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Abstract: An estuary is an area where a complex circulation pattern appears due to various
hydrodynamic parameters such as tides, river discharge, salinity and water density. Especially during
a flood, a large amount of freshwater discharge from a river can cause stratified flows due to the
difference in density between freshwater and seawater. This makes it difficult to understand the
mechanism of behavior of the suspended sediment concentration in an estuary. To elucidate this
problem, we investigated field observation data in the Gyeongin Port area in South Korea during
the rainy period. It was found that there were stratified flow features of flow velocity, salinity and
temperature between the upper and lower layers due to the abruptly increased amount of freshwater
from a river in the rainy period. An artificial neural network (ANN), one of the data-driven modeling
techniques, was applied to inductively analyze the hydrodynamic factors affecting the suspended
sediment concentration in the estuary. The ANN model showed the best performance when including
river discharge, and flow velocity and salinity measured at the surface and bottom layer. This shows
that stratified flow is important to understand the behavior of suspended sediment concentration in
the estuary.

Keywords: estuary; stratified flow; data-driven modeling; artificial neural network; Gyeongin Port

1. Introduction

Estuaries are areas of interaction between fresh water from rivers and salt water from the open
oceans. In this area, complex circulation patterns are formed due to the steady river discharge,
tidal flows, wind waves or circulation driven by wind or density differences [1]. The fresh water
flowing into river estuaries has a relatively low density (999.8 kg/m3 at 0 ◦C) compared to that of
seawater (1028.1 kg/m3 at 0 ◦C) and forms stratified flows on the surface layer. At this time, various
floating substances, such as sediment from the land, spread together with the flow from the rivers
around the estuaries and the coast. Especially during a flood, a large amount of freshwater discharge
from a river can cause stratified flows due to the difference in density between freshwater and seawater,
decreasing vertical mixing in an estuary.

Gyeongin Port area, located on the west coast of Korea, is an area where stratified flow can be
observed (Figure 1). Due to macro tidal characteristics (with tidal ranges more than 8.5 m) and complex
coastlines (e.g., islands, channels and a large tidal flat), a complex circulation pattern is observed
here. The freshwater discharge from the Han River passes through the observation point from the
north. Gyeongin Port area is typically well mixed vertically, except during the rainy period in the
summer. Because more than 70% of the annual freshwater inflow occurs in the rainy period from
June to September, a large amount of freshwater inflow (and sediments) in this period can generate
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stratification flow [2] and a strong sedimentation tendency. Stratification flow affects the spatial and
temporal distribution of water density, salinity and suspended sediment concentration (SSC).
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spring period due to vertical turbulent mixing. These field observations were used with numerical 
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characteristics of sediment transport in this region. Because of a strong sedimentation tendency in 
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Especially, considering that most of severe damages and sedimentation events occurs in the monsoon 
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critical. Despite the importance of the stratified flow effect on SSC, studies on the relationship 
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Figure 1. Location of observation point.

Since the 1990s, field observations have been conducted for salinity distribution. Choi et al. [3]
measured the vertical distribution of flow velocity and salinity using an acoustic Doppler current
profiler (ADCP) under the conditions of spring/neap tides. Yoon [4] examined tidal cycles of flow
velocity and salinities using data observed in the estuary of Gyeonggi Bay and analyzed the relationship
between river discharge and salinity distribution. An empirical equation of salt infiltration distance
was presented, considering the tidal flow, river discharge and topographical effects. Yoon and Woo [5]
related vertical stratification to tidal forcing. They found strong vertical stratification of salinity
distribution occurred during the neap period while it decreased during the spring period due to
vertical turbulent mixing. These field observations were used with numerical modeling to understand
the complex circulation patterns in this area (e.g., [2,5]).

In addition to salinity distribution, SSC is one of the parameters needed to determine the
characteristics of sediment transport in this region. Because of a strong sedimentation tendency in
this study site, SSC is an important parameter to understand the sediment transport mechanism.
Especially, considering that most of severe damages and sedimentation events occurs in the monsoon
period in Korea, the stratification effect on SSC due to an abrupt increase of freshwater discharge is
critical. Despite the importance of the stratified flow effect on SSC, studies on the relationship between
stratified flow and SSC are still rare.

