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Abstract: Turbidity currents deliver sediment rapidly from the continental shelf to the slope and
beyond; and can be triggered by processes such as shelf resuspension during oceanic storms;
mass failure of slope deposits due to sediment- and wave-pressure loadings; and localized events that
grow into sustained currents via self-amplifying ignition. Because these operate over multiple spatial
and temporal scales, ranging from the eddy-scale to continental-scale; coupled numerical models
that represent the full transport pathway have proved elusive though individual models have been
developed to describe each of these processes. Toward a more holistic tool, a numerical workflow was
developed to address pathways for sediment routing from terrestrial and coastal sources, across the
continental shelf and ultimately down continental slope canyons of the northern Gulf of Mexico,
where offshore infrastructure is susceptible to damage by turbidity currents. Workflow components
included: (1) a calibrated simulator for fluvial discharge (Water Balance Model - Sediment; WBMsed);
(2) domain grids for seabed sediment textures (dbSEABED); bathymetry, and channelization;
(3) a simulator for ocean dynamics and resuspension (the Regional Ocean Modeling System; ROMS);
(4) A simulator (HurriSlip) of seafloor failure and flow ignition; and (5) A Reynolds-averaged
Navier–Stokes (RANS) turbidity current model (TURBINS). Model simulations explored physical
oceanic conditions that might generate turbidity currents, and allowed the workflow to be tested for
a year that included two hurricanes. Results showed that extreme storms were especially effective
at delivering sediment from coastal source areas to the deep sea, at timescales that ranged from
individual wave events (~hours), to the settling lag of fine sediment (~days).
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1. Introduction

The Gulf of Mexico continental margin generates >1.7 million barrels of oil per day, through >3500 oil
platforms. The northern Gulf of Mexico houses >45,000 km of underwater pipes that may be exposed
to structural damage from extreme oceanic events. During the passage of a hurricane, storm waves
can exceed 10 m in height, resuspending seafloor sediment and potentially liquefying the seafloor.
Both of these mechanisms may induce sediment turbidity currents, and in fact, ~5% of the underwater
petroleum pipes appear to be broken or damaged by sudden powerful turbidity currents (BOEM pers.
comm. 2015). For example, in 2004, a large sediment failure in the wake of Hurricane Ivan toppled an
oil platform offshore of the Gulf of Mexico and moved it ~0.17 km downslope, initiating oil and gas
leaks at a water depth of 140 m [1]. Leakage from such offshore oil and gas infrastructure puts at risk
about 40% of the USA’s coastal and estuarine wetlands, which are vital to recreation, agriculture, and a
$1B/y seafood industry [2].

Turbidity currents are important transport mechanisms in submarine canyons [3,4], such as the
Mississippi and the De Soto Canyons, which incise the continental slope offshore of the Mississippi
Delta. Several processes have been shown to have the potential to generate turbidity currents,
including physical oceanographic mechanisms. Internal wave breaking on the upper slope may
mobilize seafloor sediment [5]. Wave-current interactions on continental shelves during large oceanic
storms can initiate wave-supported gravity flows [6]. Continental slope deposits may experience
sediment failure triggered by sediment loading and over-steepening, and aided by excess pore pressure
brought on by ground accelerations [7,8]. Localized events may grow into sustained currents via a
self-amplifying ‘ignition’ process with accelerating erosion and entrainment of sediment from the
seafloor [9,10].

While the relative importance of these mechanisms in the northern Gulf of Mexico remains to
be seen, evidence points to the potential for oceanic storms to mobilize sediment there, either during
the passage of moderate storms [11] or more extreme events such as hurricanes [12]. Analysis of
sediment deposits indicated that most (~75%) of the sediment budget of the Mississippi Canyon
could be attributed to delivery during major hurricanes, likely through gravity-driven transport [13].
Several processes affect the seafloor during short-lived hurricane passages, including sediment mass
failures, erosion, and suspension. For example, mudflows in the Mississippi Delta area, triggered
by the 1969 Category 5 Hurricane Camille, destroyed the offshore platform SB-70B. The seafloor at a
depth of about 90 m moved more than 1000 m downslope with soil flows up to 30 m in thickness [14].
Seafloor shear stresses from waves and currents of up to 1 N/m2 were monitored at a depth of 90 m
during the 2004 Category 5 Hurricane Ivan, reaching the critical shear stress for fine gravel [15].
The Ivan event lifted suspended sediment as high as 25 m in the water column and eroded the seafloor
up to 0.30 m vertically over more than 500 km2, thus removing hundreds of millions of tons of sediment
with deposits at the shelf edge and upper slope [16], and additionally causing apparent damage to oil
infrastructure [1]. Evidence of the effects of large storms at great depth in the Gulf of Mexico has been
seen in conjunction with other hurricanes, such as Hurricane Georges in the Mississippi Canyon [12];
Hurricane Frederic in the De Soto Canyon [17]; and Hurricane Allen [18]. Rapid loading of sections of
the seafloor locally enhances the prospects for gravitational slope failures, given the associated rapid
increase in pore pressures and reduction in effective sediment strengths [7]. Process-based numerical
modeling offers a way to study such ephemeral high-energy processes.



J. Mar. Sci. Eng. 2020, 8, 586 3 of 26

Studies of sediment dispersal on continental margins, including the northern Gulf of Mexico,
have typically focused on an individual component of the transport path such as gravity-driven
transfer via canyons, shelf resuspension, or flood plume dispersal. For example, numerical models for
suspended sediment transport have been developed and applied to the northern Gulf of Mexico [19–22],
but these types of suspended transport models have not been directly linked to turbidity current
models. This paper describes a numerical capability to simulate the transport of sediment, from fluvial
sources, to the continental shelf, the deeper continental slope, and ultimate depocenters. Accounting
for these sediment transport pathways, and the hazards that they present, is a problem of multi-scale
physics, ranging from continental-scale drainage basins that deliver sediment to the sea, to shelf-wide
storm systems that mobilize and redistribute sediment, to small-scale turbulent motions that affect
turbidity current generation and structure.

This paper describes a loosely coupled numerical workflow that has been developed to address
land-sea pathways for sediment routing of terrestrial and coastal sources, across the continental shelf,
and ultimately down the continental slope and canyons of the northern Gulf of Mexico. Few studies
have attempted to integrate the various transport mechanisms into a single comprehensive framework,
accounting for the multi-scale physics that are relevant to the full sediment transport pathway.
The workflow was used to explore conditions that may trigger episodes of sediment transport onto the
continental slope and to evaluate two hypotheses: (1) episodic sediment transport down a submarine
canyon is fed by sediment input at the canyon head from wave and current resuspension, and (2)
turbidity currents are triggered by failures near the shelf-slope break and are likely to pass into the
canyons of the continental slope. Simulation results were based on oceanographic and meteorological
conditions that could impact the generation of turbidity currents. The workflow (Figure 1) includes
modules that:

(1) Simulate the fluvial delivery of water and sediment into the Gulf of Mexico with the Water
Balance Model-Sediment (WBMsed) and as augmented by USGS (US Geological Survey) and USACE
(US Army Corps of Engineers) gauged river data;

(2) Develop domain grids and bathymetry for ocean circulation and sediment transport models;
(3) Compute spatial griddings of seabed sediment texture from dbSEABED, and of topographic

channelization from the bathymetry, for use in sediment transport and seabed failure models;
(4) Employ a high resolution (10 km) spectral wave action model (WaveWatch III®) driven by

GFDL-GFS (Geophysical Fluid Dynamics Laboratory–Global Forecast System) winds for use in the
ocean and sediment transport models;

(5) Calculate hourly-timescale ocean circulation at a spatial resolution of a few kilometers via the
Regional Ocean Modeling System (ROMS) forced with ECMWF (European Centre for Medium-Range
Weather Forecasts) ERA (ECMWF Re-Analysis) winds;

(6) Represent seafloor resuspension and transport at the same resolution as ROMS’ hydrodynamics
using the Community Sediment Transport Modeling System (CSTMS);

(7) Apply seabed mass-failure and a sediment suspension model (HurriSlip) to determine failure
and ignition locations, and the conditions to be used as input to the turbidity current model;

(8) Develop and deploy a Reynolds-averaged Navier–Stokes (RANS) model (TURBINS) to route
sediment flows down the Gulf of Mexico slopes and canyons, providing estimates of bottom shear
stress needed for ascertaining possible damage to offshore infrastructure.
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2. Materials and Methods 

Section 2.1 describes the northern Gulf of Mexico, where the model workflow was applied. 
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suite of models used to evaluate sediment routing in the northern Gulf of Mexico. 

