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Abstract: A mathematical model for the problem of wave diffraction by a floating fixed truncated
vertical cylinder is formulated based on Boussinesq equations (BEs). Using Bessel functions in the
velocity potentials, the mathematical problem is solved for second-order wave amplitudes by applying
a perturbation technique and matching conditions. On the other hand, computational fluid dynamics
(CFD) simulation results of normalized free surface elevations and wave heights are compared against
experimental fluid data (EFD) and numerical data available in the literature. In order to check the
fidelity and accuracy of the Boussinesq model (BM), the results of the second-order super-harmonic
wave amplitude around the vertical cylinder are compared with CFD results. The comparison shows a
good level of agreement between Boussinesq, CFD, EFD, and numerical data. In addition, wave forces
and moments acting on the cylinder and the pressure distribution around the vertical cylinder are
analyzed from CFD simulations. Based on analytical solutions, the effects of radius, wave number,
water depth, and depth parameters at specific elevations on the second-order sub-harmonic wave
amplitudes are analyzed.

Keywords: Boussinesq equations; CFD simulations; perturbation technique; second-order wave
amplitudes; point wave absorber

1. Introduction

Over the years, there has been considerable progress in the development of various design
techniques for the study of floating structures for various purposes in different water depths, such as
floating platforms, wave energy devices, and breakwaters. Due to the world’s ever-increasing energy
requirement, continuous depletion of fossil fuels and increasing environmental awareness, the energy
industry has shifted focus towards renewable energy sources. Apart from solar and wind resources,
waves have attracted high interest lately because of the promising prospect of wave energy converters.
In recent years, several research groups have taken a keen interest in the development of efficient wave
energy converters. In most cases, wave load analysis on the floating structures is performed using
various linearized analytical models. For a better understanding the behavior of the wave energy
devices under the action of waves, for the assessment of their motions, loads, and for power production,
the wave energy industry puts trust in the utilization of these models. However, many physical
problems associated with wave–structure interactions are essentially non-linear in nature and require
non-linear models to properly realize the impact of wave load on structures.

The generic wave energy converter (WEC) concepts include point absorbers, attenuators, oscillating
wave surge converters, oscillating water columns, overtopping devices and submerged pressure
differentials. When it comes to the study of WECs, a large part of the topic consists of modeling
the wave-structure interaction. Over recent decades, along with experimental studies, several linear,
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non-linear and analytical hydrodynamic models have been developed to investigate fluid–structure
interactions for the assessment of motions, loads, and power production. However, considering
the expenses associated with experimental studies, more and more researchers are leaning towards
numerical studies for initial design studies and validations. Therefore, there is large interest regarding
the development of simplified numerical models that can study wave structure interaction with high
efficiency and acceptable reliability.

In order to design floating WECs, accurate prediction of the wave-induced loads on the
floating structure is necessary. In particular, during the design, the consideration of the incoming
wave amplitudes/wave heights is substantial and the non-linear wave effects cannot be ignored.
As such, linear assumptions that are applied to potential theory lose applicability. Therefore,
recently, some researchers have targeted the implementation of a Boussinesq-type model to study
WECs associated with floating structures [1,2]. Boussinesq-type models allow the use of non-linear
hydrodynamics and can also reproduce a large number of irregular sea states needed for validation,
optimization and fatigue predictions. Hence, the study of wave–structure interaction and wave-induced
forces associated with a non-linear effect on floating structures based on analytical models using
Boussinesq equations (BEs) is of great interest due to the model’s wide applicability in the field of ocean
and coastal engineering. This paper discusses computational fluid dynamics (CFD) simulations and
the application of Boussinesq-type equations for the development of a non-linear analytical Boussinesq
model (BM) to model a point absorber in the form of a floating vertical truncated cylinder.

There has been limited number of studies associated with non-linear wave diffraction by a floating
vertical cylinder based on the BE in shallow water. Indicatively, the study of wave forces on multiple
cylinders using cnoidal and solitary wave theory by employing Bessel coordinate transformation
in shallow water was carried out [3]. The analytical solutions of wave interaction with a rigid
vertical circular cylinder was obtained [4] based on higher-order BEs. Using a three-dimensional
numerical model in deep water, the free surface elevations and wave forces around a floating truncated
vertical cylinder were studied [5] and the results were compared against analytical and experimental
data. Using the eigenmode expansion method, the wave force analysis on a floating barge was
studied [6] based on Boussinesq type-equations. Under hydrostatic assumptions, the dynamics of
floating structures was studied [1] through an analytical solution based on non-linear BEs and shallow
water equations. A comparison of wave forces and free surface elevations of a box-type floating
structure between was performed between analytical Boussinesq solutions and CFD simulations [7].
Furthermore, a general BM was developed [8] associated with two-layer fluids with floating rigid
plate based on BEs to investigate the effect of interfacial tension on internal waves. A new multi-layer
Boussinesq-type model associated with highly non-linear and dispersive surface waves using a mild
slope seabed was developed [9]. On the other hand, the error estimation and stability analysis of the
numerical solutions of the damped Boussinesq equation based on the Ciarlet–Raviart mixed finite
element method was investigated [10]. A meshless numerical procedure using the interpolating
element-free Galerkin method was developed [11] to check the unconditional stability and convergence
of the numerical scheme. The numerical solution of transport equation in spherical coordinates based
on generalized moving least squares and kriging least-squares approximations was studied in [12].

Another interesting approach for non-linear modeling of wave–structure interaction is numerical
simulation using CFD. However, limited studies are available that utilize CFD for diffraction and
radiation analysis of floating bodies. CFD models are widely popular because of their level of accuracy
and capability of handling complex problems arising in the ocean and marine engineering. Furthermore,
due to their non-linear, sophisticated and more realistic modeling, with the help of recent advances in
computational resources, CFD simulations can offer deeper insight into floating body hydrodynamics,
which can facilitate better WEC design and operating setup. Therefore, CFD is undoubtedly a great
tool for investigating the performance of WECs in realistic sea conditions. However, the cost and time
required for CFD simulations make it impractical for a large number of design and setup studies. Thus,
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a mid-fidelity solver that can realize most of the non-linear phenomenon with high computational
efficiency can contribute greatly to quicker and greater development of the wave energy sector.