In this study, the effect of stratified flow on SSC was examined. We applied an artificial neural
network (ANN), one of the data-driven models, to field observation data to find the hydrodynamic
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parameters that are important to predict SSC in the estuary. Data-driven modeling is an appropriate
approach to inductively understand the complex mechanisms in an estuary. An ANN can identify the
relationship between input and output data using a learning process resembling that of the human
brain. The ANN has been mostly used when cause and effect is not clearly understood but sufficient
data is available [6]. Utilizing these advantages, it has been actively used for difficult and complicated
coastal sediment studies (e.g., [7–13]). The present paper aimed to not only provide a general predictor
of sediment concentration, but also explore the sediment transport mechanism from the ANN modeling
results. To achieve this goal, we investigated the prediction capability with various combinations of
input variables. Using this approach, we examined the contribution of each variable for sediment
concentration in the stratified flow condition.

This paper is organized as follows. In Section 2, we analyzed the field data focusing on tidal cycle
and river discharge. In Section 3, we optimized the ANN structure and explained the procedure for
the analysis. In Section 4, we provide the results with the contribution of the hydrodynamic processes
forcing the sediment response in the estuary. Last, in Section 5, we summarize the conclusions.

2. Field Observation

The observation point was located on Gyeongin Port area as shown in Figure 1. The water
depth (h) of the measurement was DL (−) 9.6 m. The maximum tidal current was more than 2 m/s and
showed ebb-dominance characteristics [5]. The Incheon Regional Maritime Affairs and Fisheries Office
conducted observations of the hydrodynamic and sedimentation characteristics (e.g., flow velocity,
suspended sediment concentration, water temperature, salinity and wave heights) from 2012 to 2015.
In this study, the observation results of the summer of 2012 (3 August 2012 to 2 September 2012), which
have few missing data and outliers, were used. In this period, there was a flood event (due to Typhoon
Bolaven) in 2012 and, therefore, the effect of abrupt river discharge on the hydrodynamic process in
the estuary can be analyzed.

For the observation of flow velocity and suspended sediment concentration, 300 data (sampling
rates of 0.5 Hz) were obtained for 10 min using an acoustic Doppler current profiler (ADCP, 600 kHz).
ADCP measures the intensity of backscatter as echo intensity from sediment particles. Simple linear
regression analysis was used to estimate the SSC using the sampled sediment concentration as a
reference. Each set of 300 data was averaged for obtaining the average flow velocity and direction.
The upper and lower observation points for the ADCP were set to 0.2 h and 0.8 h from the water
surface to the bottom, respectively. A CTD(Conductivity-Temperature-Depth Profiler)-Diver was used
for observation of water temperature and salinity. The upper observation point for the CTD-Diver
was set to 1 m below the water surface, and the lower observation point was set to 0.5 m above the
seabed. Observations of water temperature and salinity were realized at 10 min intervals over a 30-day
period. The tide elevation was determined based on data from the Incheon tidal station of the Korea
Hydrographic and Oceanographic Agency (KHOA), and it was observed at 1 min intervals during
the same period as that of the other observed characteristics. More details of the field observation are
referred to in the report published by the Incheon Regional Maritime Affairs and Fisheries Office. [14]

Figure 2 presents a plot of the observations during the summer of 2012 (3 August 2012 to
2 September 2012). Figure 2a shows a freshwater discharge from the Han River. The real-time
hydrological data (1 h data) was provided by the Ministry of Environment’s Han River Flood Control
Center (http://www.hrfco.go.kr). The overall average flow discharge was 1395.5 m3/s, but the flow
rates in the dry period (4–9 August 2012) and in the rainy period (20–25 August 2012) were 248.9 m3/s
and 2577.7 m3/s, respectively, showing a difference of 1 order of magnitude. Figure 2b shows the water
level. The maximum tide difference was observed to be 8.8 m, showing a significant difference between
the spring tide (e.g., 20 August) and neap tide (e.g., 13 August). Figure 2c–f shows the flow velocity,
suspended sediment concentration, salinity and water temperature. Note that there are some different
features of the upper and lower observations during the dry and rainy periods.

http://www.hrfco.go.kr
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Figure 2. Classification of the dry and the rainy period during the summer in 2012: (a) freshwater
discharge from Han River, (b) tide elevation of Incheon station, (c) horizontal flow velocity (+: north,
−: south), (d) salinity, (e) temperature, and (f) SSC.