2.1. Environmental Setting 

The Mississippi River drains 41% of the continental United States before entering the northern 
Gulf of Mexico (Figure 2). The discharge of the Mississippi River is regulated so that approximately 
70% of it enters the Gulf through its main Mississippi River channel, while the remaining 30% enters 
through the Atchafalaya River channel [23]. Average modern-day sediment loads of the Mississippi 
and Atchafalaya Rivers are 115 and 57 Mt/yr, respectively [23]. Sand is deposited near the river 
mouths while most of the remaining suspended silts and muds are dispersed more widely [19,24,25]. 
Rapid delta progradation during the Holocene has narrowed and steepened the continental shelf (~20 
km wide, ~0.4° gradient). The Mississippi Canyon, which cuts into the continental slope to the west 
of the bird-foot delta has been implicated as a conduit for shelf sediment during large storms [12,26]. 

Figure 1. Workflow showing models employed and boundary data usage. Models and data systems
discussed in detail in the text. The white text identifies whether the models ran were Point models,
2D horizontal plan-view; 2D vertical transect or 3D.

2. Materials and Methods

Section 2.1 describes the northern Gulf of Mexico, where the model workflow was applied.
Section 2.2 provides descriptions and methods for each component of the workflow, noting how the
various components can interact with one another. Section 2.3 outlines the implementation of the suite
of models used to evaluate sediment routing in the northern Gulf of Mexico.

2.1. Environmental Setting

The Mississippi River drains 41% of the continental United States before entering the northern
Gulf of Mexico (Figure 2). The discharge of the Mississippi River is regulated so that approximately
70% of it enters the Gulf through its main Mississippi River channel, while the remaining 30% enters
through the Atchafalaya River channel [23]. Average modern-day sediment loads of the Mississippi
and Atchafalaya Rivers are 115 and 57 Mt/yr, respectively [23]. Sand is deposited near the river
mouths while most of the remaining suspended silts and muds are dispersed more widely [19,24,25].
Rapid delta progradation during the Holocene has narrowed and steepened the continental shelf
(~20 km wide, ~0.4◦ gradient). The Mississippi Canyon, which cuts into the continental slope to
the west of the bird-foot delta has been implicated as a conduit for shelf sediment during large
storms [12,26].

A fair amount is known about suspended sediment dispersal on the Gulf of Mexico continental
shelf. Frontal systems that occur frequently during winter months can create energetic waves and
currents that cause significant sediment transport [27,28]. Wave contributions dominate the bed
stresses on the continental shelf offshore of the Mississippi Delta, but fairweather waves are typically
capable of mobilizing the seabed only in the surf and nearshore zones [19]. During extreme oceanic
storms, however, deep-water wave heights exceed 10 m, with nearshore waves east of the bird-foot
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delta reaching 9 m in 15 m of water during Hurricane Ivan [29]. Storm waves, either from moderate
storms or intense but infrequent hurricanes, have been shown to mobilize sediment mass failures on
the Mississippi River Delta Front at water depths of ~75 m [11]. Sediment trap data and allied mooring
and camera data from deep-water locations (~1000 m) have indicated that frequent, small magnitude
resuspension events driven by inertial currents contribute to sediment transport there [30]. Less is
known, however, about the mechanisms that drive shelf–slope sediment exchange or transport down
the continental slope or canyons.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 5 of 27 
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Figure 2. Study area identifying locations of bird-foot delta and Southwest (SW) Pass of Mississippi
River; Atchafalaya River and Bay; Mobile Bay; Tarbert Landing (site of commonly used river gauge).
Satellite image of Mary 17, 2011 from MODIS on NASA’s Aqua satellite.

2.2. Workflow Components

Sections 2.2.1–2.2.6 describe individual workflow components, each developed to quantify a
different component of the sediment dispersal pathway, from delivery of sediment to the norhtern
Gulf of Mexico from river discharge, to turbidity current transport in deep water.

2.2.1. River Discharge Modeling Results and Observations

Few rivers that discharge into the Gulf are adequately gauged, with only the Mississippi and
Pearl Rivers having associated sediment flux determinations. Therefore, a global WBMsed [31,32]
was used to estimate daily discharge and sediment flux from rivers into the northern Gulf of Mexico.
WBMsed combined the Water Balance Model (WBM) with the BQART and Psi models. Specifically,
BQART simulates long-term (30+ years) average suspended sediment loads for a basin outlet and
is based on individual upstream basin properties for each distributed pixel, including geographical,
geological and human factors [33]. The Psi variability model resolves the suspended sediment flux on a
daily time step from the long-term sediment flux estimated by BQART, able to capture the intra-annual
and inter-annual variability observed in natural river systems [34]. Skill assessment of WBMsed was
based on a comparison to daily USGS observations of water and sediment discharge [35]; and daily
discharge predictions compared favorably to both ground-based gauging stations and satellite-based
observations [31,36]. Sixteen rivers that discharge to the northern Gulf of Mexico (Figure 3A) were
simulated using observed conditions for 1995–2011.
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Freshwater discharge to the northern Gulf of Mexico peaks seasonally in February through March
(Figure 3B). The combined Mississippi–Atchafalaya Rivers supply 81% of the freshwater discharge
into the northern Gulf; other significant riverine sources are identified in Figure 3A. The combined
Mississippi and Atchafalaya flow averages 20,874 m3/s with a standard deviation of 11,211 m3/s (USACE
observations). The WBMsed estimate of the combined Atchafalaya–Mississippi discharge for the same
period was 18,300 m3/s, with a standard deviation of 12,400 m3/s. The total predicted (1995–2011)
discharge for all northern Gulf rivers was 22,800 m3/s, with a standard deviation of 15,400 m3/s.
The merged discharge of non-Mississippi rivers was 4540 m3/s or 19% of the total flow into the northern
Gulf of Mexico, with a standard deviation of 4730 m3/s (Figure 3C). The 17 y one-day high of these
non-Mississippi sources was 30,000 m3/s (8 March 1998), highlighting a potential issue of studies
that solely consider the Mississippi River discharge. On 13 November 1997, these non-Mississippi
sources accounted for 66% of the total freshwater input into the Gulf (of 15,500 m3/s), a 17 y one-day
maximum contribution.

