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Abstract: The estimation of wind loads on ships and other marine objects represents a continuous
challenge because of its implication for various aspects of exposed structure exploitation. An extended
method for estimating the wind loads on container ships is presented. The method uses the Generalized
Regression Neural Network (GRNN), which is trained with Elliptic Fourier Descriptors (EFD) of
sets of frontal and lateral closed contours as inputs. Wind load coefficients (Cx, Cy, CN), used as
outputs for network training, are derived from 3D steady RANS CFD analysis. This approach is
very suitable for assessing wind loads on container ships wherever there is a wind load database
for a various container configuration. In this way, the cheaper and faster calculation can bridge the
gap for the container configurations for which calculations or experiments have not already been
made. The results obtained by trained GRNN are in line with available experimental measurements
of the wind loads on various container configuration on the deck of a 9000+ TEU container ship
obtained through a series of wind tunnel tests, as well as with performed CFD simulation for the
same conditions.

Keywords: wind loads; container ships; Reynolds-averaged Navier–Stokes equations (RANS);
Generalized Regression Neural Network (GRNN)

1. Introduction

The loads on container ships due to wind play an important role in many aspects of the exploitation
of container ships. Accurate estimation of wind-induced forces and moments poses a challenge due
to its implications for various analyses related to ship stability, ship speed estimation, maneuvering,
station-keeping and mooring. Experimental research of wind-induced forces and moments on marine
vessels is still the most reliable approach. However, the experiments are expensive and setting-up the
wind tunnel tests is very demanding. It is necessary to have a wind tunnel at your disposal and build a
ship model that reliable represents the real ship and loading conditions. Even then, the results obtained
can only be used for that ship or for that loading condition. Researchers realized quite early that it was
necessary to systematically conduct a series of experiments and then bridge the gap between them by
some interpolation method.

Isherwood [1] proposed numerical expressions in the form of coefficients for the lateral and
transverse wind forces as well as yawing moment, derived from multiple regression analysis of
previously published experimental results. Gould [2] presented a numerical procedure to determine
the ahead force, side force and yawing moment of most ships in motion or at anchor, in the presence of
a natural wind from any direction on the superstructures of ships. Blendermann [3–6], presented a
systematic collection of wind load data derived from wind tunnel tests on a scale model. Depending on
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a random shape of a deck cargo with regard to kind and distribution, author suggests that wind loads
on ships should be analyzed as statistical data. Haddara and Soares [7] built a universal model for the
estimation of the wind loads on ships using neural network techniques in parameter identification of
mathematical model with measured input and output data.

Recently, computational fluid dynamics (CFD) is increasingly used in the assessment of the impact
of wind on various structures. Brizzolara and Rizzuto [8] and Wnek and Guedes Soares [9] used CFD
methods to analyze wind forces on superstructures of large commercial ships, in particular the suction
area on the main deck caused by the presence of a negative pressure field. They compared the obtained
results with the wind tunnel measurements and showed a reasonable agreement. Janssen et al. [10]
present 3D steady RANS CFD simulations of wind load on a 9000+ TEU container ship and validation
with wind tunnel measurements carried out by Andersen [11]. They performed an analysis of the
impact of geometrical simplifications of a CFD model on wind forces. For validation, CFD simulations
are performed in a limited computational domain resembling the cross-section of the wind tunnel.
Effects caused by the domain boundaries are studied by comparing CFD results in the narrow and wider
domain. Their study shows the necessity of validating CFD simulations with wind-tunnel experiments.

CFD has many advantages compared with wind tunnel experiments. The most obvious advantage
is faster and more flexible performance, which results in lower costs. CFD simulations are very suitable
for visualization of results and for preparatory calculations. This does not eliminate the need for
model testing and collection of data at full scale. The CFD results can often be deceiving because
they are affected by the mesh and input data selection as well as by the choice of the CFD method.
Only through a comparison of numerical testing and physical experiments is it possible to validate the
computational models.