Among recent works, a hierarchical investigation of hydrodynamic models for wave-induced
motion of point absorbers was performed [13] using linear and non-linear (depth-integrated Boussinesq
type) models and compared with CFD results. They concluded that both linear and non-linear models
over predict the heaving response of the point absorber comparing CFD results, however, the non-linear
model does not perform better than the linear model. A high-order finite element model was formulated
for mooring cables and coupled that with CFD for modeling floating WECs and validated against
experimental measurements of a cylindrical buoy in regular waves [14]. A similar problem was
addressed by numerically studying the laminar flow around heaving axisymmetric three-dimensional
cylinders with damping plates for various Keulegan–Carpenter numbers, based on the CFD model [15].
The simulation of a horizontal cylinder in heave motion and the three degrees of freedom (3DoF)
motion of a freely floating rectangular barge in waves using the CFD model REEF3D was undertaken
and the results compared with experimental data [16]. A vertical cylinder moving in waves using both
experiments and CFD studies, with emphasis on analyzing the wave profile generated by the moving
cylinder in the calm water [17]. A point absorber WEC was investigated [18] using Reynolds-averaged
Navier–Stokes (RANS) simulation based on the CFD method. They also investigated a floating point
absorber in extreme wave conditions [19]. Using a fully non-linear numerical method and potential
flow, the results of wave scattering by a vertical cylinder were compared with experiments and
low-order perturbation results in [20]. A small heaving point absorber for low-power ocean devices
was developed [21] based on the counter-rotating self-adaptive mechanism and numerical simulation to
study the vertical force, heaving displacement and velocity, and width ratio of the multi-floating bodies.
A numerical study of wave run-up on fixed cylinder using OpenFOAM was also performed [22].

Following the analytic and comparative research on the working principle of current WECs,
the floating point absorber is one of the best choices for the wave energy sector of ocean devices [21].
Recently, several comparative studies based on various methodologies, such as analytical Boussinesq,
numerical CFD models, other numerical data, and experimental studies associated with wave interaction
with floating structures, have been performed [2,7,8,13,23,24] to analyze the fidelity level of accuracy
among them for benchmarking.

While many numerical studies have been performed to analyze wave structure interaction,
very few focus on higher-order diffraction and wave run-up. Furthermore, studies focusing on
the measurement of the free surface elevation, compared to forces on the fixed structure, are also
limited, more so in shallow water (especially for CFD). Therefore, in the present study, the paper [2] is
extended to full formulation and solutions of the BM and more wave period cases in CFD simulation to
(i) compare results for the wave gauge behind the cylinder between Boussinesq and CFD simulations
(by including turbulence model and better mesh resolution and distribution), (ii) compare the CFD
results with the immersed boundary method and Navier–Stokes equation, (iii) study the wave forces,
moment encountered by the cylinder while facing different waves of same steepness, (iv) observe
the pressure distribution around the cylinder while encountering waves, (v) analyze the effect of
second-order sub-harmonic waves on various parameters. Explicitly, efforts have been made to
formulate the problem of wave diffraction by a floating fixed truncated vertical cylinder based on
Boussinesq-type equations. The non-linear BEs with depth parameters, which indicate the specific
elevations in the exterior region are obtained based on an expansion of velocity potentials as a power
series in the dispersive effect. Using the perturbation technique, the velocity potentials and associated
non-linear BEs by incorporating dispersive effects into solutions and Bessel function is presented.
Further, the second-order coefficients associated with the velocity potentials and wave elevations are
obtained by applying matching conditions at the fluid-structure interfaces.

On the other hand, the results of free surface elevations and wave heights from the CFD results
are compared against experimental data, numerical data, and other numerical results available in the
literature. Then, a comparison between super-harmonic second-order wave amplitudes in various
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locations is performed between BM and CFD simulation results to ascertain their accuracy and to
analyze the fidelity level of the developed BM. In addition, the effects of the radius of the cylinder,
wave number, water depth, and depth parameters on sub-harmonic second-order wave amplitude at a
specific location around the cylinder is analyzed. Finally, significant conclusions are drawn from the
comparative study and future scope of the present model.

2. Mathematical Model

The mathematical formulation of the problem is considered in three-dimensional Cartesian
coordinate system (x*, y*, z*), x*–y* being the horizontal plane and z*-being pointing upward starting
at the undisturbed free surface. The fluid occupies the region –h* < z* < 0, –∞ < x*<∞ and a cylinder
of radius r = a is floating at z* = 0 with draft d and water depth at z = −h*. * indicates a dimensional
variable. Hence, the fluid region is divided into two regions: an interior which corresponds to the
area below the cylinder and exterior region constitute the rest of the region (Figure 1). Therefore,
the velocity potential and the free surface displacement in the exterior region are denoted by Φ* and
η*, respectively. Furthermore, the fluid is assumed to be inviscid, incompressible, and the motion is
irrotational, and simple harmonic in time with angular frequencyω.
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Figure 1. Schematic diagram of wave diffraction by a floating fixed truncated vertical cylinder.

The velocity potential Φ* satisfy the Laplace equation as:

∇
2
Φ∗ + Φ∗z∗z∗ = 0 for− h∗ ≤ z∗ ≤ 0 (1)

where ∇ ≡ (∂/∂x∗, ∂/∂y∗) in Cartesian co-ordinate system, the subscript ‘z∗z∗’ denotes the double
partial derivatives w.r.t to z∗.

As the bottom is considered as rigid, the bottom boundary condition yields.

Φ∗z∗ = 0 at z∗ = −h∗ (2)

The equations of motion for the exterior region can be expressed as:

∂Φ∗

∂t∗
+

1
2
(∇Φ∗)2 +

P
ρ
+ gz∗ = 0 for− h∗ ≤ z∗ ≤ 0, r ≥ a (3)
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where P is the pressure, g = gravitational constant, and ρ= fluid density. From Equation (3), the pressure
continuity at the free surface z∗ = η∗ by considering atmospheric pressure zero leads to

∂Φ∗

∂t∗
+

1
2
(∇Φ∗)2 + gη∗ = 0 (4)

Now, the problem is governed by one-linear equations and three boundary conditions which are
non-linear in the potential variables Φ∗ and η∗. Therefore, the problem itself is non-linear as η∗ is not
known a priori.