The USGS observations (1995–2011) of Mississippi River sediment load indicate a mean value of
170 Mt/y. Sediment discharge to the northern Gulf of Mexico is seasonal but with peak loads of short
duration (Figure 3D). On average, the Mississippi River supplies 88% of the fluvial sediment load to
the northern Gulf, although its contribution varies from more than 99% to less than 15% on any given
day. Based on WBMsed, the 14 non-Mississippi Rivers identified in Figure 3A supplied 16.2 Mt/y of
sediment to the northern Gulf of Mexico during the same period.
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2.2.2. Ocean Hydrodynamic and Wave Model  

Figure 3. (A) WBMsed model: color shows discharge rates for March 1, 2005; numbers identify river
outlets: (1) Apalachee, (2) Apalachicola, (3) Conecuh, (4) Choctawhatchee, (5) Escambia, (6) Mobile,
(7) Pascagoula, (8) Mississippi and Atchafalaya, (9) Pearl, (11) Grand, (12) Sulphur, (13) Sabine,
(14) Neches, (15) Trinity, and (16) Conroe. (B) Total daily water discharge (m3/s) entering the northern
Gulf of Mexico (WBMsed simulation). The 2011 flood season (partly shown) was amongst the most
devastating floods in the continental US history. (C) The percentage of non-Mississippi freshwater
discharge entering the northern Gulf of Mexico study region (WBMsed simulations). (D) Total suspended
load (Kt/d) entering the northern Gulf of Mexico (WBMsed simulations).
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2.2.2. Ocean Hydrodynamic and Wave Model

ROMS is a mature numerical framework that represents ocean dynamics over a wide range
of spatial (coastal to basin) and temporal (days to inter-annual) scales. A three-dimensional,
free-surface, terrain-following ocean model, ROMS resolves the primitive momentum and continuity
equations modeling large-scale ocean circulation using the hydrostatic vertical momentum balance and
Boussinesq approximation [37,38]. The dynamical kernel includes accurate and efficient algorithms
for time-stepping, advection, pressure gradient [38,39], subgrid-scale parameterizations to represent
small-scale turbulent processes [40,41] and various bottom boundary layer formulations to determine
the stress exerted on the flow by the sediment bed.

For our implementation, two nested ROMS grids were run. The larger-scale coarser model
represented hydrodynamics over the entire Gulf of Mexico (Figure 4, black box; hereafter, Grid-g) and
provided boundary conditions to a finer-scale model that calculated higher-resolution hydrodynamics
and sediment transport (Figure 4, red box; hereafter, Grid-f). The initial and lateral boundary conditions
for Grid-g were derived from the northwestern Atlantic ROMS 50-year solution (courtesy E. Curchitser,
Rutgers U.) and the Simple Oceanic Data Assimilation (SODA) global reanalysis 50-year dataset (stored
as 5-day averages). The annual and monthly temperature and salinity climatology for Grid-g were
objectively analyzed from the 1998 World Ocean Atlas. The tidal amplitude and currents (S2, M2, K1,
O1 semidiurnal and diurnal components) forcing for Grid-g’s open boundaries were derived from the
Oregon State University Tidal Prediction Software (OTPS). Both Grid-g and Grid-f included river runoff,
and their forcing atmospheric fields were obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim, 3-hour dataset available since 1 January 1978, to the present.
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Figure 4. Gulf of Mexico bathymetry showing grid domains from the full coarse grid (Grid-g,
black box), and the northern nested grid (Grid-f, red box). Black dashed lines mark approximate tracks
of Hurricanes Gustav and Ike. Locations of De Soto and Mississippi Canyons also noted.

The bathymetric grids used by ROMS were melded between ETOPO2 (2 arcminute resolution) and
15arcsecond resolution for the shelf and canyons. Apparent in the bathymetry is the narrowing of the
continental shelf near the bird-foot delta, and the presence of both the Mississippi and De Soto Canyons.
ROMS has terrain-following vertical coordinates, preferred for modeling suspended sediment transport.
The bathymetry was smoothed to suppress computational errors in the discretization of horizontal
operators (pressure gradient, advection, and diffusion) using a method [42] that allows constraints in
the smoothing minimization like preserving the bathymetry in specific grid cells (e.g., on the continental
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plateau), maximal amplitude modification, desired slope and steepness (r-factor), land/sea masking,
and preservation of volume.

Spatial and temporal wave data are required to parameterize bottom stress due to wave-current
interactions, which affects seafloor sediment transport. ROMS requires several wind-induced
wavefields to compute bottom stresses from the various bottom boundary layer sub-models
available [43]. These fields include significant wave height, wave direction, surface wave period,
bottom wave period, bottom orbital velocity, and wave energy dissipation rate. The required fields
were processed from the NOAA/NCEP WaveWatch III®dataset (WW3; [44]). They were available at
three-hour intervals on a grid having a ten arc-minute resolution, and driven by GFDL-GFS winds.
The WW3 data were processed from 1 January 2006, to 31 December 2012. Figure 5A,B show wave
height and the period during Hurricane Gustav, which impacted the study area during the late summer,
2008. Near-bed wave orbital velocity and near-bed wave periods were estimated from the surface
wave characteristics (calculated followng [45]). Figure 5C,D show a sample of bottom wave period
and bottom orbital velocity during Hurricane Gustav.
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Figure 5. Top row: estimates of wave properties for September 1, 2008 during Hurricane Gustav.
(A) wave height (m), and (B) wave period (s) from NOAA-NCEP Wavewatch III®model. Black box
indicates the location of ROMS hydrodynamic Grid-f, and contours show Grid-f bathymetry (m).
Bottom row: calculated estimates of (C) bottom wave period (s) and (D) bottom orbital velocity (m/s)
(calculated following [45]). Transects show locations of flux calculations shown in Figure 9A (MW:
Mississippi West); Figure 9B–E (MC: Mississippi Canyon), and Figure 9F–I (DC: De Soto Canyon).

2.2.3. Spatial Seabed Datasets

The dbSEABED facility [46–48] supplied information on the spatial distributions of seabed sediment
type based on interpolations of more than 105 individual data records gleaned from numerous published
and unpublished sources. The database provides 0.01-degree resolution mappings of mean grain
size (Figure 6A), as well as sorting (Phi), gravel, sand and mud fractions (%), exposure of rock (%),
and sediment carbonate percent. Local patchiness results from the presence of deep cold-water
coral banks [49], low-stand shelf-edge delta remnants [50], and methanogenic carbonate rock and
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rubble [51]. The shelf areas have important occurrences of gravel, shell, and hard grounds colonized
by skeletal-benthos [52].

Sediment stabilities and sediment dispersal patterns are strongly determined by the seabed
geomorphology, especially the slope and curvature. To assist the modeling of the generation and then
the fate of the turbidity currents, derivative layers were computed from the SRTM30+ bathymetry,
including slope gradients, and location and dimensions of the channelizations. Channel locations are
well-discriminated using integration methods such as contributing area; here, the PyDEM package [53]
was used for such procedure (see background on Figure 6B). On those features, channel-floor dimensions
like widths and gradients were computed using operations on the original gridded bathymetry [54],
and their values were mainly supplied to the RANS/TURBINS turbidity current models.
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Figure 6. (A) The background shows the region’s bottom-sediment grain sizes, blue-yellow-red for
the range 10 to -8 phi (clay-sand-cobble) from dbSEABED. The superimposed points show locations of
modeled turbidity current ignitions for Hurricanes Gustav and Ike. Purple points near Mississippi
Canyon and Delta mark locations that are particularly prone to ignitions based on density-stability
and energy-balance (Knapp–Bagnold, ‘KB’) measures. The blue points show locations that may also
be prone to ignitions. This analysis makes no determination on whether flows will persist over
distances. (B) The background shows channelized structures (integrated contributing area) for the
region, with dark traces marking the most pronounced channels. (Note: The shelf area indications
of channeling are dominated by noise in this mapping.) The purple to blue points mark locations of
modeled surficial mass failures for Hurricanes Gustav and Ike. The Factors of Safety (FoS) indicate the
potential for wave-induced mass failure and hence possibly, turbidity currents: purple—very high,
blue—high, pale blue—significant. Bathymetric contours shown with depth (m) labeled.
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2.2.4. Suspended Sediment Transport Model (CSTMS)