The estimation procedure of wind loads on a container ship presented in this paper can be seen
as an extended methodology of the one proposed and used by Valčić and Prpić-Oršić in previous
work [12–15]. In this enhanced methodological approach, the Generalized Regression Neural Network
(GRNN) is still trained with input data in form of elliptic Fourier descriptors that represent the closed
contours of frontal and lateral projections of a container ship for various container configurations.
In comparison with previous research, in which target data were presented in form of associated
non-dimensional wind load coefficients obtained experimentally in wind tunnel, in this research
these coefficients were determined by 3D steady RANS Computational Fluid Dynamic (CFD) analysis
and simulation. In this way, it has been investigated and shown how CFD simulations can present
an efficient alternative to wind tunnel tests, which is particularly important for calculation of wind
load coefficients for various container configurations without the necessity for experimental testing.
However, CFD simulations with all their advantages still present too complex and computationally
very expensive approach from an engineering and practical point of view, especially in real-time
applications when the estimation of wind loads should be performed sufficiently fast, while preserving
accuracy within some predetermined boundaries.

The application of appropriate nonlinear multivariate regression method can overcome this issue
in terms of approximation. Although there are many methods that can be used for this purpose,
GRNN was implemented mostly due to its very favorable characteristics. Foremost, it can capture
sufficiently accurate any nonlinearity and even with sparse available data GRNN algorithm still
provides smooth transitions from one observed value to another in a multidimensional space [16].
In addition, very short training time and extremely fast response make GRNN very convenient choice
for real-time applications, even in cases when new container configuration occurs, that is, the one
that was neither used during CFD simulations nor during GRNN training. In order to investigate
capabilities of CFD simulations and GRNN responses different container configurations were analyzed
and obtained results were compared. As it can be seen, both CFD and GRNN have yielded very
promising results, CFD as an alternative for wind tunnel tests and GRNN as an excellent approximation
tool trained with previously obtained CFD data. Once trained, the GRNN in further applications
related to estimation of wind loads requires only data related to wind speed, wind direction and frontal
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and lateral projected areas, that is, there is no need for new CFD simulations or wind tunnel tests if the
network is trained with sufficient amount of data.

2. Wind Load Estimation with Neural Networks Hybrid Method

2.1. Theoretical Background

For the purpose of the analysis presented in this paper, the method for estimation of wind loads
is based on two distinctive approaches that are combined afterwards. Namely, and as previously
mentioned, the main idea is to prepare and train associate neural network with input data related
to contours of frontal and lateral ship projections from one side and with non-dimensional wind
load coefficients as target data from another. However, in order to complete this task, geometrical
characteristics of frontal and lateral projections should be available and expressed in terms of different
container configurations. Associated wind load coefficients should also be available for each of these
configurations. These coefficients can be obtained experimentally in wind tunnels, which presents the
first approach, as well as by means of CFD calculations that presents the second one.

In this work, both approaches have been used in order to show how CFD approach can be
calibrated and tuned according to available experimental data and how afterwards obtained CFD
results can be used for training of selected neural network. However, it is important to point out
that both these approaches are very challenging and complex, particularly from the application
point of view.

In order to overcome these potential issues, CFD is calibrated with experimental data and after
sufficiently well verification, CFD results of wind load coefficients are used for training of simple
but yet very powerful generalized regression neural network (GRNN) that has great capabilities
in solving problems related to multivariate nonlinear regression [16]. However, these wind load
coefficients, independently on how they are obtained, present only one side of a coin, that is, the target
data. On the other hand, input data consist of associated elliptic Fourier descriptors that are used
for the mathematical description of outer contours of frontal and lateral projected areas of the ship.
The preparation of these input data is based on the methodological approach that was introduced
in [12,14]. The main idea of this approach lays in a fact that with appropriate mathematical description
of frontal and lateral ship projections, sufficiently large amount of information related to geometrical
characteristics of various container configurations can be captured. To prepare all the required data for
training of selected neural network, there are four sequentially connected parts, as follows.

(1) Acquisition and Processing of Container Ship Images with Various Container Configurations
As described in Reference [12], all available images are digitally edited and binarized. With image

binarization, in which usually the background of the image is white and analyzed object is black, it is
relatively easy to detect all boundary pixels that present an outer contour of the analyzed object. In this
case, these outer object contours refer to outer frontal and lateral projections of an analyzed container
ship with different container configurations of interest.