The next subsection derives the nonlinear BEs for exterior region associated with free surface
motions in the presence of floating fixed vertical cylinder.

2.1. Non-Linear Boussinesq Equations (BEs) in the Exterior Region

The following non-dimensional variables are used for the derivation of nonlinear BEs with a
floating truncated vertical cylinder (as in [25,26]):

x = x∗
λ , y =

y∗

λ , z = z∗
h0

, t =
t∗
√

gh0
λ , η = η∗

I0
,

h = h∗
h0

, p =
p∗

ρgI0
, Φ = Φ∗

I0λ
√

gh0
, r = r∗

λ ,
(5)

where h= length representative of the water depth scaled by h0, t∗= time, p∗= water pressure, λ is the
wave length, I0 is the wave amplitude, η∗= free surface elevation, and r∗= radius of the cylinder.

In order to characterizing long waves, the following two non-dimensional parameters ε and µ are
used as:

ε =
I0

h0
, µ =

h0

λ
(6)

where ε and µ in Equation (6) are the nonlinearity and frequency dispersion and are assumed to
be small.

The non-dimensional three-dimensional governing equation in terms of velocity potential Φ is
expressed as (hereafter all the non-dimensional symbols are neglected):

µ2
∇

2
Φ + Φzz = 0 for− h ≤ z ≤ εη (7)

where ∇
2
= ∂2

∂r2 +
1
r
∂
∂r +

1
r2

∂
∂θ2 , with r is the radial distance from the z-axis and θ is the angle about the

x-axis.
The generalized Bernoulli equation read as dynamic boundary condition:

Φt + gη+
ε
2
|∇Φ|2 +

Ur

2
Φ2

z = 0atz = εη, r ≥ a (8)

where the subscripts ‘t’ and z denote the partial derivative w. r. t. t and z, respectively. Ur = ε/µ2 is
known as the Ursell number.

The kinematic condition at z = εη in non-dimensional form is given by:

Φz − µ
2(ηt + ε∇Φ∇η) = 0atz = εη, r ≥ a (9)

No flow condition at the bottom boundary yields:

Φz = 0 at z = −h (10)
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Integrating Equation (7) w. r. t. z and using boundary conditions (9–10), results in:

∇

[∫ εη

−h
∇Φdz

]
= −ηt for r ≥ a (11)

The kinematic boundary condition on the cylinder is given by:

∂Φ
∂r

= 0 at r = a, 0 < z < d (12)

The velocity potential satisfies the far field radiation condition as

lim
r→∞

√
r
(
∂Φ
∂r

+ irΦ
)
= 0 (13)

The next section presents the non-linear BEs in terms of velocity potential with depth parameters
at specific elevations in the exterior region based on perturbation technique and second-order wave
amplitudes around the floating fixed truncated vertical cylinder in the application range of weakly
dispersive waves.

2.2. BEs for Exterior Region Based on Perturbation Technique

The velocity potential Φ in polynomial form can be expanded as:

Φ(x, y, z; t) =
∞∑

n=0

µ2nΦn(x, y, z; t) for r ≥ a (14)

where x = r cosθ and y = r sinθ. Substituting Equation (5) into Equations (7) and (10) equating the
powers of µ in terms of the specific elevation at z = zα (−h ≤ zα ≤ 0) and related velocity potential Φα,
one can obtain (as in [8,27]).

Φ = Φα + µ2
[{

(z2
α − z2)

2
∇

2
Φα−(z− zα)∇(h∇Φα)

}]
+ o(µ4) for r ≥ a (15)

Again, substituting Equation (15) into Equation (11), and on simplification, the BE in terms of Φα

and η in the exterior region is obtained as:

ηt + h∇
2
Φα + µ2

{(
z2
αh
2 + zαh2 + h3

3

)
∇

2
∇

2
Φα +

(
zαh + h2

2

)
∇∇(∇Φα∇h)

}
+ ε∇(η∇Φα)

+o(ε2µ2, ε3µ2,µ4) = 0 for r ≥ a.
(16)

Substituting Φ from Equation (15) into Equation (8), the nonlinear free surface condition is derived
as:

−η+ Φαt + µ2
(

z2
α
2 + hzα

)
∇

2
Φαt +

ε
2 (∇Φα)

2
+ Ur

2 Φ2
αz + o(ε2, εµ2,µ4) = 0

for r ≥ a
(17)

where the higher-order non-linear terms are neglected.
The next subsection presents the second-order free surface elevations and velocity potentials in

the exterior and interior regions using suitable Bessel’s and Hankel’s functions associated with wave
diffraction by a floating fixed truncated vertical cylinder.
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2.3. Second-Order Free Surface Wave and Velocity Potentials for Exterior and Interior Region

The second-order free surface displacement in exterior region r ≥ a can be expressed as:

η±mn =
∞∑

l=0

A±mn Jl(k±mnr) cos(k±mnx +ω±mnt + ϕ±mn) (18)

where A±mn are the unknown second-order wave amplitude to be determined. Further, the + sign and
– sign denote the super- and sub-harmonic parts generated by the interactions of the linear waves
(m-wave and n-wave), respectively, Jl(k±mnr) is the Bessel function of first kind of order l (as in [3]),
k±mn = km ± kn, ω±mn = ωm ±ωn, and ϕ±mn = ϕm ± ϕn with km and kn are the wave numbers of the m
and n-waves associated with the wave frequency ωm and ωn, respectively. Further, ϕm and ϕn are the
phases of m- and n-wave, respectively.

The incident velocity potential Φinc
αmn and the diffracted velocity potential Φdi f

αmn can be expanded
as:

Φinc
αmn =

∞∑
l=0

B±mn Jl(k±mnr) sin(k±mnx +ω±mnt + ϕ±mn) for r ≥ a (19)

Φdi f
αmn =

∞∑
l=0

C±mnHl(k±mnr) sin(k±mnx +ω±mnt + ϕ±mn) for r ≥ a (20)

where Hl(k±mnr) is the Hankel function of first kind of order l. B±mn and C±mn are the unknown coefficients
of super- and sub-harmonic waves.

