
Journal of

Marine Science 
and Engineering

Article

Miles Theory Revisited with Constant Vorticity in
Water of Infinite Depth

Christian Kharif * and Malek Abid

Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, F-13384 Marseille, France;
abid@irphe.univ-mrs.fr
* Correspondence: kharif@irphe.univ-mrs.fr

Received: 29 June 2020; Accepted: 12 August 2020; Published: 18 August 2020
����������
�������

Abstract: The generation of wind waves at the surface of a pre-existing underlying vertically sheared
water flow of constant vorticity is considered. Emphasis is put on the role of the vorticity in water on
wind-wave generation. The amplitude growth rate increases with the vorticity except for quite old
waves. A limit to the wave energy growth is found in the case of negative vorticity, corresponding to
the vanishing of the growth rate.
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1. Introduction

Wind-wave generation is a central problem in physical oceanography. Miles [1] is one the
first to provide a theoretical framework to understand how wind energy is transferred to ocean
surface waves. He considered the linear stability of an inviscid parallel shear flow described by
a boundary layer in the air above a flat surface of water at rest. The transfer of energy occurs at
the critical layer level where the wind velocity equals the phase velocity of the waves. Note that
Hristov et al. [2] found from open ocean experiments that the structure of the wave-induced air flow
is in agreement with the critical layer theory. Physically, this instability corresponds to a resonant
interaction between the wave-induced pressure fluctuations and the surface waves. Valenzuela [3]
and Kawai [4] introduced a wind-drift layer in water and solved the problem numerically by using
the Orr–Sommerfeld equation in both air and water in the presence of surface tension instead of the
Rayleigh equation. Beji and Nadaoka [5] investigated the effect of the shape of the wind profile on
the wave growth rate and found appreciable differences. To avoid the problem of the critical layer
singularity of the Rayleigh equation Stiassnie et al. [6] proposed a method of solution they called
the exact approach. More recently, Young and Wolfe [7] considered the linear stability of an inviscid
parallel shear flow in the presence of surface tension described by the double exponential profile
solved analytically. In addition to the Miles instability in the air they found a second unstable mode
called rippling mode which corresponds to an interaction between the surface waves and a critical
layer in the water. Following Miles [1], we have considered a logarithmic wind profile in the air flow
(modelling a turbulent wind) and a linear current profile in the water of arbitrary constant vorticity.
Note that for a linear profile the rippling instability is not excited.

Our main goal is to revisit the Miles theory of wind wave generation at the surface of a pre-existing
underlying water flow of constant vorticity in infinite depth. In Section 2.1 we compare the intrinsic
phase velocities and energies of linear gravity waves in the presence of constant vorticity in both
finite and infinite depth and come to the conclusion that when kh > π the deviation between finite
and infinite depths is weak. Section 2.2 is devoted to (i) the derivation of the Rayleigh equation (ii)
the expression of the growth rate of the wave amplitude and the effect of negative vorticity of the
water flow on the growth rate. Section 2.3 focuses on the effect of positive vorticity of the water flow
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on the growth rate. We paid attention to the special case of the logarithmic wind profile in the air.
A conclusion is made in Section 3.

2. Mathematical Formulation

The approach developed hereinafter is similar to those of Janssen [8] and Thomas [9] except
that we now take the effect of a water flow in water of constant vorticity into account. For a detailed
description of the method without water vorticity one can refer to Thomas [9].

2.1. Preamble: Phase Velocity and Energy of Linear Gravity Waves at the Free Surface of a Shear Flow of
Constant Vorticity

The intrinsic phase velocity, c0, of a linear gravity wave of wavenumber k, propagating in finite
depth, h, at the free surface of a vertically sheared flow of constant intensity, Ω, is

c0 = −Ω
2k

tanh(kh) +

√
g
k

tanh(kh) +
Ω2

4k2 tanh2(kh)

where g is the gravity.
Note that the vorticity is −Ω.
In infinite depth the intrinsic phase velocity is

c0 ∞ = −Ω
2k

+

√
g
k
+

Ω2

4k2

There is no loss of generality if the study is restricted to waves propagating with positive phase
velocities so long as both positive and negative values of Ω are considered.

Figure 1 shows the dimensionless intrinsic phase velocity deviation between finite and infinite
depths as a function of the dispersive parameter kh for several dimensionless values of Ω. For kh > π

we can see that the deviation is weak. Generally, in laboratory experiments one considers that gravity
waves of wavelength λ < 2h behave like waves in infinite depth.
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Figure 1. Dimensionless linear phase velocity deviation between finite and infinite depths for several
values of the dimensionless vorticity.