(2) Feature Extraction of Frontal and Lateral Projections for Various Container Configurations
Once the boundary pixels of outer contours are detected in part (1), these contours can be

encoded using some appropriate encoding method. For the purpose of this work, encoding method
based on the so-called Freeman chain was used [17]. Obtained encoding is the basis for mathematical
description of closed contours and variety of methods can be applied for this purpose [18–20]. However,
the method of elliptic Fourier descriptors, introduced by Kuhl and Giardina [21], was used in this
paper. Detailed description of this procedure is presented in [12,15].

(3) Data Preparation for the Training of Selected Neural Network
Input data for the training of the GRNN, that is, mathematical description of frontal and lateral ship

projections, are prepared using Freeman chain encoding coupled with elliptic Fourier analysis. In terms
of different number of harmonics used in this elliptic analysis, better approximation of analyzed closed
contour can be obtained but some caution is required in order to avoid undesirable overfitting.
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On the other hand, target data, that is, appropriate wind load coefficients, are prepared using
both experimental data from wind tunnel tests [11] and CFD calculations that are performed by the
authors of this research. In comparison with the previous work [12], training of selected GRNN in this
research was conducted with results of CFD analyses only, whereas in previous studies training was
based only on experimental data.

(4) Cross-Validation and Testing of Trained GRNN
In machine learning, cross-validation is usually performed in terms of k-fold or holdout validation

procedures. Considering a small number of container configurations were available for conducting
this analysis, k-fold validation approach was used in this research in terms of leave-one-out approach
for which k = 1. On the other hand, testing of obtained results were performed in terms of mean
values and associated standard deviations of absolute differences of GRNN responses and wind load
coefficients obtained by CFD simulations.

2.2. Notation and Reference Frames

In order to define wind loads on an analyzed container ship, two commonly used reference frames
are body reference frame {b} and geographical North-East-Down (NED) reference frame {n} [22]. As it
can be seen in Figure 1, xn and yn are axes in North and East of {n}, respectively and xb and yb are axes
in surge and sway of {b}, respectively.
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Two most important quantities are the wind speed Vw and wind direction γw expressed in {b}.
These are usually measured by the wind sensor or anemometer and due to their significant high
frequency nature, they should be filtered before any calculation of interest. It should be pointed out
that angle γw is defined with respect to xb axis in a counterclockwise direction, while alternative wind
angle of attack αw is defined in {b} with respect to xb but in clockwise direction:

γw = 2π− αw. (1)

If relationship between the meteorological wind angle βw and the wind angle of attack γw is
required, then the heading of the ship ψ, defined in {n} with respect to xn axis in a clockwise direction
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and measured by the means of gyrocompass, should also be introduced. In this case (Figure 1),
all angles of interest are related with the following term:

ψ = γw + βw + π. (2)

2.3. Wind Loads on a Ship at Zero Forward Speed

In a simple case of container ship with zero forward speed, the wind loads in surge, sway and
yaw axis can be expressed in terms of the non-dimensional wind load coefficients CX(γw), CY(γw) and
CN (γw) as follows: 

Xwind
Ywind
Mwind

 = 1
2
ρaV2

w


CX(γw)AF

CY(γw)AL

CN(γw)ALLoa

, (3)

where Xwind, Ywind and Mwind are wind forces and moment in the horizontal plane, ρa is the air density,
AL and AF are the ship’s frontal and lateral projected areas above the water line, respectively and Loa is
ship’s length over all.

In a case when the ship is moving at some forward speed U different from zero, then terms in
Equation (3) should be redefined by introducing relative wind speed and relative wind angle of attack
that takes into account ship speed and heading. This is particularly important for any application
in open sea-like conditions. However, considering that in this work all the analyses rely on the
experimentally obtained results from wind tunnel tests with zero forward speed, there is no need for
additional redefinition of the term in Equation (3).

From Equation (3), the non-dimensional wind load coefficients can be easily expressed in terms of
wind forces and moment in horizontal plane as follows:

CX(γw)

CY(γw)

CN(γw)

 = 2
ρaV2

w


Xwind/AF

Ywind/AL

Mwind/(ALLoa)

. (4)

As previously mentioned, these coefficients can be obtained experimentally from wind tunnel
tests, using CFD numerical analyses or both of these approaches. Independently of selected approach,
wind load coefficients are target data for training of the GRNN and thus the quality of these data are
essential for obtaining sufficiently well GRNN responses.

