309432 0.9714 0.9827 0.9717

Fourier 8 0.9408 0.9596 0.8896 The best for spring 3–4 when
smoothing splines are excluded

Gaussian 7 0.9512 0.9501 0.9062
The best for whole dataset and
springs 1–2 when smoothing

splines are excluded
Gaussian 3 0.8047 0.9345 0.5874
Rational 3/2 0.3933 0.9174 0.8254

Fourier 2 0.7763 0.8365 0.5747
Gaussian 2 0.6307 0.8252 0.5659
Fourier 1 0.5781 0.7325 0.3169

Rational 5/3 0.7782 0.7256 −66.28 *
Rational 3/1 0.3945 0.7185 0.2409

Polynomial 3 0.6023 0.7102 0.2664
Polynomial 2 0.3872 0.71 0.2399

Exponential of 2nd order 0.5265 0.706 0.2258
Power 2 0.03406 0.5215 0.2072
Power 1 0.03153 0.5181 0.04345

Exponential of 1st order 0.002181 0.3752 0.1342
Gaussian 1 0.3882 0.3752 0.2458
Rational 2/1 0.006746 0.3558 0.1383

Polynomial 1 0.002203 0.3518 0.1375
Linear fitting 0.0201 0.1475 0.1975
Rational 1/1 0.001936 0.02794 0.0001715

* A negative R-square is possible if the model does not contain a constant term and the fit is poor (worse than just
fitting the mean). Try changing the model or using a different start point.
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