The Community Sediment Transport Modeling System (CSTMS) has been coupled to the ROMS
hydrodynamic kernel to represent suspended and bed sediment using user-defined sediment classes;
to date, most published CSTMS simulations use the non-cohesive routine (see [43]). Each sediment
class has attributes of grain diameter, density, settling velocity, and an erosion rate parameter. These are
specified in an input file and held constant for the model run. The erodibility of non-cohesive sediment
depends on the critical shear stress for erosion (τcr), specified for each sediment type in an input file.
Suspended transport is estimated by assuming that each sediment class acts independently of the others,
and travels along with the ambient current velocities, with the addition of the sediment class’ settling
velocity. The contribution of suspended sediment to water column density is included in the equation
of state, and allows for gravitationally driven bottom-boundary layer flows [55,56]. Net exchange of
sediment between the seabed and suspended load are estimated by assuming simultaneous erosion,
and deposition via settling [43].

We implemented suspended sediment transport simulations for the northern Gulf of Mexico using
CSTMS on the three-dimensional Grid-f (see Figure 4) from 1 October 2007, through 30 September
2008. This included periods of energetic waves, elevated fluvial discharge, and also Hurricanes Gustav
and Ike (Figure 7). Transport and deposition was calculated for seven sediment classes, representing
fluvial and seabed sources (Table 1). Fast- and slow-settling sediment was simulated for riverine
sediment from the Mississippi, Atchafalaya, and Mobile Rivers. Discharge and sediment concentrations
were derived from USGS gauges. Model calculations included estimates of suspended sediment
concentration and flux at each location in the three-dimensional ROMS Grid-f, and sediment deposition
and erosion at each of the horizontal grid points. While the model timestep was 20 s, the output data
was saved at hourly intervals.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 10 of 27 

 

to date, most published CSTMS simulations use the non-cohesive routine (see [43]). Each sediment 
class has attributes of grain diameter, density, settling velocity, and an erosion rate parameter. These 
are specified in an input file and held constant for the model run. The erodibility of non-cohesive 
sediment depends on the critical shear stress for erosion (τcr), specified for each sediment type in an 
input file. Suspended transport is estimated by assuming that each sediment class acts independently 
of the others, and travels along with the ambient current velocities, with the addition of the sediment 
class’ settling velocity. The contribution of suspended sediment to water column density is included 
in the equation of state, and allows for gravitationally driven bottom-boundary layer flows [55,56]. 
Net exchange of sediment between the seabed and suspended load are estimated by assuming 
simultaneous erosion, and deposition via settling [43]. 

We implemented suspended sediment transport simulations for the northern Gulf of Mexico 
using CSTMS on the three-dimensional Grid-f (see Figure 4) from October 1, 2007, through September 
30, 2008. This included periods of energetic waves, elevated fluvial discharge, and also Hurricanes 
Gustav and Ike (Figure 7). Transport and deposition was calculated for seven sediment classes, 
representing fluvial and seabed sources (Table 1). Fast- and slow-settling sediment was simulated for  
riverine sediment from the Mississippi, Atchafalaya, and Mobile Rivers. Discharge and sediment 
concentrations were derived from USGS gauges. Model calculations included estimates of suspended 
sediment concentration and flux at each location in the three-dimensional ROMS Grid-f, and 
sediment deposition and erosion at each of the horizontal grid points. While the model timestep was 
20 s, the output data was saved at hourly intervals. 

 

Figure 7. Observed Mississippi River discharge (USGS), and wave height (NOAA’s NDBC Buoy 
#42889) during the modeled period. Hurricanes were in the Gulf of Mexico between Aug. 30-Sept. 1 
(Gustav) and Sept. 10-Sept. 13 (Ike), 2008. 

Table 1. Parameters for the suspended sediment transport model. Three sediment classes represented 
the initial seabed, two sediment classes were discharged by the Mississippi River, and two sediment 
classes were discharged by the Atchafalaya and Mobile rivers. Critical shear stress and settling 
velocity for these were based on previous studies [19,20]. 

Sediment Class Source Sediment Type D (mm) Tcr (Pa) ws (mm/s) 
1 

Seabed 
Mud 0.063 0.11 1.0 

2 Sand 0.125 0.13 10.0 
3 Gravel 10.0 10.0 70.0 
4 Mississippi River Small Mud 0.015 0.11 0.1 
5 Larger Mud 0.063 0.11 1.0 
6 Atchafalaya / Mobile Rivers Small Mud 0.015 0.03 0.1 
7 Larger Mud 0.063 0.03 1.0 

2.2.5. Turbidity Current Ignition Models 

A package of one-dimensional, time-dependent, process-numerical modeling modules was used 
to investigate conditions for wave-induced sediment resuspension and mass wasting, which could 
potentially lead to turbidity current ignitions. Turbidity currents are known to be generated during 
events of intense sediment resuspension and mass failure, especially over sloping seafloor [57,58]. 

Figure 7. Observed Mississippi River discharge (USGS), and wave height (NOAA’s NDBC Buoy #42889)
during the modeled period. Hurricanes were in the Gulf of Mexico between 30 August–1 September
(Gustav) and 10–13 September (Ike), 2008.

Table 1. Parameters for the suspended sediment transport model. Three sediment classes represented
the initial seabed, two sediment classes were discharged by the Mississippi River, and two sediment
classes were discharged by the Atchafalaya and Mobile rivers. Critical shear stress and settling velocity
for these were based on previous studies [19,20].

Sediment Class Source Sediment Type D (mm) Tcr (Pa) ws (mm/s)

1
Seabed

Mud 0.063 0.11 1.0
2 Sand 0.125 0.13 10.0
3 Gravel 10.0 10.0 70.0

4 Mississippi River Small Mud 0.015 0.11 0.1
5 Larger Mud 0.063 0.11 1.0

6 Atchafalaya/Mobile Rivers Small Mud 0.015 0.03 0.1
7 Larger Mud 0.063 0.03 1.0
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2.2.5. Turbidity Current Ignition Models

A package of one-dimensional, time-dependent, process-numerical modeling modules was used
to investigate conditions for wave-induced sediment resuspension and mass wasting, which could
potentially lead to turbidity current ignitions. Turbidity currents are known to be generated during
events of intense sediment resuspension and mass failure, especially over sloping seafloor [57,58].

The inputs to the modeling package HurriSlip included a three-hourly spatially-gridded wave
climate based on WaveWatch III®data, surficial seabed material properties from dbSEABED, and slope
calculations derived from the SRTM30+ bathymetry. Whereas the CSTMS suspension model uses
the significant orbital velocity to calculate bed stresses, the implementation of HurriSlip relied on
a more energetic member of the wave spectra (H1/10) to represent resuspension by extreme waves.
The predicted sediment failure and ignition events were passed to the RANS/TURBINS model-suite,
which could simulate the subsequent turbidity current flows down the continental slope. For the
predicted cases, the starting flow height, suspended sediment concentration and grain size, and flow
velocity were provided. The focus of the work with HurriSlip was on the scale of 0-20 m above the
seabed with a horizontal resolution of about 1 km.

