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Abstract: The Bragg reflections of oblique water waves by periodic surface-piercing structures over
periodic bottoms are investigated using the eigenfunction matching method (EMM). Based on the
assumption of small wave amplitude, the linear wave theory is employed in the solution procedure.
In the step approximation, the surface-piercing structures and the bottom profiles are sliced into
shelves separated by abrupt steps. For each shelf, the solution is composed of eigenfunctions with
unknown coefficients representing the wave amplitudes. Upon applying the conservations of mass
and momentum, a system of linear equations is obtained and is then solved by a sparse-matrix solver.
The proposed EMM is validated by several examples in the literature. Then, the method is applied to
solve Bragg reflections of oblique water waves by various surface-piercing structures over periodic
bottoms. From the numerical experiments, Bragg’s law of oblique waves was used to predict the
occurrences of Bragg resonance.

Keywords: eigenfunction matching method; oblique wave; Bragg reflection; step approximation;
surface-piercing structure; periodic bottom

1. Introduction

When wind waves generated in the deep-water approach coastal regions, they experience various
physical phenomena caused by inferences with structures, bathymetric variations, nonlinear wave
interactions, etc. To prevent coasts from huge wave attacks, either floating or submerged breakwaters
are usually installed in the coastal area. Although the nonlinear effects become significant as the waves
approach the shoreline, consistent linear solutions are still valuable and provide extensive information
concerning the wave impact on the nearshore and coastal environments. Furthermore, the linear
solution usually serves as the starting point for a weakly nonlinear model [1].

Both submerged and floating breakwaters are typically designed in coastal regions. Submerged
breakwaters are conventional structures that often rest on the sea floor. In addition, they are built
as submerged types to satisfy the requirements of coastal landscapes and ecologies. Submerged
breakwaters are heavy and large, and are designed by engineers for different purposes [2]. On the other
hand, floating breakwaters have the advantage of lower construction costs compared to submerged
breakwaters. Floating structures may be used in fishing farms for ecology conservation, tourism, and
leisure. Moreover, they may be implemented at the ocean engineering working stations, such as oil
exploration stations [3]. Engineers also use assembled floating structures to construct an airport on the
sea [4], or to provide hospitable environments on the surface of the water.
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The Bragg reflection caused by the periodic breakwaters can help to effectively attenuate waves.
For example, Mei et al. [5] considered using a series of submerged sinusoidal sandbars to protect the
ocean platforms in Ekofisk of the North Sea, and Bailard et al. [6] found that the Bragg reflection of
submerged bars can protect U.S. Gulf Coasts from storm-induced waves. In addition, Tsai and Wen [7]
indicated that the Bragg reflections of submerged breakwaters were effective for protecting the Mi-Tuo
Coast, Taiwan. The vortex generation and dissipation accompanying the Bragg scattering of water
waves propagating over a series of submerged rectangular breakwaters were investigated by Hsu,
et al. [8]. Recently, the Bragg reflections of floating breakwaters were studied by Ouyang et al. [9]
and Ding et al. [10]. In this study, the combined Bragg reflections of periodic submerged and floating
breakwaters are considered.

Numerical solutions are inevitable for solving water wave-scattering problems as analytic
solutions are rare [11]. Berkhoff [12] derived the mild-slope equation (MSE) by integrating the
governing equation over the vertical interval of water depth. Subsequently, the MSE was modified
and improved in various studies [13,14]. In addition to the prescribed one-equation models, further
improvements were made by including the evanescent modes, resulting in a system of hierarchical
MSEs [15,16]. Athanassoulis and Belibassakis [17] additionally included a sloping-bottom mode to
formulate the consistent coupled-mode system (CCMS), which has been applied to many water wave
problems [18–20]. The MSE has been applied to solve problems of nonlinear waves [18,21], three
dimensions [22], wave–current interactions [21,23], time evolutions [24], Bragg reflections [13], floating
structures [25,26], etc. A comprehensive review can be found in a recent article [27].

Alternately, Takano [28] developed the eigenfunction marching method (EMM) for solving normal
incident wave scattering over an elevated sill and a fixed surface obstacle. Subsequently, Kirby and
his coauthors [29,30] applied the EMM to solve problems of wave scattering over a trench of oblique
incidences. For waves propagating over an arbitrary bottom profile, Devillard et al. [31], O’Hare and
Davies [32,33], and Tsai et al. [34,35] decomposed the bottom profiles into a sequence of flat shelves
separated by steps. The EMM has been applied to problems of viscous wave scattering [36–38],
water wave scattering by tension-leg structures [39] and thin floating plates [40]. The accuracy of the
EMM solutions was shown to be comparable with that of the MSE solutions [41]. In addition, the
mathematical formulation is EMM is simpler as there are no requirements for the spatial derivatives
of the eigenfunctions; however, they are needed in the MSE. However, the applications of EMM to
three-dimensional, nonlinear, and/or time-dependent problems require further investigation.