Note that Teles da Silva and Peregrine [10] introduced a measure of water depth which influences
the wave properties, Wd = tanh(kh)/(2k).
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The condition for the presence of a critical layer in the water flow is c0 = Ωz which only occurs
for Ω < 0. Teles da Silva and Peregrine [10] have shown that if there is a critical layer it is always at a
depth hc > 2Wd. Consequently, one can expect that the critical depth will not be in the layer of water
which influences the wave if khc > tanh(kh).

The expressions of the excess of kinetic energy T and potential energy V are given by

2T =
∫ 2π

0

∫ η

−h
[(φx + Ωz)2 + φ2

z ]dzdx−
∫ 2π

0

∫ 0

−h
(Ωz)2dzdx

and

2V =
∫ 2π

0
gη2dx

The of total energy is
E = T + V

In Figure 2 is shown the dimensionless excess of total energy deviation between finite and infinite
depths of a linear gravity wave of wave steepness ak = 0.10 for several dimensionless values of Ω.
For kh > π the deviation is weak.

Finally, linear gravity waves in finite depth propagating at the surface of a flow of constant
vorticity behave nearly like waves in infinite depth if kh > π.
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Figure 2. Dimensionless excess of energy deviation between finite and infinite depths for several values
of the dimensionless vorticity of a linear wave of steepness ak = 0.10.
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2.2. Miles Theory in the Presence of Constant Vorticity in Water

The inviscid governing equations of the flow in air and water are the following

∇ · u = 0 (1)
du
dt

= −∇p
ρ

+ g (2)

dρ

dt
= 0 (3)

with
d
dt

=
∂

∂t
+ u · ∇

and where u is the fluid velocity, ρ is the fluid density, p is the pressure and g is the acceleration
due to gravity.

Equation (1) corresponds to mass conservation, Equation (2) is the Euler equation and Equation (3)
means incompressible fluids.

We consider the linear stability of the following solution of the system of Equations (1)–(3) which
corresponds to a flat air–water interface

u = U0ex (4)

g = −gez (5)

ρ0 = ρ(z) (6)

p0(z) = g
∫

ρ0(z)dz (7)

where U0 corresponds to the velocity in the air and in the water, ρ(z) corresponds to atmospheric
density and water density and ex and ez are unit vectors in the x-direction and z-direction, respectively.

U0(z) =

{
Ua(z) , z > 0
Uw(z) , z < 0

}
where Ua is the wind velocity and Uw the flow velocity in the water.

ρ(z) =

{
ρa , z > 0
ρw , z < 0

}

where ρa and ρw are the atmospheric density and water density, respectively.
Let us perturb the equilibrium given by Equations (4)–(7) with an infinitesimal perturbation1

U = U0 + u′ (8)

p = p0 + p′ (9)

ρ = ρ0 + ρ′ (10)

1 The fluid medium is not homogeneous (air/water). Consequently, Equations (3) and (10) have been introduced to solve
the problem.
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Substituting the expressions (8)–(10) into Equations (1) and (2) and linearising gives

∂u′

∂x
+

∂w′

∂z
= 0 (11)

∂u′

∂t
+ U0

∂u′

∂x
+ w′U′0(z) = −

1
ρ0

∂p′

∂x
(12)

∂w′

∂t
+ U0

∂w′

∂x
= − 1

ρ0

∂p′

∂z
+

ρ′

ρ2
0

p′0(z) (13)

where w′ is the vertical component of the velocity perturbation.
The solutions of the linearized problem are sought in the following form (normal modes)

u′ = u1(z) exp[i(kx−ωt)] (14)

w′ = w1(z) exp[i(kx−ωt)] (15)

p′ = p1(z) exp[i(kx−ωt)] (16)

ρ′ = ρ1(z) exp[i(kx−ωt)] (17)

where k and ω are the wavenumber and frequency of the perturbation, respectively.
Substituting the expressions (14)–(17) into the linearized equations gives the following

Sturm–Liouville problem

d
dz

(
ρ0W2 dψ

dz

)
−
(

k2ρ0W2 + g
dρ0

dz

)
ψ = 0 (18)

where W = U0 − c, c = ω/k and ψ = w1/W
The water flow is assumed to be vertically sheared with constant vorticity: U0 = Us + Ωz,

where the shear Ω and Us are constant. Without loss of generality we consider a frame of reference in
which Us = 0. Hence, Equation (18) reads

d
dz

(
ρw(Ωz− c)2 dψw

dz

)
−
(

k2ρw(Ωz− c)2 + g
dρw

dz

)
ψw = 0

Let us assume dρw/dz = 0, then

(Ωz− c)
d2ψw

dz2 + 2Ω
dψw

dz
− k2(Ωz− c)ψw = 0 (19)