Sediment resuspension sources: The primary sub-module, SuspendiSlip, tested for a likely
distribution of turbidity flows arising from wave-induced resuspension of surficial bottom sediment.
Most sediment suspension in the continental shelf is thought to be from wave activity during
storms [19]. Under significant wave action, bottom-water layers hold significant suspended sediment
and turbulent kinetic energy. The module computed several criteria about the ignition of flows.
That is, the transformation from bottom waters having significant sediment loading and density to
self-sustaining, downslope density-flows undergoing an auto suspension process [59], which allows
them to travel for long distances at high speeds. The sediment-laden bottom-water layers were tested
from a reference height corresponding to the wave boundary layer thickness up to a height of significant
suspension in a Rouse profile. Sediment pickup was modeled using the excess-over-critical bed shear
stress for the sediment, using different formulations for muds [60] and sands [61]. Those published
formulations focus on granular erosion at low velocities (mostly <0.5 m/s). However, fine sediments
under extreme bed shear during storms are known to erode by bulk-failure [62,63]. The fine sediment
erosion rates were capped at the values reported in the publications for the highest bed shear stresses
to allow for this.

The bulk, densiometric, Richardson Number (Ri, non-dimensional) divides layers between
subcritical (>1.0) and supercritical (<1.0) on the value of Ri = (g R C h)/U2 , which depends on
gravitational acceleration (g, m/s2), sediment grain immersed specific gravity (R, non-dimensional),
suspended sediment concentration (C, ppm v/v), flow thickness (H, m), and flow velocity (U, m/s).
Flows in supercritical disequilibrium are observed to form sustained turbidity currents [64].
The turbulence-supporting flow velocity of layers is reported, based on bottom orbital velocity and
ambient currents. For the wave characteristics, Airy linear wave theory was employed. Water properties
were not relevant to this calculation; the work of the gravity flow is based on density contrasts due to
the suspended sediment.

The primary criterion for ignition was the Knapp–Bagnold criterion (Equation (14)b from [59]),
which approximately relates the necessary energy balance (US)/ws > 1, formulated with the seabed
gradient (S, non-dimensional) and the grain settling velocity (ws, m/s). Note that other criteria involving
sediment and water entrainment (Equation (16) from [59]) apply to later flow-stages and are less
relevant to initial ignition. The modeled events which satisfied the criteria were logged with their
associated parameters, and collated onto a mapping (Figure 6A).

Mass failure sources: Large-scale mass failure events are also known to yield or transform into
turbidity currents that can travel much further and faster than the original failure structure or debris
flow [65,66]. The WaveSlip submodule tested for a wave-induced mass failure of seabed sediment
during storms based on the circular failure approach [67]. It proved an array of plausible failure arcs,
depths, and footprints. Cyclic force moments for each wave period were combined with gravitational
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moments, and those driving forces were balanced against resisting ones (e.g., gradient shear strength)
to test for mass failure. The complex interplay between wave-induced pressures, the footprints of
loadings, sub-bottom depths of possible failure arcs, and the gravity-driven and wave-driven moments
was integrated into a seafloor Factor-of-Safety (FoS) where values less than unity imply instability—the
situation of interest.

The possibilities of mass failure were explored for three particular seabed conditions: (i) static
undrained conditions of intact shear strength; (ii) remolded shear strengths considering cyclic
wave-induced shear strains in the bottom; and (iii) in the presence of liquefaction, especially in shallow
waters under long-period surface-waves. For (i), the static shear strengths were calculated using
look-up values for the Mississippi Delta area [67]. Remolded values (ii) were computed from those
based on wave-induced strains (after [68]). They were scaled linearly against a full remolding to 30% of
the intact strengths occurring at 15% cumulative strain. To assess liquefaction potential (iii), a dedicated
submodule LiquiSlip compared results using previous analytical solutions i.e., [69,70]. Significant wave
heights and periods (Hs, m; Tp, s) were assumed to hold for more than 100 wave cycles, and were
extracted from WaveWatch III® data for each modeled location and time. (Cases of breaking waves
were excluded from the analysis; see [70]). Required values for seabed porosity, cohesion, permeability,
and relative density (after [71,72]) were calculated based on surface sediment type from dbSEABED.
The sediment thickness, for which only sparse sub-bottom data exists, was assumed to be effectively
infinite. Note that this assumption will not apply in areas <30 m water depth where a “basal, erosional
unconformity” at approximately 10 m sub-bottom marks the presence of a firm foundation under
Holocene sediments (see [73]). Our study excluded such shallow areas. Time-series of the essential
parameters were plotted (not shown) for selected sites in the area to monitor the WaveSlip and LiquiSlip
modeling components.

After the modeling, which took place through the approximately 9 million cell spatial-temporal
domain of the project, events at the lowest slope-stability FoS were collated and plotted, culminating in
the mapping of failure predicted events (Figure 6B). All modeled mass failure events were indicated
as potential sites of associated turbidity current ignitions, and their details were passed to the
RANS/TURBINS component.

2.2.6. RANS/TURBINS: a RANS Sediment Gravity Flow Model

TURBINS [74,75] solves the incompressible Navier–Stokes equations in the Boussinesq limit with
a convection-diffusion equation for the sediment concentration of small, polydisperse particles whose
density significantly exceeds fluid density [76,77]. As a three-dimensional, time-dependent model,
TURBINS provides spatially and temporally resolved information about the turbulent velocity and
sediment concentration fields, conversion of potential into kinetic energy, and the dissipation of this
kinetic energy neglecting the effects of rotation. The dispersed phase is assumed to be sufficiently
dilute so that the momentum equation governs the two-way coupling between the fluid and particles;
the effect of particle loading in the continuity equation is neglected, as are particle interactions such as
hindered settling. Particles are assumed to have an aerodynamic response time much smaller than
typical fluid flow time scales [78]. Hence, the particle velocity is given by the sum of the fluid velocity
and the constant settling velocity. Polydisperse distributions are implemented by considering different
particle size classes, each assigned a settling velocity, and contributing to the overall fluid density
distribution. Though there is a potential for non-Newtonian dynamics in the dense suspension region
near the seafloor, TURBINS includes Newtonian fluid dynamics enabling the erosion and resuspension
boundary conditions used within the gravity flow module.

An empirical formula to represent the resuspension flux of sediment into the current [79] has been
used to estimate erosion in low Reynolds number simulation of turbidity currents [10]. A variation of
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this was implemented in the non-hydrostatic RANS/TURBINS code. The sediment flux due to erosion
was introduced into the current as a diffusive flux from the bottom wall.