Figures 3 and 4 show close-ups for the dry and rainy periods in Figure 2. Both the dry and
rainy periods were set to have 10 tidal cycles with the same phase from the spring tide to neap tide.
The difference in the flow velocity between the flood tide and ebb tide was smaller than 10 cm/s during
the dry period, while the difference in flow velocity between the flood tide and ebb tide was higher
than 20 cm/s in the rainy period. Here, (+) of the flow velocity means flood tide to North and (−) means
ebb tide to South. A large flow velocity during ebb tide was shown in the upper layer for the rainy
period, as seen in Figure 3c. It can be inferred that this is the result of an increase in the flow velocity in
the surface (upper) layer when the tidal current is in the same direction as the river discharge direction
during ebb tide. This increase in flow velocity in the ebb tide is illustrated in Figure 5.
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Table 1 lists the averaged flow velocity for the upper/lower points, dry/rainy period and flood/ebb
tides. The average flow velocity in ebb tide was faster than that in flood tide. The vertical flow velocity
ratios, defined as the upper flow velocities divided by the lower flow velocities, were 1.16 for flood
tide and 1.26 for the ebb tide in the dry period. However, in the rainy period, the vertical flow velocity
ratios were 1.19 for the flood tide and 1.48 for the ebb tide. As the freshwater discharge from the Han
river increases, the flow velocity in the upper layer appears to be large in the ebb tide, whereas the flow
velocity in the lower layer is constant, even in the ebb tide. This implies that the abruptly increased
amount of freshwater from the Han river in the rainy period flows over the heavier seawater with
vertically stratified characteristics.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 5 of 14 
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period. The smaller salinity in the rainy period shows the influence of the freshwater flow from the 
river. During the dry period, periodic changes in salinity appeared in accordance with the tidal phase, 
whereas the periodicity was weak during the rainy period. The salinity in the lower point shows little 
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This tendency can also be found in Figure 4e, where the water temperature in the lower point was not 
in phase with that in the upper point during the rainy period, whereas the water temperatures in the 
upper and lower points were in phase in the dry period, as shown in Figure 3e. Overall, it was found 
that the stratification feature is formed in the rainy period because of the abruptly increased amount of 
freshwater from the river. 

Figure 4. Time series of the observed data during the rainy period: (a) freshwater discharge from Han
River, (b) tide elevation of Incheon station, (c) horizontal flow velocity (+: north, −: south), (d) salinity,
(e) temperature, and (f) SSC.

Figures 3d and 4d show the salinity of the upper/lower points for the dry and rainy periods,
respectively. The average salinity was 20.4 to 24.2 psu in the dry period and 14.0 to 15.7 psu in the rainy
period. The smaller salinity in the rainy period shows the influence of the freshwater flow from the
river. During the dry period, periodic changes in salinity appeared in accordance with the tidal phase,
whereas the periodicity was weak during the rainy period. The salinity in the lower point shows little
dependency on tidal cycle, indicating that the vertical mixing is very limited owing to stratification.
This tendency can also be found in Figure 4e, where the water temperature in the lower point was not
in phase with that in the upper point during the rainy period, whereas the water temperatures in the
upper and lower points were in phase in the dry period, as shown in Figure 3e. Overall, it was found
that the stratification feature is formed in the rainy period because of the abruptly increased amount of
freshwater from the river.
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Figure 5. Vertical profile of current during (a) flood tide and (b) ebb tide.

Table 1. Comparison of the ratio of the averaged upper flow velocity to the averaged lower flow velocity.