In the forthcoming section, an enhanced methodology approach of wind loads estimation is
introduced. The input data are based on the elliptic Fourier descriptors of closed contours of ship
frontal and lateral projections for all analyzed container configurations, similarly, like in previous
work [14]. The main difference in comparison with previous proposals is related to the target data,
that is, to how they were obtained. In this enhanced approach, the target data consist of wind load
coefficients that are determined with CFD calculations for each analyzed container configuration,
while in previous work the target data were solely results of the wind tunnel tests.

2.4. Methodological Framework for Wind Loads Estimation Based on CFD, EFDs and GRNN

Valčić and Prpić-Oršić [12] proposed a novel methodological framework for the estimation of
wind loads on different types of ships. As indicated above, this framework is based on Freeman chain
encoding, elliptic Fourier analysis and neural networks. In comparison with the originally proposed
method [12], the one used in this paper is slightly enhanced and can be divided into three phases
(Figure 2):

(i) Estimation of wind load coefficients by CFD simulations;
(ii) Deployment of the model based on CFD results, EFDs and GRNN;
(iii) Cross-validation of GRNN responses, GRNN testing and further application of developed neural

network model.



J. Mar. Sci. Eng. 2020, 8, 539 6 of 21

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 21 

 

(iii) Cross-validation of GRNN responses, GRNN testing and further application of developed neural 
network model. 

 
Figure 2. Enhanced methodological framework for wind load estimation based on Computational 
Fluid Dynamics CFD, Elliptic Fourier Descriptors (EFDs) and Generalized Regression Neural 
Network (GRNN). 

In the first phase, CFD analysis and simulations are used in order to estimate wind load coefficients 
for various container configurations on deck. Available experimental results are used for calibrating 
CFD model and for additional verification. 

Afterwards, during the second phase, associated database for training, cross-validation and 
testing of neural networks should be prepared and built. As indicated above, training input data 
should be prepared so the Freeman chain encoding can be performed smoothly without considering 

Figure 2. Enhanced methodological framework for wind load estimation based on Computational
Fluid Dynamics CFD, Elliptic Fourier Descriptors (EFDs) and Generalized Regression Neural
Network (GRNN).

In the first phase, CFD analysis and simulations are used in order to estimate wind load coefficients
for various container configurations on deck. Available experimental results are used for calibrating
CFD model and for additional verification.

Afterwards, during the second phase, associated database for training, cross-validation and testing
of neural networks should be prepared and built. As indicated above, training input data should be
prepared so the Freeman chain encoding can be performed smoothly without considering too much
image details. In this way, undesirable overfitting during NN training can be also easily avoided.

Freeman chain encoding for some simple container vessel is visually presented in Figure 3. As it
can be seen, after the binarization of ship frontal and/or lateral projection image, the chain encoding
can be performed from any arbitrary starting point, which is indicated with the yellow square in this
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case. On the other hand, all grey squares present pixels of the image. Encoding can be done either in
clockwise or counterclockwise direction, as described in Reference [14].

When the chain codes are obtained for all frontal and lateral projection images, they can be further
used for calculation of associated elliptic Fourier descriptors, as described in detail in [12,14]. However,
it should be noted that frontal and lateral projections are analyzed independently, which means that
each projection, that is, outer closed contour for each projection, should be described with associated
ordered quadruples of elliptic Fourier descriptors that can be written as (an, bn, cn, dn), where n = 1,
2, . . . , N and N indicates the number of harmonics in the Fourier expansion. As mentioned above,
the Fourier expansion is based on the approach introduced by Kuhl and Giardina [21].

The larger N yields better fitting of closed contour but also invokes possible overfitting issues.
In this context, Figure 4 shows the ship contour (blue line) in comparison with the contours that are
based on different number (N = 1, 10, 100 and 500) of harmonics (red line) in Fourier expansions.
It can be noticed that contour of interest, even if it is relatively complex in geometrical sense, can be
sufficiently well fitted with approximately 100 harmonics.

Developed GRNN model presents a multi-variate non-linear mapping of the form:

[EFDs] GRNN
→ [CX, CY, CN] (5)

that is, the mapping of frontal and lateral contours described by EFDs to wind load coefficients
determined by CFD simulations.