−
1

Sc Re
∂c
∂η

= usEs (1)

where c is the non-dimensional concentration of the sediment, η is the coordinate along the direction
normal to the boundary, us is the settling velocity, Es is the resuspension flux, Sc is the Schmidt number,
and Re is the Reynolds number. Based on [79], the resuspension flux, Es, was evaluated using

Es =
1

C0

aZ5

1 + a
0.3 Z5 ; (2)

with a = 1.3 × 10−7, C0 is the initial volume fraction of the sediment, and Z is the erosion parameter.
A maximum of 0.3/C0 caps the resuspension flux. The erosion parameter, Z, is calculated as

Z = 0.586 u∗
us

Re1.23
p if Rep ≤ 2.36;

Z = u∗
us

Re0.6
p if Rep > 2.36;

(3)

where u* is the shear velocity at the bottom wall,
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=
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κ
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ν

)
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and ut is the tangential velocity at the first grid point off the wall, η is the wall-normal distance of
the first grid point from the bottom wall, ν is kinematic viscosity, and constants κ = 0.41 and B = 5.
Using dp as the particle diameter, ρp as sediment density, ρ0 as water density, and g as gravitational
acceleration; the particle Reynolds number, Rep, is defined as:

Rep =
dp

√
gdp

(
ρp − ρ0

)
/ρ0

ν
. (5)

As a proof-of-concept, TURBINS was used to represent a turbidity current generated by a
lock-release (results in Section 3.3). The lock-release type simulation extended over a 21 km long
domain in the streamwise (along the pathway) direction. In the vertical direction, the water depth
varied from 130 m to 300 m. Dictated by a minimum resolution criterion of at least ten grid nodes
over the current height, along with the condition that the grid spacing is similar in all directions,
the simulation employed a grid spacing of 3 m in all directions. Consequently, the computational grid
applied 7000 nodes in the streamwise direction, 100 nodes in the vertical direction, and 10 nodes in the
spanwise direction. A time step of 0.6 s was used, based on a modified CFL (Courant–Friedrichs–Lewy)
condition (CFL <0.5) involving both convective and viscous terms.

2.3. Modeling Approach

To account for the multi-scale physics of sediment delivery from rivers to the Gulf of Mexico,
and subsequent mobilization by oceanic flows, the workflow was designed to operate as follows.
Each model component was designed to deliver needed model inputs to the “downstream” models
in a one-way coupling framework (Figure 1). Phasing of model development required coordination
among the subject matter experts who developed various components of the workflow. The river
discharge model (WBMsed) can provide values needed as input to the hydrodynamic ocean model.
ROMS can use these discharges as point sources of freshwater and sediment, distributing the output
from WBMsed for individual rivers onto the three-dimensional grid of the hydrodynamic model.
For example, WBMsed provided Mississippi River discharges that were distributed to 39 Mississippi
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River discharge grid cells that were spread around the bird-foot delta of the ROMS Grid-f. Then,
using input winds and open boundary conditions from the lower resolution Gulf model (Grid-g),
the local model (Grid-f, see Figure 4) was used in the CSTMS to estimate the dispersal and deposition of
sediment delivered from the rivers. The bed stresses calculated by ROMS accounted for wave-current
bed shear stress, and along with WaveWatch III® data, could be employed by the HurriSlip modules to
identify times and locations of sediment mass-failure and density-flow ignition. These events detected
by HurriSlip, could be used to trigger a turbidity current calculation via RANS/TURBINS; which would
also be informed by topographic gradients, the sediment properties from dbSEABED, and near-bed
current velocities and sediment depositions calculated by the ROMS/CSTMS.

3. Results

The sections below describe model calculations from components of the workflow to demonstrate
their capabilities.

3.1. Suspended Sediment Transport

The ROMS/CSTMS ocean model calculated current velocities, bed stresses, suspended sediment
fluxes, and erosion/deposition from October 1, 2007, through September 30, 2008. CSTMS results for
2007–2008 indicated that the overall signature of sedimentation calculated from suspended sediment
was deposition near fluvial sources, with patchy erosion and deposition elsewhere (Figure 8A).
Sediment delivered by the Mobile River was largely retained within Mobile Bay. The Atchafalaya River
sediment was deposited near the delta, but resuspension events on the inner shelf (depths < 30 m)
created westward sediment transport along the coast. Mississippi River plumes more widely dispersed
sediment around its bird-foot delta with some of the river load deposited in deeper water (>200 m).
The model indicated that the deep sea experienced strong intermittent currents capable of mobilizing
sediment, termed benthic storms [80].

Analysis of suspended sediment delivery to the continental slope indicated that about 70%
resulted from delivery during low-intensity storms such as frontal systems, and fallout from the
Mississippi River plume. The remaining 30% of the year-long delivery of suspended sediment to the
continental slope occurred rapidly, during the days surrounding the passage of Hurricanes Gustav and
Ike. This supports our first hypothesis, that episodic sediment transport down a submarine canyon is
fed by sediment input from wave and current resuspension. Shelf erosion during non-hurricane times
accounted for a small fraction of the cumulative erosion seen for the year (Figure 8B). The patchiness
of erosion seen in the deep sea (Figure 8B) corresponded to the sediment texture assumed by the
model (see Figure 6A). Hurricanes Gustav and Ike created widespread erosion on the shelf, and this
material contributed disproportionately to sediment delivery from the shelf to the slope, compared
to other resuspension events during the preceding eight months when elevated Mississippi River
discharge also occurred (Figure 8). Bed shear stresses during the hurricanes were sufficient to suspend
fine-grained sediment across the shelf break. Hurricanes Gustav and Ike produced distinct patterns of
erosion and deposition (Figure 8C,D), mainly due to their differences in strength, duration, and storm
track (see Figure 4). In general, Ike created higher bed stresses, sediment concentrations, and erosion;
but in some locations, Gustav had more impact.

Suspended sediment fluxes along three cross-slope transects (locations shown on Figure 5D)
were analyzed to evaluate the phasing and magnitude of hurricane-driven sediment delivery to the
continental slope and beyond. The size of sediment flux generally decreased with water depth across
the continental slope (Figure 9). While peak fluxes on the continental shelf coincided with the passage
of hurricanes, there was often a lag of several days before suspended sediment reached deeper waters.
Along the western continental slope, suspended sediment fluxes were larger for Hurricane Ike than
Gustav and decreased in the deeper waters (Figure 9A). The peak suspended sediment fluxes at depth
(~1300 m) occurred several days after the peak fluxes calculated for the shelf–slope break (~128 m).
For the De Soto Canyon, the model estimated net downslope flux towards the south to southeast during
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the hurricanes (Figure 9F–I). Suspended sediment flux actually increased offshore there between depths
of ~650–1115 m during and after the passage of the hurricanes, suggesting that suspended sediment
transported over the sides of the canyon settled to the bottom boundary layer and contributed to the
suspended sediment fluxes calculated within the canyon (Figure 9F–I).
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Figure 8. Net erosion (<0) and deposition (>0) calculated for suspended sediment transport for
(A) entire model run (1 October 2007–20 September 2008); (B) prior to hurricanes: time-integrated
from 1 October 2007 up until 25 August 2008; (C) during Hurricane Gustav; (D) during Hurricane Ike.
Bathymetric contours (in black) drawn for depths of 10, and every 100 m up to 1500 m.