Hence, using Equations (19) and (20), the total potential Φext
αmn can be expressed as:

Φext
αmn = Φinc

αmn + Φdi f
αmn =

∞∑
l=0

{
B±mn Jl(k±mnr) + C±mnHl(k±mnr)} × sin(k±mnx +ω±mnt + ϕ±mn)

for r ≥ a
(21)

The second-order velocity potential Φint
αmn in the interior region can be written as:

Φint
αmn =

∞∑
l=0

D±mnIl(k±mnr) sin(k±mnx +ω±mnt + ϕ±mn) for r ≤ a (22)

where D±mn is the unknown coefficient and Il(k±mnr) are the modified Bessel functions of first kind of
order l.

The next subsection determines the unknown coefficients in terms of second-order super-
and sub-harmonic amplitudes associated with free surface elevations and velocity potentials using
matching conditions.

2.4. Determination of Second-Order Free Surface Amplitude and Unknown Coefficients

The unknowns A±mn, B±mn, C±mn and D±mn associated with Equations (18)–(20) and Equation (22) can
be determined by applying the structural boundary conditions and matching the pressure and normal
velocities across the boundary at r = a. The boundary conditions are given by:

∂φext
αmn

∂r

∣∣∣∣∣∣
r=a

= 0 for 0 ≤ z ≤ d, (23)

φext
αmn

∣∣∣
r=a = φint

αmn

∣∣∣
r=a for d ≤ z ≤ h, (24)

∂φext
αmn

∂r

∣∣∣∣∣∣
r=a

=
∂φint

αmn

∂r

∣∣∣∣∣∣
r=a

for d ≤ z ≤ h (25)
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The wave amplitudes A±mn defined in Equation (18) can be determined by applying the structural
boundary condition (23) and using Equation (18) into Equation (15). However, hereafter the
super-harmonic wave amplitude is considered for comparing with CFD model simulations and the effect
of sub-harmonic second-order wave amplitudes on different parametric values in subsequent sections.

Applying the boundary condition (24) into Equation (21) and Equation (22), one can obtain

∞∑
l=0

B±mn

{
Jl(k±mna)S±mn + µ2ZP±mn

}
+
∞∑

l=0

C±mn

{
Hl(k±mna)S±mn + µ2ZQ±mn

}
=
∞∑

l=0

D±mnIl(k±mna)S±mn (26)

where:
Z = (z2

α − z2)/2− (z− zα)h,

S±mn = sin(k±mna(cosθ) +ωt),

P±mn = H′l (k
±
mna)(k±mna) + (1/2)k±mnH′l (k

±
mna)

{
k±mna cos(2θ) − k±mna sin2(θ)

}
S±mn,

Q±mn =
{
(−1/a)H′′l (k

±
mna)(k±mn cos2 θ) + (1/a2)H′l (k

±
mna)

}
×

{
(1/4)(k±mna)2 sin(2θ) − cosθ

}
S±mn.

Furthermore, using Equation (21) into the boundary condition (23), one can obtain

∞∑
l=0

B±mn

[{
J′l (k

±
mna) + µ2ZU±1mn

}
S±mn +

{
Jl(k±mna)(k±mn cosθ) + µ2ZV±1mn

}
U±mn

]
+
∞∑

l=0
C±mn

[{
H′l (k

±
mna) + µ2ZP±1mn

}
S±mn +

{
Hl(k±mna)(k±mn cosθ) + µ2ZQ±1mn

}
U±mn

]
= 0

(27)

where

U±mn = cos(k±mna(cosθ) +ωt),

P±1mn =
{
H′′′l (k±mna)(k±mn cosθ) + (1/a2)H′l (k

±
mna)k±mn

}
×

{
k±mna cos(2θ) − k±mna sin2(θ)

}
,

Q±1mn =
{
(−1/a)H′′l (k

±
mna)(k±mn cos2 θ) + (1/a2)H′l (k

±
mna)

}
×

{
(1/4)(k±mna)2 sin(2θ) − cosθ

}
,

U±1mn =
{
J′′′l (k±mna)(k±mn cosθ) + (1/a2)J′l (k

±
mna)k±mna

}
×

{
k±mna cos(2θ) − k±mna sin2(θ)

}
,

V±1mn =
{
(−1/a)J′′l (k

±
mna)(k±mn cos2 θ) + (1/a2)J′l (k

±
mna)

}
×

{
(−1/4)(k±mna)2 sin(2θ) − cosθ

}
.

Furthermore, the velocity continuity condition (25) gives

∞∑
l=0

B±mn

[{
J′l (k

±
mna)S±mn + Jl(k±mna)k±mn cosθU±mn

]
+
∞∑

l=0
C±mn

[{
H′l (k

±
mna)S±mn + Hl(k±mna)(k±mn cosθ)U±mn

]
+
∞∑

l=0
[µ2
{(z2

α − z2)/2∇
2 ∂
∂r (Φ

ext
αmn) − (z− zα)(∇h)∇ ∂

∂r (Φ
ext
αmn)}]

=
∞∑

l=0
D±mn

{
I′l (k

±
mna)S±mn + Il(k±mna)k±mn cosθU±mn

}
.

(28)

Further, applying the structural boundary condition (23) and using Equation (18) into Equation (17),
one can obtain the second-order wave amplitude A±mn as

A±mn = C±mn

[{
Hl(k±mna)ω±mnU±mn + µ2

{
(z2
α/2) + hzα

}
Hl(k±mna)U±mn

}
− L±mn

]
/Jl(k±mna)U±mn (29)

Now solving Equations (26)–(28), the second-order wave amplitude D±mn is obtained as

D±mn = C±mn

[{
Hl(k±mna)S±mn + µ2ZQ±mn

}
−G±mn

{
Jl(k±mna)S±mn + µ2ZP±mn

}]
/Il(k±mna)S±mn (30)
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where
L±mn = W±mnX±mn + Jl(k±mna)ω±mnU±2mnµ

2Z(P±mn + Q±mn)