Once the wind load coefficients are estimated based on Equation (5), wind forces and moment in
the horizontal plane can be easily calculated based on Equation (3). This can be also seen in the last
application phase (Figure 2).
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Figure 3. Vector representation and visualization of Freeman chain encoding with contour extraction.
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3. Wind Loads Estimation Using CFD

3.1. Computational Geometry and Grid

The computational domain utilized in all the simulations has a rectangular cross-section with
chamfered edged so the wind tunnel test section can be adequately replicated. The location of the ships
within the domain coincides with the experimental setup described in Anderson [11]. Thirteen different
setups of bay configurations have been numerically analyzed using CFD techniques. A demonstrative
case, configuration 13 for wind angle 0◦, is shown on Figure 5b with trimmed mesh shown on ship
surface. Characteristic domain patches are presented in Figure 5a, for configuration 1 case. Remaining
patches are fixed walls. The computational domain spans 0.42 m in upstream and 1.44 m in downstream
direction, with the cross-section size of 0.6758 m2.

Numerical grids on average contain 3.5× 106 cells. Grids are generated using STAR-CCM+ trim
mesher. For all test cases, turbulence in near wall regions is resolved with wall functions.

A typical longitudinal section for configuration 1 is presented in Figure 5c where refinement zones
close to ship are clearly visible.
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3.2. Boundary Conditions

Wind profile at the inlet has been set in accordance with the Andersen’s specification [11].
Mean velocity as per literature is therefore defined as a function of the domain height:

U(z) = Ure f

(
z

zre f

)α
(6)

where Ure f = 45 m/s is reference velocity, zre f = 0.0222 m reference height and α = 0.11 velocity
profile exponent [23]. Inlet profile of the turbulence dissipation rate ε is determined based on
following equation:

ε(z) =
(u∗)3

κ(z + z0)
(7)

where κ represents the von Karman constant and u∗ frictional velocity. Frictional velocity is dependent
on the reference velocity and height as per expression:

u∗ =
κU(z)

ln
(

zre f +z0
z0

) (8)

Aerodynamic roughness length z0 is estimated based on updated Davenport roughness
classification and equals z0 = 0.0002 m for sea [24,25]. For the model scale this equates to the
roughness of z0 = 4.44 × 10−7 m. Turbulent kinetic energy profile can be estimated and calculated
according to:

k(z) =
(u∗)2√

Cµ
. (9)

For z ≥ 0.1 m kinetic energy is considered constant so as to avoid any bias since turbulence
intensity IU as well as velocity U have not been measured in that range. Employed logarithmic law wall
functions (30 < y+ < 100) are modified to account for the roughness based on relationships established
by Blocken [25]. These correlations are defined by equation:

ks =
9.793z0

Cs
(10)

where ks represent equivalent sand-grain roughness height and Cs roughness constant. In accordance
with the aforementioned correlation, equivalent sand-grain roughness has been determined to be
ks = 4.35× 10−6 m with roughness constant equals to Cs = 1. Patches with implemented roughness
corrections have been shown in Figure 5a.

3.3. Computational Settings

Navier-Stokes equations describing mechanics of a continuum need to be solved in order to fully
resolve fluid flow. These coupled partial differential equations are the result of the Newton’s second
law applied to the fluid motion and account for viscosity effects. They are commonly simplified using
approximations, with Reynolds-averaged Navier-Stokes (RANS) equations being the most common
solution for turbulent flows. To solve these equations, certain assumptions based on experimental data
are utilized, thus outlying different RANS turbulent models. Detailed description of RANS models
and appropriate closure approaches can be found in Reference [26].