Tidal Period

Dry Period Rainy Period

Flood Tide Ebb Tide Flood Tide Ebb Tide

Low Up Up/Low Low Up Up/Low Low Up Up/Low Low Up Up/Low

1 70.5 78.2 1.11 76.9 105.3 1.37 73.0 92.8 1.27 67.8 95.9 1.41
2 85.2 91.1 1.07 76.4 103.0 1.35 69.7 78.6 1.13 66.4 112.2 1.69
3 70.0 90.0 1.29 77.0 86.0 1.12 71.8 74.6 1.04 64.5 109.2 1.69
4 59.9 82.7 1.38 70.0 84.3 1.20 69.0 80.6 1.17 66.1 97.2 1.47
5 71.2 74.2 1.04 69.8 94.2 1.35 67.8 75.0 1.11 56.7 86.3 1.52
6 73.5 77.2 1.05 66.0 85.7 1.30 52.5 72.2 1.38 53.9 76.0 1.41
7 57.3 70.3 1.23 64.1 75.2 1.17 47.6 58.3 1.22 49.8 65.1 1.31
8 53.1 68.3 1.29 68.0 77.0 1.13 39.7 48.1 1.21 44.2 56.2 1.27
9 58.5 61.6 1.05 56.8 80.6 1.42 - - - - - -

Avg. 66.1 76.8 1.16 69.5 87.6 1.26 60.5 71.8 1.19 59.0 87.2 1.48

Figures 3f and 4f show the SSC of the upper/lower points for the dry and rainy periods, respectively.
In the dry period, the SSC in the lower point (204.1–208.7 mg/L) was 30% larger than that in the upper
point (155.6–173.3 mg/L). In the rainy period, the SSC in the lower point (246.7–247.2 mg/L) was 50%
larger than that in the upper point (164.8–169.1 mg/L). There was a 20% increase of SSC in the lower
layer during the rainy period, although the SSCs in the upper point for both the dry and rainy periods
were similar. It can be inferred that the vertical mixing was reduced due to the activated stratified
flow during the rainy period, and therefore, the suspended sediments in the lower layer could not be
transported upwards.

3. Modeling of Artificial Neural Network

Figure 6 shows the architecture of the ANN model in the present study. Based on the framework
of the ANN model developed by Yoon et al. [9], we set a new configuration for the observed field data
sets. The ANN architecture is a two-layer feed forward with one hidden layer and one output layer,
and the model is calculated with a back-propagation algorithm (Levenberg-Marquardt). The input
layer consists of the various combinations of hydrodynamic input data including river discharge, flow
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velocity and salinity. To account for the time history of input data, four previous time steps of each
input parameter are also used. The output layer consists of the SSC at the lower point. These input
and output data sets consist of 30 days of data at 1 h intervals, with a total of 720 data points.
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Input data and the neurons in the hidden layer are interconnected with weights and bias. Then,
the information in the hidden layer is transferred to the output layer with another transfer function.
The net input, n1, which is used for the hidden layer can be expressed as (Hagan et al. [15]):

n1 = W1p + b1, (1)

where W is the weight matrix, p is the input and b is the bias. Note that the bold letters represent
vectors. The superscript 1 indicates the hidden layer and superscript 2 indicates the output layer. In
the weight matrix (W), the first index indicates the neuron destination for that weight and the second
index indicates the source of the signal fed to the neuron. The net input, n1, is fed into the hidden layer
with the tansig transfer function:

a1 = f 1(n1) =
en1
− e−n1

en1 + e−n1 , (2)

where a1 is the neuron output of the hidden layer. Then, the neuron output from the hidden layer (a1)
is used for the output layer with the linear transfer function:

a2 = f 2(W2a1 + b2) = W2a1 + b2 (3)

where a2 is the neuron output from the output layer. More details about the ANN model are referred
to Yoon et al. [10].

Table 2 lists the cases of input combinations, categorizing them into four groups. Group 1 consists
of flow velocity in the lower point. Group 2 consists of river discharge and salinity in addition to flow
velocity. Group 3 consists of salinity in addition to flow velocity and river discharge. Group 4 includes
hydrodynamic parameters in the upper point, such as flow velocity and salinity, in addition to the
hydrodynamic parameters in the lower point. River discharge is abbreviated as Q, flow velocity is
abbreviated as V and salinity is abbreviated as S. The lower subscripts L and U represent the lower and
upper measurement points. For instance, QVLSLVU represents the conditions including river discharge,
flow velocity at the lower point, salinity at the lower point and flow velocity at the upper point.
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Table 2. Case of input data. Closed and open circles denote used and unused input data, respectively.