First to avoid the existence of a critical layer in water, the study in deep water is restricted to waves
with positive phase velocity and positive values of Ω (negative vorticity). Consequently, Ωz− c 6= 0
and (19) reads

d2ψw

dz2 +
2Ω

Ωz− c
dψw

dz
− k2ψw = 0 (20)

The case corresponding to Ω < 0 (positive vorticity) will be discussed later in Section 2.3.
Equation (20) can be transformed to a reduced form

d2θ

dz2 (z) + q1(z)θ(z) = 0 (21)

with the following change of variables

ψw(z) = θ(z) exp
(
− 1

2

∫ z

0

2Ω
Ωz′ − c

dz′
)

q1(z) = −k2 − 1
2

d
dz

( 2Ω
Ωz− c

)
− 1

4

( 2Ω
Ωz− c

)2
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that is

ψw =
c

c−Ωz
θ(z)

q1(z) = −k2

The reduced form of (20) is
d2θ

dz2 (z)− k2θ(z) = 0 (22)

Hence the general solution of Equation (20) is

ψw(z) =
c

c−Ωz

(
A exp(kz) + B exp(−kz)

)
The solution satisfying the condition limψw = 0 as z→ −∞ is

ψw(z) =
c

c−Ωz
A exp(kz))

Equation (18) is integrated between two points below (z = 0−) and above (z = 0+) the
air–water interface

ρW2 dψ

dz

∣∣∣0+
0−

=
∫ 0+

0−

(
k2ρ0W2 + g

dρ0

dz

)
ψ dz

with
dρ0

dz
= (ρw − ρa)δ(z)

where δ is the Dirac delta function.

ρaW2(0+)ψ′a(0+)− ρwW2(0−)ψ′w(0−) = g(ρa − ρw)ψ(0)

where ψ(0) = ψa(0) = ψw(0) due to continuity of ψ.

ρa(Ua(0+)− c)2ψ′a(0+)− ρw(Ωz− c)2(0−)ψ′w(0−) = g(ρa − ρw)ψ(0)

c2(ρaψ′a(0+)− ρwψ′w(0−)) = g(ρa − ρw)ψ(0)

c2
(

ρaψ′a(0+)− ρw(Ak +
AΩ

c
)
)
= g(ρa − ρw)ψ(0)

Because we consider linear waves, without loss of generality we can set A = 1

c2
(

ρaψ′a(0+)− ρw(k +
Ω
c
)
)
= g(ρa − ρw)ψ(0) (23)

The linear dispersion relation of gravity water waves on deep water in the presence of constant
vorticity kc2 + Ωc− g = 0 is obtained from Equation (23) when wind effect is ignored.

Let ε = ρa/ρw and c = c0 + c1ε+O(ε2) the Taylor series in ε in the presence of wind. Substituting
the expansion of c into Equation (23) gives

At ε0

kc2
0 + Ωc0 − g = 0

At ε1

c1 =
c2

0ψ′a(0+)− g
2kc0 + Ω
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Following Janssen [8] and Thomas [9], Equation (18), in the atmospheric medium, is reduced to
the following form

d
dz

(
W0

dψa

dz

)
− k2W2

0 ψa = 0 (24)

ψa(0) = 1

limψa(z) = 0 as z→ +∞

where W0 = U0 − c0.
The growth rate γa of wave amplitude is

γa = Im(kc0 + kc1ε) = kε Im(c1)

γa

ω0
=

εc0

2kc0 + Ω
Im(ψ′a(0+))

where ω0 = kc0 and Im denotes imaginary part.
Thomas [9] has shown that

Im(ψ′a(0+)) =
i
2
W(ψa, ψ∗a )(0+)

whereW is the Wronskian given by

W(ψa, ψ∗a )(0+) = ψa(0+)ψ′∗a (0+)− ψ′a(0+)ψ∗a (0+) = −2iIm(ψ′a(0+))

and ψ∗a denotes the complex conjugate.
Then

γa

ω0
= i

εc0

2(2kc0 + Ω)
W(ψa, ψ∗a )(0+) (25)

Let χ = w/w(0) be the normalised vertical component of air velocity. Then, Equation (24)
becomes the following Rayleigh equation

W0

( d2

dz2 − k2
)

χ = W
′′
0 χ (26)

χ(0) = 1

limχ(z) = 0 as z→ +∞

The Rayleigh equation has a singular point where the phase velocity, c0, of the waves equals the
mean wind velocity U0. Consequently, the height, zc, of the critical layer in the atmosphere satisfies
U0(zc) = c0.