/
{
J′l (k

±
mna) + µ2ZU±2mn

}
S±mn +

{
Jl(k±mna)k±mn cosθ+ µ2ZV±2mn

}
U±2mn

G±mn =
[{

H′l (k
±
mna) + µ2ZP±1mn+

}
S±mn +

{
Hl(k±mna)k±mn cosθ+ µ2ZQ±1mn

}
U±mn

]
/
[{

J′l (k
±
mna) + µ2ZU±1mn+

}
S±mn +

{
Jl(k±mna)k±mn cosθ+ µ2ZV±1mn

}
U±mn

]
with

U±mn =
{
J′′′l (k±mna)k±mn cosθ+ (1/a2)J′′′l (k±mna)(k±mna)

}
×

{
k±mna cos(2θ) − k±mna sin2 θ

}
,

V±2mn =
{
(−1/a)J′′l (k

±
mna)(k±mn cosθ)2

+ (1/a2)J′l (k
±
mna)(k±mn)

}
×

{
(−1/4) sin(2θ)(k±mna)2

− cosθ
}
,

W±mn = Jl(k±mna)ω±mnU±mn + µ2
{
(z2
α/2) + hzα

}
Jl(k±mna)S±mn,

X±mn =
{
H′l (k

±
mna)S±mn + Hl(k±mna)k±mn cosθU±mn)

where H′l , H′′l and H′′′l denote to the 1st, 2nd, and 3rd derivatives of Hankel’s function, respectively,
and the same as with Bessel’s function Jl.

The next section describes the numerical CFD model based on OpenFOAM solver in terms of
CFD, mathematical model equations, computational mesh, the case set up, and computational resource
associated with the aforementioned problem.

3. Computational Fluid Dynamics (CFD) Model

3.1. Brief Description of CFD Model

For CFD simulations in the study, the open source CFD tooklit OpenFOAM (Open Source Field
Operation and Manipulation) was used. A relatively old version of OpenFOAM ws used (version
2.4.0), coupled with waves2Foam utility for wave generation. A detailed description on the CFD solver
can be found at works by Jasak [28].

OpenFOAM is governed by the Navier–Stokes and continuity equation, and models an
incompressible laminar flow of a Newtonian fluid. The Navier–Stokes equation is given by:

ρ

(
∂v
∂t

+ U∇U
)
= −∇p + µ∇2U + ρg (31)

where U is the velocity, p is the pressure, µ is the dynamic viscosity, g is acceleration due to gravity,
and ∇2 is the Laplace operator. Furthermore, the continuity equation is of the form:

∇U (32)

The governing equations are discretized using the Finite Volume Method (FVM). Further special
and temporal discretization are performed using second and first order methods. Pressure velocity
coupling is done using the PISO-SIMPLE (PIMPLE) algorithm. The solver follows the Cartesian
coordinate system. The volume of fluid (VoF) method together with the artificial compression technique
tracks the free surface elevation, using the volume fraction technique. The equation for the volume
fraction is obtained as

∂α
∂t

+∇(αU) (33)

where U is the velocity field, α is the volume fraction of water in the cell and varies from 0 to 1,
representing full of air to full of water, respectively.

OpenFOAM incorporates several two-equation turbulence models for turbulence modelling and
also has incorporated a wall function model. For this study, kOmegaSST turbulence model was used,
and the waves were generated following Stokes second-order wave theory.
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3.2. Computational Mesh

For mesh generation for the case, the OpenFOAM mesh generation utility was used. Depending
on the settings, the utility generates hybrid mesh that incorporates both structures and unstructured
mesh for an efficient solution. Initially, blockMesh utility is used to generate the rectangular simulation
domain using hexahedral mesh. In the mesh, y ‘ + ve’ represents vertical positive direction, and the
horizontal free surface is in the x–z plane. The domain was further refined using toposet and refinmesh
commands in specific locations, near the geometry and free surface, for better flow prediction around
the geometry and better propagation of waves. Finally, the cylinder geometry was integrated to the
domain using the snappyHexMesh utility, no refinement or mesh layer was applied in snappyHexMesh.

Two different mesh resolutions were used for simulating the cases to ensure that the mesh satisfies
the minimum number of cell requirements per wave height and wave length, while consuming
minimum resources. The domain lengths and depths were also varied for the various cases to ensure
enough space for the wave relaxation zone and propagation zone, and to maintain a relatively shallow
water case for comparing the results with the Boussinesq model. Mesh resolution was maintained such
that for the smallest wave length and wave height case, there were 77 cells per wave length and 8 cells
per wave height. However, this was the configuration for the shortest wave length and wave height,
and the later waves had more cells per wave length and height. For the first five cases, a cell spacing
of 0.01 in the X and Z direction was used, and for Y it was 0.005. For the rest of the cases, the cell
spacing was 0.05 for the X and Z direction and 0.025 for Y. An average mesh resolution of 6 million
cells (mostly hexahedral) was used for the cases. The mesh setup for the first cases is shown in Figure 2.
As for the later cases (with longer wave lengths), the refinement was confined to the near cylinder area,
where wave probes have been placed, instead of the entire wave propagation area. Since the meshes
were generated following standard guidelines for wave simulation, an independent grid dependency
study was not performed. Nevertheless, the authors’ previous experience from wave simulations
indicate that the mesh resolution and distribution used is sufficient to produce reliable results.

3.3. Case Setup

The CFD simulations were performed following the case experimental setup by Mercier and
Niedzwecki [25]. Few changes were added to the setup, and all simulations depths were adjusted to
maintain a water depth to wavelength ratio (h/L) of 0.5 (water depth/wavelength). This was done to
ensure comparability with weakly dispersive Boussinesq model results. Furthermore, considering the
relatively small diameter of the cylinder (0.23 m), the domain in lateral direction was reduced from
2.8 m to 1.5 m. The domain length was also adjusted depending on applied wave lengths to ensure
enough propagation and dissipation area (at the end of domain) for the incoming waves. On average,
the domain length was 12 m.

Following the experimental setup, five wave elevation probes were placed in the simulation
domain, three near the cylinder wall and two at a distance, to capture the free surface elevation.
The wave probes are denoted by A, B, C, D and E. The locations of the probes are provided in Table 1.
The locations of the probes/gauges near the cylinder were slightly modified to place them at the
first cell after the cylinder in order to avoid numerical exception. The displacements were at the
fraction of millimeters, so it should not impact the simulation outcome. A general arrangement of the
experimental setup and simulation domain are shown in Figures 3 and 4, respectively.

Table 1. Location of probes in the simulation domain.