Group Case River Discharge Low. Flow Velocity Low. Salinity Up. Flow Velocity Up. Salinity

1 VL # • # # #

2
QVL • • # # #
VLSL # • • # #

3 QVLSL • • • # #

4
QVLSLVU • • • • #
QVLSLSU • • • # •

QVLVUSU • • # • •

Figure 7 shows the subset for training, validation and prediction for ANN modeling. Out of the
720 data observed at 1 h intervals for 30 days, 360 data (50% of the total data) were used for training,
180 data (25% of the total data) were used for verification, and 180 data (25% of the total data) were
used for prediction. The tests were repeated by changing the training, validation and prediction sets in
the whole data set following the so-called bootstrapping technique (e.g., [6,9,10]).
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(b) SSC at the lower point, (c) subsets.

Because the back-propagation ANN is sensitive to the initial weights and biases, it is important to
find the proper initial weights and biases for the prediction. Following the procedure by Oehler et al. [9],
the ANN was initialized 22 times with random weights and biases. Out of the 22 observations, the
weight and bias of the best case in the training and validation set, that with a minimum mean square
error (MSE), were kept, and were applied for the prediction set. This approach accounts for the 10%
best cases with a confidence of 90%, assuming that the random initial weights and biases follow a
normal distribution [9,10].

Figure 8 shows the performance of the ANN with various numbers of neurons. The ANN results
are dependent on the number of neurons in the hidden layers. To optimize the number of neurons
in the hidden layer, we tested the sensitivity for different number of neurons (1, 2, 3, 4, 5, 8, 10) in
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the hidden layer. We found that three or four neurons showed the best performance for each case.
For simplicity, we adopted three neurons in the hidden layer in the present study.
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The performance of the ANN was estimated with the maximum correlation coefficient between
the measured and predicted SSC. Subset 5 had the highest correlation coefficient with 0.834, whereas
Subset 1 had the lowest correlation with r = 0.484. In Subset 5, the SSC was well predicted because the
training set included both the flow velocity in the ebb/flood tides and the increase/decrease pattern of
the river flow. Other subsets did not include the event of significant river discharge, which leads to
insufficient training data to predict the SSC. This indicates the importance of using an appropriate
training data set for predicting performance. In this regard, Subset 5 was used for ANN modeling in
this study.

Figure 9 shows the time series of the observed and predicted SSC. The time series of SSC is judged
to be relatively reproducible. However, as van Maanen et al. [8] and Yoon et al. [10] remarked, the ANN
is sometimes difficult to train and predict for extreme values, and there were some discrepancies for
extreme values (e.g., September 15 and 17). Nevertheless, the ANN model configured in the study
shows a good predictive performance (r = 0.82). More details of the ANN information for this case are
given in Appendix A.
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4. Results and Discussion

The model performance was evaluated more closely by determining the goodness-of-fit between
the measured and predicted SSC with four methods. These methods were the discrepancy ratio (R),
root-mean-square-error (RMSE), mean absolute percent error (MAPE), and correlation coefficient (r).

R is defined as:
R =

1
n

∑n

i=1

xi

yi
(4)

where xi is the observed value and yi is the predicted value. If the discrepancy ratio is 0, the predicted
value is identical to the observed value. If the discrepancy ratio is larger than 0, the predicted value
overestimates, and if the discrepancy ratio is smaller than 0, it underestimates. The RMSE also referred
to as root-mean-squared deviation (RMSD) is defined as follows:

RMSE =

√
1
n

∑n

i=1
(x i−yi

)2
(5)

The RMSE serves to aggregate the magnitudes of the errors in predictions for time series into
a single measure of predictive power. The RMSE is always non-negative, and a value of 0 would
indicate a perfect fit to the data. In general, a lower RMSE indicates better predictability than a higher
one. The MAPE is a measure of prediction accuracy of a prediction method in statistics. For example,
in trend estimation, it is used as a loss function for regression problems in machine learning. It usually
expresses the accuracy as a ratio defined as follows:

MAPE(%) = 100×
1
n

∑n

i=1

|x i − yi

∣∣∣
xi

(6)