The growth rate can be rewritten as a function of the Wronskian of the solutions of the
Rayleigh equation

γa

ω0
= i

εc0

2(2kc0 + Ω)
W(χ, χ∗)(0+) (27)

One can show thatW ′(χ, χ∗) = 0. Consequently, the Wronskian is constant for z > zc and z < zc

as well and may show a jumpW(zc + ε)−W(zc − ε), with ε > 0, at the critical height. Due to the
boundary condition at infinity, limW = 0 as z→ +∞,W(z) = 0, ∀z > zc. Finaly, the jump is equals
to −W(zc − ε) and is given by the following expression

−W(zc − ε) = lim I(∆, ε) as ∆→ 0, ∆ > 0
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with

I(∆, ε) = −4i
W
′′
0c

W ′0c
|χc|2 arctan

(
ε

W ′0c
∆

)
The result is

−W(zc − ε) = −2iπ
W
′′
0c

|W ′0c|
|χc|2

where W
′′
0c = W

′′
0 (z = zc), W

′
0c = W

′
0(z = zc) and χc = χ(z = zc).

The expression of the Wronskien is

W = 2iπ
W
′′
0c

|W ′0c|
|χc|2, z < zc

The normalised growth rate of surface wave amplitude is

γa

ω0
= − πεc0

2kc0 + Ω
W
′′
0c

|W ′0c|
|χc|2 (28)

c0 = −Ω
2k

+

√
g
k
+

Ω2

4k2

Equation (28) can be written differently

γa

ω0
= − πεc0√

4gk + Ω2

W
′′
0c

|W ′0c|
|χc|2 (29)

We assume the conservation of the momentum flux in the atmospheric boundary layer.
Consequently, the wind profile is given by the folowing logarithmic law

Ua(z) =
u∗
κ

ln(1 +
z
z0
) (30)

where u∗ is the friction velocity, κ is the von Karman constant and z0 is the roughness length of the
air–water interface given by the Charnock relation z0 = αchu2

∗/g.
Within the framework of a logarithmic law we obtain

W
′′
0c

|W ′
0c|

= − 1
z0

exp(−κ
c0

u∗
)

To derive the expression of the growth rate of the wave amplitude as a function of the wave
age c0/u∗ we use as reference velocity u∗ and reference length u2

∗/g. Let c∗ = c0/u∗, k∗ = u2
∗k/g,

Ω∗ = u∗Ω/g and z0∗ = gz0/u2
∗ be the dimensionless variables and parameters. Note that z0∗ = αch.

γa

ω0
=

ρa

ρw

π

z0∗

c∗
2k∗c∗ + Ω∗

exp(−κc∗)|χc|2

Using
k∗ = (1− c∗Ω∗)/c2

∗ (31)

the dimensionless growth rate is rewritten as follows

γa

ω0
=

ρa

ρw

π

z0∗

c2
∗

2− c∗Ω∗
exp(−κc∗)|χc|2 (32)

where c∗ is the wave age and −Ω∗ the dimensionless vorticity.
Note that 2− c∗Ω∗ = 1 + k∗c2

∗ > 1.
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Using z0∗ = αch, Equation (32) reads

γa

ω0
=

ρa

ρw

π

αch

c2
∗

2− c∗Ω∗
exp(−κc∗)|χc|2 (33)

The dimensionless amplitude growth rate depends only on the wave age and vorticity.
The Rayleigh Equation (26) is written in dimensionless form

(Ua∗ − c∗)(
d2

dz2∗
− k2
∗)χ∗ = U

′′
a∗χ∗ (34)

where
Ua∗ =

1
κ

ln(1 +
z∗
z0∗

) χ∗ =
w∗

w∗(0)
w∗ =

w
u∗

The dimensionless unknown χ∗ is computed numerically by solving Equation (34) with the
method of Conte and Miles [11]. The dimensionless growth rate of the wave amplitude γa/ω0 is
calculated once the critical value of χ∗ is known.