Probe A B C D E

X (m) −0.235 0.0 0.235 −0.48 0.0
Y (m) 0.0 −0.235 0.0 0.0 0.48
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All CFD simulations were performed in a desktop machine with Intel® core i7-7700 CPU with
3.60 GHz processor and 32 GB of RAM. The data was written on an solid state drive (SSD)disk.
On average, each case was run for roughly 100 s (simulation time) to ensure around 10 wave encounters
and the physical time took to run each case was roughly 75 h.

In the context of the present paper, the 3D numerical simulations were performed for the
comparison of results with other methods like experimental data, immersed boundary method (IBM),
numerical wave tank (NS) and the present developed BM. The comparison should provide a relative
idea about the efficiency and limitations of the methods and models. Therefore, the results obtained
from the present BMs and CFD simulations and different method results available in the literature are
presented in the subsequent subsections.
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4. Numerical Results

In this section, several numerical results associated with the comparison among CFD, experimental,
numerical data, and analytical BM results, wave forces, moment, pressure distribution around the
cylinder, effects of radius, wave number, water depth, and depth parameters at specific elevations are
analyzed. First, comparisons are made of normalized free surface elevations/wave heights among
CFD, EFD, and numerical data available in the literature in the probe locations mentioned in the
subsequent subsection. Then, the simulation results of wave forces and moments acting on the
cylinder and pressure distribution around the vertical cylinder are presented. To check the accuracy
of the second-order super-harmonic wave amplitude Boussinesq results, comparisons between the
Boussinesq and CFD model simulations on the second-order super-harmonic wave amplitudes for the
same probe locations are presented. Finally, to analyze the effects of radius, wave number, water depth,
and depth parameters at specific elevations on the second-order sub-harmonic wave amplitudes have
been studied.
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4.1. Comparison and CFD Simulations

Validation studies for CFD simulation results were undertaken for cases performed in [5,29].
Nine cases were simulated, for different wave lengths and wave heights. The test cases are shown in
Table 2.

Table 2. Specifications for the simulation cases.

Case Period Wave Length Wave Height Wave Number

number T (s) λ (m) H (m) k

1 0.70 0.77 0.04 8.21
2 0.87 1.18 0.06 5.32
3 1.00 1.56 0.08 4.02
4 1.12 1.96 0.08 3.21
5 1.40 3.06 0.14 2.05
6 1.70 4.51 0.20 1.39
7 2.00 6.25 0.30 1.01
8 2.22 7.69 0.37 0.82
9 2.50 9.76 0.46 0.64

For validation, the simulation results were compared with EFD reported in [28], IBM data
reported [5], and numerical wave tank (NWT) data generated using Navier–Stokes (NS) and marker
and cell (MAC) methods reported in [30]. For normalization of the free surface elevation data from
CFD, the total free surface displacement was divided by the incoming wave height, H/H0. Calculations
were also made based on amplitude since the analytical Boussinesq method calculated the free surface
displacement based on amplitude, A/A0. The target of the simulations was to analyze the diffraction
of the incoming waves due to interaction with a floating fixed vertical truncated cylinder. Thus,
three wave probes were placed at locations close to the cylinder body, one at 0.48 m before the cylinder
and one at 0.48 m at the side (Figure 3).

Figure 5 shows the normalized free surface elevation just before the cylinder at location A.
The results show that almost for all cases, the free surface shows higher elevation than the incoming
incident waves. Especially for the low wave period cases, the waves surge up to 2.4 times of initial wave
height on the cylinder wall. The CFD results here show reasonable agreement with experimental data,
although the values do not exactly agree, the trend is well captured. For almost all cases, CFD under
predicts the results compared to EFD results. Slight deviation might be explained to some extent by
the location of the probe in the CFD model. In CFD, the probe was set 5 mm away from the cylinder,
whereas in experiments it was exactly on the cylinder. This could not be done in the CFD model
since probes in simulation can only capture data from a cell, not at voids. Furthermore, the numerical
dissipation also contributes to the under prediction. The presented CFD results also agree better with
the NS model results, since both follow a similar mathematical model, compared to the immersed
boundary method results.

Figure 6 shows surface elevation at the side of the cylinder, at location B. The results show that only
for short wave length cases, the incident wave becomes distorted at the side; however, for relatively
longer wave lengths, the incident wave height remains almost unchanged. The CFD results here
capture the resulting trend, however, they show oscillatory predictions around the EFD data, that is,
some cases are over predicted and others are under predicted. Nevertheless, the overall deviation is
minimum. Also, for these cases, CFD shows better agreement than the NS model.
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Figure 6. Comparison between CFD, experimental and numerical data of wave amplitude and heights
for location B [5,25,26].

Figure 7 gives free surface elevation just behind the cylinder (location C). It is observed that the
diffraction effect is minimum behind the cylinder and the simulations results here capture the trend
well, with relatively notable deviation for three cases. For short wavelengths, the waves lose amplitude
while interacting with the cylinder and thus show a lower steepness behind the cylinder. As the
wave period and height increases, the loss in steepness decreases and the waves end up gaining slight
amplitude due to the interaction with the cylinder. However, none of the amplitude gains actually
represent a gain in energy, rather just a sudden transfer of energy.
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for location C [5,25,26].

In Figures 8 and 9, the comparison between CFD, experimental, and numerical data in location D
and E are shown, which represent free surface elevation at 0.48 m before and at the side of the cylinder.
The results show that the effect of the wave and structure interaction can also be observed at roughly
one radial distance from the cylinder. As before, the CFD results capture the trend well, with deviation
in the values for several cases.
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for location E [5,25,26].

Especially, in case of Figure 9 (position E), the CFD values show relatively high deviation from
experimental values, except for three cases. The reason for this over prediction may partly be explained
by the relatively short width of the domain in the sides. Because of the slight reflection of the waves by
the symmetry planes, the elevations might have been over predicted. Increasing the domain size in the
lateral direction might have improved the prediction, however, considering the added computational
expense, it was avoided.

Next, horizontal and vertical forces and pitch moment acting on the cylinder were computed from
the simulation results. For non-dimensionalization of the results, the following equations were used.