A correlation coefficient (r) is a numerical measure of some type of correlation, meaning a statistical
relationship between two values. Several types of correlation coefficient exist, each with their own
definition and own range of usability and characteristics. The correlation coefficient is defined as:

r =
1

n− 1

∑n

i=1
(

xi − x
σx

)(
yi − y
σy

) (7)

where x and y are the mean of the observed and predicted values, and σx, σy are the standard deviations
of x and y, respectively. Several types of correlation coefficient exist, each with their own definition and
own range of usability and characteristics. A correlation of −1.0 shows a perfect negative correlation,
while a correlation of 1.0 shows a perfect positive correlation. A correlation of 0.0 shows no linear
relationship between the movement of the two variables.

Table 3 presents the results of goodness-of-fit between the observed and predicted SSC.
The calculated R, RMSE, MAPE and r were ranked in order of highest fit and indexed by
score. These indexes were summed and the rank of goodness-of-it was calculated. In general,
the hydrodynamic information at the lower point is closely related to the SSC at the lower point (e.g.,
QVL, QVLSL). Interestingly, when salinity at the upper point was added to the hydrodynamics at
the lower point, such as QVLSLSU, this case had the best fit between the observed and predicted
SSC. By including the salinity at the upper point, the stratified features of flow were incorporated in
the prediction of SSC. This shows, inductively, that the stratification effect caused by the density (or
salinity) difference between seawater and freshwater is important to predict SSC in an estuary.
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Table 3. Results of goodness-of-fit between observed and predicted SSC.

Group Case R 1 RMSE 2 MAPE 3 r 4 Sum. of Rank Index Fitness Rank

1 VL 7 (1.26) 7 (54.2) 7 (36.3) 7 (0.738) 28 7

2
QVL 6 (1.19) 4 (47.1) 6 (29.3) 3 (0.796) 19 5
VLSL 4 (1.15) 2 (45.4) 3 (27.3) 4 (0.793) 13 2

3 QVLSL 3 (1.14) 3 (45.9) 2 (27.0) 5 (0.788) 13 2

4
QVLSLVU 5 (1.15) 5 (47.2) 5 (28.8) 6 (0.771) 21 6
QVLSLSU 1 (1.02) 1 (44.6) 1 (25.6) 1 (0.820) 4 1
QVLVUSU 2 (0.91) 6 (48.6) 4 (27.5) 2 (0.820) 14 4

1 discrepancy ratio; 2 root-mean-square-error; 3 mean absolute percent error; 4 correlation coefficient.

This finding can be helpful for enhancing the performance of numerical modeling in an
estuary. For example, this study site is typically assumed vertically well mixed and thus a
horizontal, two-dimensional model was used (e.g., Park et al. [2]). However, as noted by
Park et al. [2], three-dimensional modeling may differ from the two-dimensional depth-averaged
estimates. The stratification effect on SSC is important information to estimate mass transport and
sediment transport in the rainy period. As most of severe damage and sedimentation events occur in the
monsoon period in Korea, the stratification effect on SSC can be considered in a numerical simulation.

We anticipate that some improvements and additional studies will be needed to develop the
present ANN model. A limitation of the present study is that it uses data collected at one study site.
Because of the complex structure of the ANN model, it is difficult to apply the configuration (weights
and bias) of the present ANN model to other locations. Adding data sets of measured hydrodynamic
parameters and sediment responses at other sites can improve the predictability of the ANN model
(or any other data-driven predictive model). Moreover, the data set used here contains only one
month of time series. Further improvements to the model could include longer data sets with a larger
number of events. Finally, future studies will need to analyze additional input parameters such as
wind, waves and meteorological factors. In this study, only river discharge, flow velocity and salinity
were used as predictors of SSC. However, previous studies have demonstrated that SSC can be affected
by wind and water levels, along with salinity and flow velocity [16,17]. Although it is not possible to
explain the increase in SSC due to sediment resuspension by wind force alone, the SSC is increased by
wind-induced waves even at high tide [18]. Meteorological factors such as wind speed, wind direction
and precipitation have been found to be the significant driving forces for SSC variation at both the
short (minutes) and long (days) time scales [19].