Commercial finite-volume CFD solver Star-CCM+ has been employed to solve aforementioned
RANS system of equations with realizable k-ε model ensuring closure of said system. Pressure-velocity
coupling is achieved with SIMPLE algorithm. Discretization schemes for all terms are set as second-order.
Convergence is assumed when the residuals fall below 10−5 or variance for monitored physical values
is less than 0.1% of their mean value.
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Figure 6 shows streamlines and central vertical plane colored by velocity magnitude for a single
illustrative container configuration and 40-degree ship position rotation from initial position. Complex
flow CFD analysis takes into account complete 3D model of a ship above water structure. Included
figure demonstrates the complexity of the flow for analyzed cases.
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A tunnel wall was added to the CFD simulation’s boundary conditions to ensure similarities

with the experimental conditions. So, the calculation has been performed for the two cases: case
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with no influence of wind tunnel walls (uncorrected, blue line); case with the influence of wind
tunnel walls (corrected, red line). In Figures 7–19, wind load coefficients CX (γwind), CY (γwind) and
CN (γwind), obtained by GRNN (green line) trained with corrected CFD values and Andersen (black line),
are compared with the CFD results. The comparison conducted for the i-th vessel is denoted as
Conf. #t, t = 1, 2, . . . , 13.

The results indicate that uncorrected CFD results deviate somewhat from the experimental ones,
especially in the transverse direction. However, the corrected values for the case with wind tunnel walls
accounted are in line with those obtained experimentally. Those results are in line for the variability of
ship lateral contour caused by different container arrangements and indicate good agreement.

The GRNN was trained using input and output set of data for 12 different configurations at a time.
The responses are validated for the remaining 13th vessel, as usual in afore mentioned leave-one-out
approach. In other words, out of 13 configurations, 12 were used to train the GRNN and then 13th
configuration was used for validation. Therefore, when #1 was used for validation, #2 to #13 were
used for training. Similarly, when #13 was used for validation, #1 to #12 were used for training.

The wind load coefficients of 13 available container configurations obtained as GRNN responses
are compared with corresponding wind load coefficients obtained in wind tunnel testing [11].

Obtained CFD results and GRNN responses can be evaluated in terms of mean values (µi) and
associated standard deviations (σi) of absolute differences of appropriate non-dimensional wind load
coefficients Ci for each degree of freedom in the horizontal plane, i = {X, Y, N} and for each analyzed
container configuration t, t = 1, 2, . . . , 13. However, it does not make sense to compare both of these
results directly with available experimental results because GRNNs were trained with the CFD results.
Thus, there are two comparisons of interest, that is, comparison A in which CFD results (CCFD

i, t ) are

evaluated based on experimental data (Cdata
i, t ), and comparison B in which GRNN responses (CGRNN

i, t )

are evaluated with associated CFD results (CCFD
i, t ), where i = {X, Y, N} and t = 1, 2, . . . , 13. The results

of these comparisons are presented in Table 2.
As expected, based on the obtained values in Table 2, as well as from Figures 7–19, it is obvious

that GRNN is a slightly less accurate, particularly with some configurations that are somehow unique
in comparison to other 12 configurations. That refers particularly to configuration #2, which have
almost empty deck and to configuration #7 with alternately arranged empty and full bays.

In addition, it can be noticed that the differences between the experimental data, CFD results
(corrected) and GRNN responses are higher for some angles. However, keeping in mind that GRNN
training is performed with only 12 configurations at a time, the results clearly indicate that GRNN
responses are yet in sufficiently good agreement with wind tunnel experimental values, as well as with
corrected CFD results. This particularly stands for lateral coefficients CY that even in this limited set of
different container configurations still have sufficient amount of useful and quality information that
can be used for GRNN training in terms of EFDs. On the other hand, various longitudinal container
configurations lack in terms of quality information, mostly because all these frontal projections are
too similar. This justifies larger deviations of GRNN responses of coefficients CX for some container
configurations like #3 or #8. These issues are also naturally related to associated yawing coefficients CN.

To conclude, it is reasonable to assume that GRNN accuracy will increase with an increase of
available data for new container configurations but also with transition from presented 2D approach,
which takes into account only one frontal and one lateral projection, to 3D perspective that should take
into account variability of longitudinal cross section projections with variability of lateral projection.
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Figure 7. Wind loads coefficients for configuration #1.
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Figure 8. Wind loads coefficients for configuration #2.
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Figure 9. Wind loads coefficients for configuration #3.
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Figure 10. Wind loads coefficients for configuration #4.
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Figure 11. Wind loads coefficients for configuration #5.
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Figure 12. Wind loads coefficients for configuration #6.
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Figure 13. Wind loads coefficients for configuration #7.
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Figure 14. Wind loads coefficients for configuration #8.
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Figure 15. Wind loads coefficients for configuration #9.
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Figure 16. Wind loads coefficients for configuration #10.
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Figure 17. Wind loads coefficients for configuration #11.
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Figure 18. Wind loads coefficients for configuration #12.
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Figure 19. Wind loads coefficients for configuration #13.