In 1966, Katō, et al. [42] conducted laboratory experiments on the reflections of wave scattering
using four simple floating structures, including a rectangular structure. Through numerical method, the
diffraction of oblique waves scattering by a surface-piercing rectangular structure was studied by Bai [43].
Sequentially, Kanoria et al. [44] derived analytical solutions for normally incident wave scattering
by a surface-piercing rectangular structure in water of uniform finite depth. The analytical solutions
were then extended to oblique waves by Söylemez and Gören [45]. For an arbitrary cross-section,
Garrison [46] developed a Green’s function procedure to compute oblique wave scattering. Using
numerical methods, Ouyang et al. [9] recently studied the Bragg reflections of normal waves by fixed
rectangular structures. Ding et al. [10] studied the Bragg reflections of normal waves by structures of
different shapes using the boundary element method. All the prescribed studies consider scattering
problems with different configurations of various structures over a flat bottom.

Manisha et al. [47] recently developed a model considering the effects of bottom undulations for
oblique wave interaction with a surface-piercing rectangular structure behind a submerged breakwater
or a trench. They connected the solutions of the MSE and EMM for the regions of the undulated bottom
and rectangular structure over the flat bottom, respectively. In this study, the EMM model is developed
for analyzing the combined phenomena of oblique incidence, surface-piercing structures of different
shapes, Bragg reflections, and undulated bottoms. In the solution procedure, the surface-piercing
structures and bottom topography are sliced into successive flat shelves separated by abrupt steps.
The matching conditions of the normal flow flux and the continuity of pressure are imposed on the
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interface boundaries. The EMM model is validated by comparisons with analytical solutions in the
literature [10,45,47].

Bragg’s law is usually used to predict the wavelengths at which the X-rays are intensively
reflected by crystalline solids [48]. For water-wave problems, Bragg’s law is applied for scatterings by
floating [9,10] and submerged [5–7,23] structures at normal incidence. For oblique incidence, Mei [49]
and Dalrymple et al. [50] applied Bragg’s law for water wave scattering by bottom ripples. In this
study, numerical experiments were conducted to study the Bragg reflections by the combined effects of
floating structures, bottom variations, and oblique incidence. In addition, the numerical results are
compared with those predicted by Bragg’s law.

This paper is organized as follows: the wave problem is mathematically modeled and the EMM
solution is developed in Section 2, and the EMM model is validated in Section 3. Discussions on
oblique Bragg reflections by surface-piercing and submerged breakwaters are provided in Section 4.
Finally, conclusions are presented in Section 5.

2. Materials and Methods

2.1. The Mathematical Model

We consider the problem of oblique monochromatic water wave scattering by surface-piercing
structures over uneven bottoms. The wave amplitude is assumed to be small enough that the linear
wave theory is applicable. The wave motion is assumed to be time-harmonic, e−iσt, where σ = 2π/T
is the angular frequency, T is the wave period, t is the time, and i is the unit of complex numbers.
Figure 1 shows a schematic representation of the wave scattering problem induced by a surface-piercing
structure over uneven bottoms. In the figure, the surface-piercing structures and sea bottom are
discretized into a series of M shelves in the intervals of xm−1 ≤ x ≤ xm for m = 1, 2, 3 . . . , M, with a
water depth hm > dm, where dm > 0 is the submergence depth of the structure. Alternatively, dm = 0 is
designated if there is no structure in the interval. Furthermore, x0 = −∞ and xM = ∞ are assumed.

Considering the solution on the m-th shelf in the interval xm−1 ≤ x ≤ xm, the velocity of the fluid is
defined by

um = ∇φm, (1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the three-dimensional del operator with respect to the
three-dimensional Cartesian coordinates (x, y, z) and φm is the velocity potential. According to
the linear wave theory, the velocity potential is governed by the Laplace equation as

∇
2φm = 0. (2)

It should be noted that φm is only related to the spatial part of the velocity potential for the
remainder of this work. If there is no structure in the interval (dm = 0), the problem is subjected to the
kinematic and dynamic free-surface boundary conditions, respectively, as

− iσηm −
∂φm

∂z
= 0 (3)

and
− iσφm + gηm = 0 on z = 0. (4)

Equations (3) and (4) can be combined to obtain

∂φm

∂z
−
σ2

g
φm = 0 on z = 0. (5)
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On the other hand, if there is a structure in the interval (dm > 0), the boundary condition on the bottom
of the surface-piercing structure is given by

∂φm

∂z
= 0 on z = −dm. (6)

In addition, the boundary condition on the sea bottom can be expressed in the form of

∂φm

∂z
= 0 on z = −hm. (7)
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Figure 1. Schematic representation of the boundary-value problem of water-wave-scattering by the
surface-piercing structure over even bottom. The study domain divided into different regions with M
shelves separated by M− 1 steps.