Sediment fluxes down the Mississippi Canyon lagged behind the passage of the storms,
being delayed by 1–5 days relative to the occurrence of peak wave energy on the shelf (Figure 9B–D).
The model results showed that these lags corresponded to the time needed for nepheloid layers
generated by cross-shelf transport of storm resuspension to be carried to, and settle into, continental
slope depths. For example, Hurricane Gustav made landfall on 1 September 2008. For the Mississippi
Canyon transect, the model indicated that Gustav created peak sediment fluxes on the outer continental
shelf (water depth 98 m) around 2–3 September; while offshore, sediment fluxes did not peak until
4 September (688 m depth) and 8 September (1008 m depth) (Figure 9B,C). The distance along the
Mississippi Canyon transect from the 98 m deep site to the 1008 m deep site is about 66 km, so the
~4.5 day lag in delivery to the 1008 m site can be explained by an average horizontal transport
velocity of about 0.16 m/s. Similarly, vertical settling delays a storm’s impact on deep-sea locations.
The fine sediment classes used in the model would settle about 10 or 100 m per day, so that fall
out from nepheloid layers would require days to weeks to reach the near-bed continental slope and
deeper. This process is illustrated using modeled suspended sediment concentrations along the
Mississippi Canyon when Gustav was centered over the Lousiana shelf (Figure 10A), and five days
later, the nepheloid layer was delivered to, and settled into, continental slope depths (Figure 10B).
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Figure 10. Suspended sediment concentrations calculated along the Mississippi Canyon transect during
and after Hurricane Gustav show that sediment delivery to the mid-Canyon lagged several days behind
peak storm conditions on the shelf. Model estimates for (A) 1 September 2008, and (B) 6 September 2008.
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3.2. Density Flow Ignitions

Results from the HurriSlip model suggest that during extreme storms, bed stresses are large
enough to create conditions suitable for the ignition of turbidity currents from near-bottom layers
of suspended sediment, especially in areas near the shelf break (Figure 6A). The modeling also
suggests that small-thickness sediment mass-failure events, which may evolve into turbidity currents,
are widespread around the shelf-slope transition under hurricane conditions (Figure 6B). There is some
association between predicted ignitions’ locations, and the geomorphic channelizations of the upper
continental slope (Figure 6B).

Sediment resuspension sources: The results on the resuspension of sediments into bottom waters
(SuspendiSlip) indicated suspended sediment concentrations (SSC) during times of wave activity
averaged ~300 ppm v/v, up to ~5000 ppm v/v (5% v/v) at levels 1 m above the bottom. During the storm
events, in shoreface areas including at the delta front, some wave-induced bottom orbital velocities
>4 m/s were indicated. At depths of 20–40 m this was reduced to >2 m/s. As modeled, wave-induced
resuspensions occurred down to water depths of 189 m (at surface wave periods >13 s) in areas not
sheltered from the storm wave effects.

Numerous density-flow ignition events were indicated. They were overwhelmingly in the
bottom 1–2 m of the water column, but occasionally occupied water masses as thick as 8 m or more.
Bulk densimetric Richardson Number values for the bottom flows ranged widely, but during the storm
events were <<1.0 near-bottom i.e., were supercritical states susceptible to the onset of density flow [64].
The Knapp–Bagnold criterion discriminated events more closely and with the gravity influence of
slope, identified locations of plausible density flow ignition (Figure 6A). There is some indication that
suspension events in the waxing and waning of a storm are more likely to ignite because of the balance
between densities and velocities.

Mass failure sources: In agreement with the extensive evidence of mass sediment failures in the
region [11,81], the modeling indicated a potential for seafloor failures due to the combined effects of
intense storm wave activity, shallow depth, and significant slope. The present prediction with WaveSlip,
however, also extends over sandy areas not only the mudslide province at the Mississippi Delta front.
There seems to be an increased potential for the failure to transform into turbidity current in sandy
sediments [82].

Wave-induced liquefaction was predicted in the modeling for conditions of <30 m water depth,
somewhat sandy sediments, surface wave wavelengths of >150 m, and significant wave heights
of 10 m. Developed (residual and momentary) normal pore pressure increases to exceed normal
overburden pressure were modeled down to subbottom depths of 10 m and more at some locations.
In those circumstances, effective shear strength was reduced to near zero. The possibility of cyclic
strain reduction of shear strengths was also investigated. However, the cumulative strains induced by
waves, even during extreme events, were insufficient to produce significantly lowered (remoulded)
shear strengths, the strains being at most of order 10−2 cumulative (10−4 to 10−6 per cycle).

The circular-slip analyses indicated mass-failure instabilities (FoS <<1.0) over broad areas of
sloping seafloor in the top 0.5 m of the seabed (Figure 6B). More deeply-seated failures, down to 20 m
sub-bottom, were predicted at a small number of locations at about 30 m water depth. Still, all had a
FoS >>2 and, therefore, apparently limited potential for actual failure. (They are also at the limits of the
analysis in terms of wave-breaking and infinite sediment column.) HurriSlip results appear to suggest
that without liquefaction or remoulding, probably very few significant wave-induced mass failures
would occur in the region. However, the smaller occurrences which are also predicted, remain as
candidates to release turbidity flows. They include particularly, many locales with a high likelihood of
failure (FoS <<1) during storms, in seabed areas down to 100 m water depth, with a significant slope,
and often near to the shelf edge.
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3.3. Turbidity Currents

As a proof-of-concept for simulating turbidity currents in the northern Gulf of Mexico, we employed
TURBINS for a lock-release type simulation for a narrow slice along a specific pathway in the failure
location. Initially, the normalized sediment concentration, a proxy for excess density due to suspended
particles, was set to one in the lock-region and zeroed elsewhere (Figure 11A). When the lock was
released, a gravity-flow with a height of 30 m started to travel down the slope, so at 4 h past the lock
release, the current was about 10 km downslope (Figure 11B). The current became diluted as a result of
entrainment of ambient ocean water, and its height was reduced below the original height of 30 m as it
traveled down the slope. Within about 8 h, the current had traveled 15 km down-slope (Figure 11C).
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Figure 11. Contours of sediment concentration at (A) 0 h, (B) 4 h, and (C) 8 h. Sediment concentration
normalized to values between 0 and 1; 0 indicates clear water without any sediment.

The velocities resulting from the momentum balance are shown in Figure 12 for different stages of
the turbidity current. With time, as the turbidity current traveled downslope, thinned and became
diluted; its velocities decreased (Figure 12). At 4 h post-ignition, the turbidity current had speeds
exceeding 1 m/s, but by 8 h post-release the velocities were much lower. As the current traveled
along the bed, it generated a counter-flowing current above that moved in the opposite direction
(Figure 12A,B). The calculated velocity at the front of the turbidity current decreased from over 1 m/s
to about 0.75 m/s over a period of 10 h (Figure 12C).
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Figure 12. Horizontal velocity (m/s) calculated by TURBINS downslope at (A) 4 h, and (B) 8 h.
Note change in color scale between panels (A,B). (C) Time history of the front velocity of the current.

Figure 13 displays the modeled bed shear stress at two instants in time. A substantial level of
bed shear stress exists along the current length as a result of the turbidity current created by the
suspended sediment, which drives the flow. As the current decelerated, the bed shear stress value
decreased. These levels of bed stress exceeded the critical shear stress levels for the seabed assumed by
the suspended sediment transport model (~0.1 Pa, Table 1), indicating that the gravity flows could be
auto suspending, though this process was neglected in this version of the modeling workflow.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 20 of 27 
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Figure 13. Bed shear stresses (Pa) generated by a simulated down-canyon flowing turbidity current at
(A) 4 h, and (B) 8 h after flow initiation at the shelf-slope break.
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4. Discussion

Our results offer estimates of northern Gulf of Mexico sediment delivery and oceanic transport
conditions, including locations for gravity flow; and routing of riverine and shelf sediment into
submarine canyons. With efforts such as these, that treat multiple time- and space-scales, modeling
tools can be developed to deepen our understanding of how sediment is carried from riverine sources
to various oceanic sinks. The challenges of integrating various modeling approaches across different
spatial and temporal scales are substantial and require further research and code development.
Both physical aspects (the implementation of erosion, resuspension of complex sediments into
large-scale simulations), as well as numerical challenges (two-way coupling, temporal and spatial
interpolation at the boundaries between models) require an additional community effort. The treatment
of physical phase-transitions, such as between wave-supported suspended sediment flows and actual
turbidity currents, requires more fundamental research.