F′x =
Fx

ρgrTH′
, (34)

F′y =
Fy

ρgrTH′
, (35)

M′z =
Mz

ρgr2TH′
, (36)

where Fx, Fy and Mz represent horizontal and vertical force and pitch moment, respectively, ρ is the
fluid density, g is gravitational acceleration, r is the cylinder radius, T is the cylinder draft and H is the
incident wave height.

In Figure 10, the horizontal force, vertical force, and moment acting on the cylinder versus wave
period are plotted. It is observed that both the horizontal force and pitch moment show similar
response with peak amplitude being observed close to the 1.70 wave period. The force and moment
decrease for relatively low and high frequency range. Whereas, for the heaving force, it keeps on
increasing with the increasing wave period and wave height. This might be because the structure is
fixed and is not free to heave with incoming incident waves. With heave-free motion, the results might
be slightly different.
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To further illustrate the CFD results, the pressure distribution in the simulation domain is shown
in Figures 11 and 12. The figures show the change of pressure in the domain due to the interaction
between the cylinder and the incoming waves. They also show the disturbance in the incoming
incident waves due to interaction with the diffracted waves by the cylinder.

Figure 11 shows the interaction of the wave crest with the vertical cylinder. The cylinder
encounters high horizontal pressure during the interaction, as can be seen from the deep red color
near the free surface. The horizontal pressure gradually fades away with increasing water depth.
The contours on the cylinder also show the vertical (upward) force encountered by the cylinder during
the wave interaction.

Figure 12 shows both the pressure distribution on the free surface during the wave encounter by
the cylinder and also reference axis for observing the free-surface elevation. The figure shows how the
free surface deforms around the cylinder during wave propagation. The cylinder faces low pressure at
the wave trough and the free surface is close to −0.23. Next, the wave passes and when the cylinder
encounters the wave peak, there is a jump of the free surface at the front of the cylinder and the wave
reaches a height of roughly 0.3. During the wave encounter, the elevation of the free surface at the side
and behind the cylinder is lower than that at the front.

4.2. Comparison of Analytical Boussinesq Model (BM) Results against CFD Simulations

A MATLAB code is developed to compute the Bessel and Hankel functions in the analytical
solutions using built-in sub-routine Matlab to present numerical results of Boussinesq solutions for
locations A, B, C, D, and E (as discussed in Section 3 and labeled in Figure 3).

Figures 13–17 show the comparisons of results of Boussinesq second-order super-harmonic wave
amplitude A+

mn against CFD model simulations in the exterior region for locations A, B, D, C, and E,
respectively, versus time period T(s). From Figures 13 and 14, it is observed that the peak amplitude of
the Boussinesq result agreed well and the wave amplitude trend is similar with CFD model results.
However, the wave amplitude in location A is higher than that of location B.

In Figure 15, the results of second-order super-harmonic wave amplitude A+
mn are in good

agreement between the Boussinesq and CFD model simulations for a smaller wave period in location
C (behind the cylinder). However, for higher wave period the results between the two models did not
agree well although the trend is similar. This may be due to the numerical errors arising from time and
spatial discretization that are more evident with the disagreement of the wave amplitudes in between
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two models. Furthermore, unlike the CFD simulations, the BM is based on the frequency domain and
the numerical model requires some time for the forcing wave to be applied and to stabilize behind the
cylinder (location C). This may be the reason to lead the discrepancy in comparison of the Boussinesq
results and those of CFD simulations.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 18 of 28 
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Figure 11. Pressure distribution in the simulation domain from the side, while the cylinder interacts
with the incoming wave crest with simulation time for figure (a) 0.19Ts, (b) 0.0.25Ts, (c) 0.31Ts and (d)
0.37Ts. The flow field pressure distribution is for case 9, with wave period of T = 2.50 s and wave height
of H = 0.46 m.
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Figure 16 compares the results of second-order super-harmonic wave amplitude A+
mn between

Boussinesq and CFD model for location D. It is observed that the peak amplitude and trend between
the Boussinesq and CFD models are fully agreed. It suggests that the interaction of second-order wave
amplitude and vertical cylinder exhibits similar behavior in their trends for both models. In Figure 17,
it is found that the observations are similar to those of Figures 13 and 14. However, for the higher
wave period, the CFD data points are a little far and they only agree in the trend, not their values. The
reason is similar to those of Figure 15.

The next subsection analyses the effect of second-order sub-harmonic waves on the different
parameters associated with wave diffraction by a floating fixed truncated vertical cylinder.
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mn in

Equation (29) and CFD models of free surface elevation for location E.

4.3. Effect of Design Parameters on Second-Order Sub-Harmonic Wave Amplitudes

In Figure 18, the effects of radius r on second-order sub-harmonic wave amplitude. A−mn at
location B for h = 4.0 m, km = 0.84 and zα = 0.5 versus wave period T(s) is plotted. It is observed that
the second-order sub-harmonic wave amplitude A−mn increases with an increase in the radius of the
cylinder. The observations are similar to [31] in the case of wave diffraction by a cylinder in two-layer
fluids. This may be due to fact that as the cylinder occupied more water plane area, the large amount of
incident wave energy concentrates around the structure and on the other hand, physically, this result
may be from an increase in fluid momentum as the flow negotiates the cylinder.
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Figure 18. Effects of radius of the cylinder r on second-order sub-harmonic wave amplitude A−mn of
Equation (29) in location B for h = 4.0 m, km = 0.84 and zα = 0.5.

Figure 19 shows the effects of wavenumber km on second-order sub-harmonic wave amplitude
A−mn at location B for h = 4.0 m, r = 0.35 m and zα = 0.5 versus wave period T(s). It is observed that
the second-order sub-harmonic wave amplitude A−mn decreases with increase in wave number values.
Moreover, the observation is similar to [8]. Furthermore, it is seen that for higher wave period the
variations of second-order sub-harmonic wave amplitude becomes negligible for fixed values of radius
and for different wave number.
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Figure 20 depicts the effects of water depth on second-order sub-harmonic wave amplitude A−mn
at location B with r = 0.35 m, km = 0.84 and zα = 0.5 versus wave period T(s). Overall, it is observed
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that the sub-harmonic second-order wave amplitude decreases with the increase in water depths for
higher values of the wave period. This is due to an increase in hydrostatic pressure, the force per unit is
exerted by water on the floating cylinder. In Figure 21, the effects of depth parameters on second-order
sub-harmonic wave amplitude A−mn at location B for r = 0.35 m, km = 0.84 and h = 4.0 m, and versus
wave period T(s) is plotted. It is observed that the second-order sub-harmonic wave amplitude A−mn
increases with increase in depth parameters whilst the effect is negligible for a smaller wave period.
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All numerical computations associated with analytical expressions were performed in a desktop
machine with Intel ® core i7-4790 CPU with 3.60GHz processor and 32 GB of ram memory. On an
average, each case took roughly 10–15 min to finish.