Equations (2)–(7) are sufficient to construct the complete solution by eigenfunctions and will be
given in the next section.

Then, connection conditions are required to match the solutions φm and φm+1 as

φm = φm+1 (8)

and
∂φm

∂x
=
∂φm+1

∂x
(9)
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on −dmax
m < z < −hmin

m and x = xm with dmax
m = max(dm, dm+1) and hmin

m = min(hm, hm+1). In addition,
no-penetration conditions are needed on the bottom and structure side-walls, respectively, as

∂φ

∂x
= 0 on − hmax

m < z < −hmin
m and x = xm (10)

and
∂φ

∂x
= 0 on − dmax

m < z < −dmin
m and x = xm. (11)

The definitions of hmax
m and dmin

m are similar, and thus neglected here. In Equations (10) and (11), φ
stands for either φm or φm+1 depending on the water side of the wall.

Then, considering a monochromatic wave train with incidence angle α, amplitude a, frequency σ,
and wavelength λ, which propagates towards the surface-piercing structures over an uneven bottom.
Therefore to make the solution unique, the following far-field conditions are required

η = a
(
eik̂1,0x + KReiθRe−ik̂1,0x

)
eiky y as x→ −∞ (12)

and
η = aKTeiθT eik̂M,0xeiky yas x→∞. (13)

where KR, θR, KT, and θT are real numbers, such that KReiθR and KTeiθT are the reflection and
transmission coefficients, respectively. In Equations (12) and (13), k̂1,0, k̂M,0, and ky are positive real
wavenumbers defined by

k̂m,n =

√
km,n

2
− ky

2, (14)

and
ky = k1,0 sinα. (15)

where k1,0 = 2π/λ > 0 and kM,0 > 0 are the progressive wavenumbers obtained from the dispersion
relation

σ2

g
= km,0 tanh km,0hm. (16)

Here, it is assumed that there is no structure over the first and last shelves, i.e., d1 = 0 and dM = 0.
Now, the problem is well-defined, and the estimation of the reflection and transmission coefficients

are presented in the next subsection.

2.2. Eigenfunction Matching Method

To construct the complete solution using eigenfunctions, a complete set of wavenumbers is
required. When there is no structure on a shelf (dm = 0), in addition to the progressive wavenumber
km,0 in Equation (16) the evanescent wavenumbers km,n (n = 1, 2, 3, . . .) are defined by

km,n = iκm,n, (17)

where κm,n is the n-th smallest positive root of the dispersion relation

σ2

g
= −κm,n tan κm,nhm. (18)

and when there is a structure over a shelf (dm > 0), the wavenumber is alternatively defined as

km,n =
inπ

hm − dm
(19)
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for n = 0, 1, 2, . . .. As the incident wave is oblique, we have to define the x-component of the
wavenumber k̂m,n by Equation (14). The complex-valued wavenumbers, km,n and k̂m,n, defined in
Equations (14)–(19), enable the formulation of a unified EMM for all types of situations (dm = 0 or
dm > 0; n = 0 or n > 0).

Based on the linear wave theory, the complete solution of the velocity potential for the m-th shelf
may be expressed as

φm(x, y, z) =
N∑

n=0

(
Am,nξ

(1)
m,n(x) + Bm,nξ

(2)
m,n(x)

)
ζm,n(z)eiky y (20)

for m = 1, 2, 3, . . . , M, where Am,n and Bm,n are unknown coefficients to be determined. Upon applying
the conditions in Equations (2), (5)–(7) and by employing the method of the separation of variables, the
eigenfunctions, ζm,n(z), ξ

(1)
m,n(x), and ξ(2)m,n(x), can be obtained and expressed as

ζm,n(z) = cosh km,n(hm + z), (21)

ξ
(1)
m,n(x) =

 eik̂m,n(x−xm−1) k̂m,n , 0
1 k̂m,n = 0,

(22)

and

ξ
(2)
m,n(x) =

 e−ik̂m,n(x−xm) k̂m,n , 0
x k̂m,n = 0

(23)

with {
xm = xm for m = 1, 2, . . . , M− 1
x0 = xM = 0.

(24)

By observing at Equation (21), we have ζm,n = 1 for km,n = 0. According to the Sturm–Liouville
theory [51], the following orthogonal relation is used for solving the problem〈

ζm,n
∣∣∣ζm,l

〉
= Λm,nδnl (25)

where n and l is a mode index varying from 0 to N, δnl is the Kronecker delta function, and Λn is a
function of hm and km,n, written as

Λm,n =
2km,n(hm − dm) + sinh2km,n(hm − dm)

4km,n
(26)

For convenience, we define the inner product of two depth eigenfunctions as follows.