5. Conclusions

In this study, the characteristics of stratified flow caused by river flow during flooding were
analyzed using measured data of tidal currents, river freshwater discharge, salinity and SSC observed
in Gyeongin Port, a representative estuary of Korea. Then, using an ANN, one of the data-driven
modeling techniques, the effect of stratified flow on the SSC was inductively examined. The conclusions
obtained through this research can be summarized as follows.

1. It was found that there were stratified flow features of flow velocity, salinity and temperature
between the upper and lower layers in the Gyeonin Port area of South Korea. The abruptly
increased amount of freshwater from a river in the rainy period flows over the heavier seawater,
with vertically stratified characteristics. In addition, even though the periodic changes in salinity
and temperature of the surface layer due to the tidal cycle were significant, changes in the lower
layer were small, and the flow characteristics of the stratified flow could be confirmed.

2. The SSC in the estuary shows a relatively high correlation with the discharge from the river,
the flow velocity at the surface and bottom and the salt concentration at the surface and bottom.
When the freshwater flow direction and the tidal flow direction are the same, there is a relatively
high correlation between the SSC and the hydrodynamic parameters in both the surface and
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bottom layers. During flood tide, when the directions of the freshwater and tidal flows are
opposite, the SSC in the lower layer has a lower correlation with hydrodynamic parameters due
to the stratification effect.

3. An ANN, one of the data-driven modeling techniques, was used to analyze the correlation
between SSC and hydrodynamic factors. When the number of neurons was 3–4, it had the
best performance, and it was found that the model’s ability to predict SSC was improved when
the training section included the abrupt river discharge due to flooding. This implies that the
stratification effect due to the rapid discharge from a river is important in the prediction of SSC in
an estuary.

4. The model performance was evaluated more closely by determining the goodness-of-fit between
the measured and predicted SSC with four methods. The four goodness-of-fit methods were
R, RMSE, MAPE and correlation coefficient (r). The results of goodness-of-fit were ranked and
indexed by the score. The case including the discharge from the river, flow velocity near the
bottom and surface and bottom salinity showed the best fit between the measured and predicted
SSC. In particular, it was found that the highest degree of fitness was obtained from the results
considering salinity data of both the surface and bottom layers, which represent the stratification
effect. This shows, inductively, that the stratification effect caused by the density difference
between seawater and freshwater is important to predict SSC in an estuary.
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Appendix A

The weights and bias of hidden layer and output layer for Figure 9 are listed in Tables A1 and A2,
respectively. Five time steps (i-4, i-3, i-2, i-1, i), where i represents the prediction time, of each input
parameter are used.
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Table A1. Weight(W1) and bias(b1) matrix of hidden layer (Case: QVLSLSU and Subset 5). The superscript 1 indicates the hidden layer.

Neuron

Output W1

b1Lower Velocity (VL) River Discharge (Q) Lower Salinity (SL) Upper Velocity (VU)

i-4 i-3 i-2 i-1 i i-4 i-3 i-2 i-1 i i-4 i-3 i-2 i-1 i i-4 i-3 i-2 i-1 i

1st −0.545 −0.562 −0.441 0.275 0.099 0.057 0.117 −0.158 −0.295 0.049 0.324 0.451 0.345 −0.507 −0.035 −0.351 0.365 −0.390 0.266 0.007 1.479
2nd 0.194 0.220 −0.254 0.081 −0.557 −0.459 −0.558 −0.377 −0.217 0.327 0.172 −0.084 0.044 −0.224 −0.312 −0.538 −0.542 0.123 −0.165 0.299 0.000
3rd −0.489 −0.585 −0.217 0.018 −0.174 −0.268 −0.552 −0.228 0.099 −0.150 0.061 0.087 0.569 −0.141 −0.211 −0.570 0.474 0.027 0.304 −0.162 −1.479

Table A2. Weight(W2) and bias(b2) matrix of output layer (Case: QVLSLSU and Subset 5). The superscript 2 indicates the output layer.

Neuron

Output W2

b2
1st Neuron Output 2nd Neuron Output 3rd Neuron Output

1st 0.850 0.802 0.103 0.042
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