5. Discussion

In the theoretical perspective, the contribution of the present boundary value problem is the
formulation associated with wave diffraction by a floating fixed truncated vertical cylinder based on
Boussinesq-type equations using Bessel’s and Hankel’s functions, which lead to further formulation of
the second-order free surface elevation displacement and velocity potentials in the exterior domain.
Therefore, importantly, the comparisons of super-harmonic wave amplitude for different probe locations
between BM, numerical CFD simulations, experimental, and other numerical data, and some other
effects are also discussed in the succeeding paragraphs.

Initially, in order to show efficiency and level of exactness of the CFD model simulations relative
to other methods, the results of wave amplitudes and wave heights from CFD are compared against
EFD and numerical data available in the literature for the different probe locations. It is found that
the CFD results here show reasonable agreement with experimental data; although the values do not
exactly agree, the trend is well captured. For almost all cases, CFD under predicts the results compared
to EFD results. The slight deviation might be explained to some extent by the location of the probe in
CFD model. In CFD, the probe was set 5 mm away from the cylinder, whereas, in experiments, it was
exactly on the cylinder. This could not be done in the CFD model since probes in simulation can only
capture data from a cell, not at voids. The numerical dissipation of incoming waves and instability of
the turbulence model at the free surface also contributes to the under prediction. In general, the CFD
results agree better with the NS model results, compared to the immersed boundary method results,
since the present CFD model also follows the RANS model. Overall, the CFD results show reasonable
agreement with the experimental and other numerical data, as presented in Figures 5–9.

Then, the numerical results of second-order super-harmonic wave amplitudes obtained from BM
are compared with CFD results in the same probe locations. It is observed that the peak amplitudes are
in good agreement between the two models and the trend of the wave profiles are similar in nature for
all cases, as shown in Figures 13–17. However, the CFD data points are little far from the BM results.
These differences can be justified by the full non-linearity solution and viscous effects of the CFD
model, while the solution of the analytical model is only of second-order. However, the comparison
showed that the developed BM is supported by the numerical CFD model which indicates that the
BM may be reliable for concept validation and further enhancement of the model to study motion
characteristics of the cylinder to design a floating point absorber wave energy converter.

Regarding the force and pressure distribution analysis, it may be mentioned that the value of the
horizontal force is in between the vertical force and moment acting on the vertical cylinder. The peak
amplitude of moment is higher than those of horizontal and vertical force. Regarding the pressure
distribution around the cylinder, it is found that during the wave encounter, the free surface elevation
at the side and behind the cylinder is lower than that at the front probe location.

Finally, the effects of radius, wave number, water depth, and depth parameters on the second-order
sub-harmonic wave amplitudes from the Boussinesq results are analyzed, as presented in Figures 18–21.
It is observed that the second-order subharmonic waves around the cylinder are negative for all
cases whilst, in the same range the super-harmonic waves are positive as presented in Figures 13–17.
Furthermore, it is seen that the effects of the second-order on super-harmonic waves for free surface
wave profiles around the cylinder are stronger than those of sub-harmonics as in [8].
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6. Conclusions

The difference between the paper [2] and the present one is the presence of detailed Boussinesq
formulation and the analytical expressions for the second-order super- and sub-harmonic wave
amplitudes of the BM and more wave period cases in CFD simulation under the consideration of
turbulent flow. Furthermore, one more comparison result for the wave gauge behind the cylinder
between Boussinesq and CFD simulations is studied, the CFD results for wave forces, moment,
and pressure distribution around the cylinder are presented and discussed, and finally, a new section
is added to investigate the effect of second-order sub-harmonic waves on the cylinder for different
design parameters from BM.

The innovation of this study is the development of BM based on BEs and numerical CFD
simulations associated with the vertical truncated cylinder and providing benchmark results by
comparing various methodologies of non-linear/second-order super- and sub-harmonic incoming
wave amplitudes/wave heights interactions, as these phenomena have central importance during the
design of WECs. On the other hand, the horizontal and vertical forces and pitch moment acting on the
vertical truncated cylinder are newly added to this study. It has been observed that:

1. The CFD results generated using OpenFOAM for wave heights/wave elevations showed
reasonable agreement with experimental and other numerical models for all the cases.
CFD simulations also predicted results for horizontal and vertical forces and moments encountered
by the cylinder.

2. The results of second-order super-harmonic wave amplitude were compared with CFD results
and it was found that they are in good agreement and the trends are also well captured in all cases.

3. The effects of second-order super-harmonic waves are stronger than those of sub-harmonic
waves around the cylinder, and the complicated transformation process in the wave amplitude
distribution is found to be due to the phase interaction between the flows around and below
the cylinder.

4. The CFD pressure distribution indicates that the wave elevation at the side and behind of the
cylinder is lower than that at the front. From the computational point of view, the present study
indicates that the CFD is far more expensive compared to BM and perhaps is best suited for final
design validation for WEC devices, rather than the design iteration stage.

5. As a result, the present BM can be used with confidence to generalize for heaving motion
characteristics of the floating vertical truncated cylinder to design point absorber floating WEC.

6. Furthermore, the wave force results of the CFD modeling may help to use in the future BM model
to analyze the level of fidelity by comparing them.
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Abbreviations

BEs Boussinesq equations
BM Boussinesq model
CFD Computational Fluid Dynamics
EFD Experimental Fluid Data
FVM Finite Volume Method
IBM Immersed Boundary Method
MAC Marker and Cell
NS Navier Stokes
NWT Numerical Wave Tank
OpenFOAM Open Source Field Operation and Manipulation
SSD Solid Sate Drive
VoF Volume of Fluid
WEC Wave Energy Converter
w.r.t with respect to
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