Table 2. Comparison of obtained results in terms of mean values (µi) and standard deviations (σi) of
absolute differences of wind load coefficients in cases A (CFD vs. data) and B (GRNN vs. CFD).

A: CFD Results vs. Experimental Data B: GRRN Responses vs. CFD Results

t
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5. Discussion

An enhanced methodology for estimating the wind loads on container ships is presented.
Ship frontal and lateral projected areas, that is, their associated closed contours, are represented
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with elliptic Fourier descriptors. EFDs of closed contours and wind load data derived from CFD
analysis are used for GRNN training. As it can be seen in the previous sections, particularly in
Chapter 4, very limited number of container configurations were available for conducting this analysis.
Therefore, natural choice was to select the so-called leave-one-out cross-validation technique. With this
approach, training was performed the number of times that is equal to the number of different container
configurations that were analyzed. During this analysis, with each consecutive training, a different
container configuration was leaved out for testing, while all other were used for training. The validation
of CFD model is based on 13 different container configurations of 9000+ container ship for which the
experimental results are provided by Andersen [11]. As indicated, the GRNN was tested on before
mentioned 13 different container configurations in a way that the network is trained with the set of
data obtained for 12 configurations and the remaining one is used for testing. Taking into account
limited input data used for network training, the results show good agreement with the experimental
data obtained in wind tunnels.

This approach takes into account all aspects of the variability of the above water frontal and lateral
ship profile but with limitation related to the main frontal projection that cannot capture the variability
of longitudinal cross sections. However, it is very suitable for the assessment of wind loads on container
ships wherever a wind load data for similar ships with various container configurations are available
from wind tunnels or are obtained by CFD analysis. In this case, whereas the validity of the CFD
analysis has been proven on experimental data, all configurations of interest can be analysed with CFD
analysis and larger database can be created. In this way, the cheaper and faster calculation can fill
the gap between ship shapes for which calculations or experiments are performed. It is reasonable
to assume that the network trained with larger training data set will provide results that are more
accurate. Moreover, for the estimation of real wind-induced forces and moment acting on a container
ship in open sea-like conditions, the network should be trained with uncorrected values of wind loads
coefficients. In other words, the important focus should be put on the initial wind conditions during
CFD simulations, because GRNN will be trained with these CFD results and consequently will be
trained for some specific wind conditions. Regardless of the conditions under which it was trained,
in actual applications of wind loads estimation, trained GRNN requires only simple data such as wind
speed and direction, which can be obtained using the wind sensor (anemometer) and areas of frontal
and lateral projections that can be easily determined. In other words, it does not require additional
wind tunnel testing or CFD simulations, even in a case of completely new configurations that were not
used in the training phase. However, if tunnel testing or CFD simulations can be performed and wind
load coefficients can be obtained for these “new configurations,” GRNN can be easily and quickly
retrained and thus providing higher accuracy and reliability for future estimations.

Further research should be aimed toward uncertainties and reliability analysis, as well to increasing
the number of container configurations by means of verified CFD analysis in order to enlarge the
available database for neural network training. The selection of neural network type and number of
harmonics could also affect the results, so they should be further analyzed as well. The next direction for
further research will aim towards the development of a pseudo 3D approach to wind loads estimation
on a container ship. This approach will be based on EFDs that are used for ship frontal and lateral
closed contour representation of ship cross sections. In this way, all aspects of the 3D variability of the
above-water frontal and lateral ship profile will be taken into account.
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resources J.P.-O. and M.V.; data curation, Z.Č. and M.V.; writing, original draft preparation, J.P.-O.; writing, review
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The following abbreviations are used in this manuscript:

CAD Computer-Aided Design
CFD Computational Fluid Dynamics
EFD Elliptic Fourier Descriptors
GRNN Generalized Regression Neural Network
LNG Liquefied Natural Gas
NED North-East-Down
NN Neural Network
RANS Reynolds-averaged Navier–Stokes
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