To check the validity of our approach we have compared our results in the absence of vorticity
(Ω = 0) with those of Beji and Nadaoka [5], Stiassnie et al. [6] and Kommen et al. [12]. Figure 3 shows
the dimensionless growth rate, β, defined by Miles [1] as a function of the wave age

β =
ρw

ρa
κ2c2
∗

γE
ω0

where γE = 2γa is the growth rate of the wave energy.
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Figure 3. Dimensionless growth rate β as a function of the wave age for two values of the Charnock
constant without vorticity (Ω∗ = 0). Present results (solid line); Beji and Nadaoka [5] (◦).

The agreement of our results with those of Beji and Nadaoka [5] who used a different method
is excellent.

Figure 4 displays the dimensionless growth rate of wave energy as a function of the inverse of
wave age in the absence of vorticity. The agreement of our results with those of Stiassnie et al. [6] is
good whereas some deviation can be observed with those of Kommen et al. [12].

Figure 5 shows the dimensionless growth rate of the wave amplitude as a function of the wave
age for different values of the dimensionless vorticity. We can see that the growth rate of waves
generated at the surface of a vertically sheared flow of constant negative vorticity decreases as the
intensity Ω∗ increases and vanishes when a limit to the wave energy growth is reached. The wave age
corresponding to γa = 0 can be determined easily as follows.
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Figure 4. Dimensionless energy growth rate as a function of the inverse wave age without vorticity
(Ω = 0). Kommen et al. [12] (◦); Stiassnie et al. [6] (♦); Present resuts (solid line).
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Figure 5. Dimensionless amplitude growth rate as a function of the wave age for several values of the
dimensionless vorticity. The solid line corresponds to Ω∗ = 0.
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The dispersion relation is
ω2

0 + Ωω0 − gk = 0

lim ω0 = 0 or lim ω0 = −Ω as k→ 0

As emphasized above we consider wind waves with ω0 > 0 and k > 0. Consequently,

lim c0 = lim
ω0

k
= lim

g
ω0 + Ω

=
g
Ω

as ω0 → 0

Hence
lim c∗ =

1
Ω∗

as k∗ → 0 (35)

Note that the limit wave age could be derived from Equation (31). This theoretical result suggests
the existence of fetch limited wind wave growth in the presence of vertically sheared flows of constant
vorticity. As the waves become increasingly longer, the growth rate decreases and vanishes.

The role of shear flows, in water of infinite depth, on the behaviour of wind waves is comparable
to the role of finite depth without vorticity. Young and Verhagen [13] conducted field experiments
showing depth limited wind wave growth. Later, Montalvo et al. [14] found numerically that finite
depth limited growth is reached with wave growth rates going to zero (see Figure 1 of [14]).

2.3. Case of Positive Vorticity (Ω < 0)

In the presence of positive vorticity (Ω < 0) a critical layer occurs at zc = c0/Ω. However,
U′′w(z) = 0 cancels the logarithmic singularity at z = zc and consequently any instability mechanism in
the water flow.

Figure 6 shows the dimensionless amplitude growth rate as a function of the wave age for
different values of the vorticity. Three ranges of wave age are shown corresponding to 1 < c∗ < 10,
10 < c∗ < 20 and 20 < c∗ < 30. In the presence of a vertically sheared flow of constant positive
vorticity the amplitude growth rate increases with the vorticity −Ω, except for old waves.
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Figure 6. Dimensionless amplitude growth rate as a function of the wave age for several values of
the vorticity.

3. Conclusions

We have revisited the Miles theory of wind wave generation by considering a pre-existing
underlying water flow of constant vorticity in infinite depth. As z→ −∞ the flow velocity becomes
unbounded. Consequently, we have shown that gravity waves propagating at the surface of water
flows of constant vorticity behave practically like waves in infinite depth providing that kh > π.
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Beji and Nadaoka [5] and Stiassnie et al. [6] have investigated wind wave generation on a still
water while we have considered the role of an undelying vortical water flow on wind wave generation.
Valenzuela [3] and Young and Wolfe [7] investigated the growth rate of gravity-capillary waves in the
presence of a depth varying negative vorticity of a wind drift water layer induced by the wind whereas
we have considered wind wave generation at the surface of a pre-existing water flow of arbitrary
constant water vorticity.

We found that the wave energy growth rate of wind waves, in the presence of negative (positive)
water vorticity, decreases (increases) as vorticity decreases (increases). Notice that old waves behaves
differently: their wave energy growth rates decrease as positive vorticity increases. Furthermore,
in the case of negative vorticity the wave age limit corresponding to the vanishing of the wave
energy growth rate depends on the value of the vorticity and is inversely proportional to the vorticity
magnitude. These results emphasize the importance of the presence of vortical water flow on wind
wave generation.
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