The models developed for the workflow operated over a broad range of spatial and temporal
scales. For example, the RANS/TURBINS model represented relatively thin (tens of meters) turbidity
currents at higher temporal (<1 s) and spatial (~3 m) resolution than afforded by ROMS’ hydrodynamic
and suspended sediment transport model. As a first step toward multi-scale modeling at the
spatial level, our workflow follows sediment routing from the watershed scale via WBMsed, to the
continental shelf scale via ROMS, to specific sediment gravity flows via the HurriSlip modules and
RANS/TURBINS. Likewise, the processes encompassed in our workflow operate over a range of
temporal scales, from that of hours for the TURBINS model, to the timescale of storm fluctuations for
riverine delivery, flow ignition, and suspended transport. Changes in sediment transport that operate
at seasonal and interannual timescales are likewise built into our workflow by using forcing functions
for weather that represent variations in winds, precipitation, and air temperatures that operate at
these timescales. Barriers in applying our methods to longer timescales (i.e., longer than decadal)
include both computational limits, and difficulties in assuring that subtle biases in the models and
their parameterizations do not cause the calculations to drift from realistic conditions.

The model workflow presented here is sequential, with limited two-way coupling. A fairly
straightforward step is to link the riverine discharge model (WBMsed) to the oceanic ROMS and
CSTMS models. It would facilitate studies aimed at quantifying oceanic dispersal of fluvial sediments
for poorly gauged river systems [83]. Future efforts should explore a more direct model coupling
between the suspended sediment transport and gravity flow mechanisms. Within this workflow,
ROMS estimates the bed shear stresses, which can be used for the flow ignition model (HurriSlip).
Locations of a slope failure can trigger simulation of a gravity current (e.g., Figure 11), which moves
sediment downslope. More direct coupling between these modules would account for sedimentation
via suspended sediment transport within the slope failure module, and for net erosion and deposition
via gravity currents within the regional scale (ROMS) resuspension model.

Regional modeling in the northern Gulf of Mexico is not trivial. Sediment transport modeling
requires high-spatial-resolution models to resolve the complex and steep bathymetry. The intense
coastal circulation, eddy shedding from the Gulf Loop Current [84], and sporadic strong forcing from
storms and hurricanes can affect sediment transport pathways across the continental shelf and slope.
Therefore, a telescoping grid approach, from coarse (kilometers) to fine (10s of meters) horizontal
scales, is required to obtain viable long-term (1–10 years) and affordable computations. Within our
implementation, this was realized by using a low-resolution model for the entire Gulf, telescoping to
finer-resolution for the region surrounding the bird-foot delta (Figure 3A). A similar approach has
been employed to represent decadal-scale sediment transport in the northern Gulf of Mexico [22].

Joint modeling and field experiments are needed to develop reliable sediment transport models
for the Gulf of Mexico continental shelf and slope. Sediment depositional data with which to
compare the model calculations are severely lacking, especially at the spatial scales considered
here. Recent observational efforts, some motivated by the response to the Deepwater Horizon event,
have shown that sediment can be mobilized in deep Gulf of Mexico locations [30,85]. Many of our
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workflow’s sediment transport routines were based on parameterizations for other continental shelf
systems, or on laboratory measurements. To improve and gain confidence in the models developed for
this workflow requires allied field and modeling studies of sediment processes for the northern Gulf of
Mexico continental shelf and slope. Because field sampling during and immediately after storm events
is inherently challenging, coupled models that are consistent with observed transport processes and
sedimentation are needed to characterize conditions during the extreme events most likely to lead
to large sediment fluxes in the deep Gulf of Mexico, and which can damage offshore infrastructure
(e.g., [1]).

5. Conclusions

A model-data workflow was developed to numerically represent sediment fluxes from fluvial
sources on the inner continental shelf to the continental slope. The workflow is perhaps one of
the more complex ever attempted for the problem of routing sediment from coastal sources to
deep-sea sinks. The range of components (Figure 1) included: (1) database frameworks for sediment
texture and bathymetry of the continental shelf and slope environments; (2) hydrology framework to
simulate the discharge of water and sediment for multiple (fifteen) rivers geographically distributed
along the northern Gulf of Mexico; (3) an ocean modeling framework that combined output from a
spectral wave-action model with ocean circulation simulations, as driven by winds, tides and solar
radiation; and tuned to the seafloor environments where bottom boundary layer dynamics can be
sufficiently represented including the resuspension, transport and deposition of sediment; (4) a seafloor
geotechnical modeling framework able to capture the strengthening and weakening of seafloor deposits,
under both ambient ocean conditions, and high intensity, short-lived hurricanes; (5) a gravity flow
generator able to determine the location(s) and sediment volume(s) displaced; and (6) a high-resolution
CFD model able to simulate the development of a turbidity current, including the bottom shear stresses
likely to impact offshore infrastructure. The immersed boundary RANS approach, in conjunction with
the multiple successive streamwise modules, appears to be well suited to perform the Gulf of Mexico
turbidity current simulations over the realistic length and time scales.

The workflow was exercised to explore the conditions that trigger episodes of sediment flux on
the continental slope where gas and oil infrastructure exist. Several one-way nested grids from coarse
to fine were developed to simulate the hydrodynamic circulation, sediment transport, sediment failure,
sediment liquefaction, and turbidity currents in the northern Gulf of Mexico. A full Gulf of Mexico
ROMS domain was run to provide boundary conditions to a higher-resolution grid that better resolved
bathymetric features, river runoff, and sediment transport. Ocean hydrodynamic simulations covered
the period from 1 January 2000, to 31 December 2005 (spinup), and from 1 January 2006, to 31 December
2012. It allowed us to characterize sediment transport scenarios during diverse forcing events (river
discharge, storms, and multiple hurricanes). We ran focused suspended sediment transport solutions
from 1 October 2007, to 30 September 2008, a time period that saw very active tropical storms and
major hurricanes crossing the study area.

The suspended sediment model indicated that episodic suspended transport down the Mississippi
and De Soto Canyons was fed principally by sediment fluxes generated by wave resuspension on
the shelf. During the two hurricanes modeled (Ike and Gustav), suspended sediment fluxes were
predominantly seaward in the vicinity of the Mississippi and De Soto Canyons. Peak suspended
sediment fluxes coexisted with the occurrence of the highest wave-induced bed stresses on the
continental shelf, but showed increasingly long delays relative to this timing with distance down the
canyon or continental slope. While hurricane conditions only lasted for two brief episodes during the
one-year model run, they accounted for about 30% of the sediment delivered from the continental
shelf to the slope. Delivery of sediment directly from settling from the freshwater river plume at the
canyon head or over the continental slope provided a more gradual source of sediment delivery for
the study period from 1 October 2007, to 30 September 2008. Plume delivery and transport during
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moderate-intensity frontal passages accounted for 70% of the total sediment delivered to the continental
slope during the study period.

The workflow applied a newly developed ignitions model, which was used to explore some
particular mechanisms for creating turbidity currents as an additional, and perhaps the major,
transportation of sediments to the slope and into channelized features there. Modeling of the flows
explored physical constraints on the flow velocities and forces.

On the continental slope, turbidity currents can be triggered by slope failure when storm-driven
supply forces accumulation of sediment in deeper water and steeper slopes. These appeared intense
enough to both erode sediment along the path of the turbidity current and to damage offshore
infrastructure. Modeling efforts in the future should explore more two-way coupling along with
workflows such as developed here, and take advantage of observational methods for developing
model parameterizations and confirming model estimates.
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