〈F|G〉 =
∫
−λ1

−λ2

F(z)G(z)dz, (27)

where F and G are the depth eigenfunctions of ζm,n with arbitrary m and n; and λ1 and λ2 represent the
structure submergence and water depths, respectively, which correspond to the first depth eigenfunction
F.

It should be noted that the eigenfunction definitions of ζm,n(z), ξ
(1)
m,n(x), and ξ(2)m,n(x) are valid for

all cases (dm = 0 or dm > 0; n = 0 or n > 0) if the complex-valued wavenumbers, km,n and k̂m,n, are
defined by Equations (14)–(19).

Based on the far-field conditions (Equations (12) and (13)) and the dynamic free-surface boundary
condition (Equation (4)), the far-field solutions of the velocity potential can be expressed as

φ1 = −
iag
σ

cosh k1,0(h1 + z)
cosh k1,0h1

(
eik̂1,0x + KReiθR e−ik̂1,0x

)
eiky y as x→ −∞ (28)
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and

φM = −
iag
σ

cosh kM,0(hM + z)
cosh kM,0hM

(
KTeiθT eik̂M,0x

)
eiky y as x→∞. (29)

Comparing Equations (20), (28), and (29), the following equations can be obtained as

A1,0 = −
iag
σ

1
cosh k1,0h1

, (30)

B1,0eik̂m,nx = −
iaKReiθR g

σ
1

cosh k1,0h1
, (31)

AM,0e−ik̂M,0xM−1 = −
iaKTeiθT g

σ
1

cosh kM,0hM
, (32)

A1,n = 0 for n = 1, 2, . . . , N, (33)

and
BM,n = 0 for n = 0, 1, . . . , N. (34)

The other coefficients Am,n and Bm,n in Equation (20) can be determined using the matching
conditions, Equations (8)–(11), at two adjacent shelves. The conservation of momentum, stemming
from Equation (8), gives 〈

ζinner
m,l

∣∣∣∣φm
〉∣∣∣∣

x=xm
=

〈
ζinner

m+1,l

∣∣∣∣φm+1
〉∣∣∣∣

x=xm
, (35)

where ζinner
m,l (z) is the inner depth eigenfunction corresponding to dmax

m and hmin
m . For clarity, ζinner

m,l (z) is
defined by Equation (21) with the wavenumbers km,n obtained from Equations (16)–(19) as dm and hm

replaced by dmax
m and hmin

m , respectively. Similarly, the conservation of mass, comes from Equations
(9)–(11), yields the following equation〈

∂φm

∂x

∣∣∣∣∣∣ζouter
m,l

〉∣∣∣∣∣∣
x=xm

=

〈
∂φm+1

∂x

∣∣∣∣∣∣ζouter
m,l

〉∣∣∣∣∣∣
x=xm

, (36)

where ζouter
m,l (z) is the outer depth function corresponding to dmin

m and hmax
m . In Equations (35) and (36),

the subscripted indices go as l = 0, 1, . . . , N and m = 1, 2, . . . , M− 1. Additionally, it should be noted
that Equations (35) and (36) are valid for all eight cases, as shown in Figure 2.

By using Equation (20), Equations (35) and (36) can be rewritten in the following forms

N∑
n=0

(
Am,nξ

(1)
m,n(xm) + Bm,nξ

(2)
m,n(xm)

)〈
ζinner

m,l

∣∣∣ζm,n
〉

=
N∑

n=0

(
Am+1,nξ

(1)
m+1,n(xm) + Bm+1,nξ

(2)
m+1,n(xm)

)〈
ζinner

m,l

∣∣∣ζm+1,n
〉 (37)

and
N∑

n=0

(
Am,n

dξ(1)m,n
dx (xm) + Bm,n

dξ(2)m,n
dx (xm)

)〈
ζm,n

∣∣∣∣ζouter
m,l

〉
=

N∑
n=0

(
Am+1,n

dξ(1)m+1,n
dx (xm) + Bm+1,n

dξ(2)m+1,n
dx (xm)

)〈
ζm+1,n

∣∣∣∣ζouter
m,l

〉
.

(38)

Subsequently, it can be found that Equations (30), (33), (34), (37), and (38) are 2M(N+1) linear
equations, that can be used to solve the 2M(N+1) unknowns, Am,n and Bm,n. Furthermore, Equations
(37) and (38) can be reduced to the original equations of EMM for normal water-wave-scattering
without structures where α = 0 and dm = 0 [28,35]. In this study, the SuperLU is used to solve
the resulting sparse system of linear equations [52]. After the unknowns, Am,n and Bm,n, are solved,
the reflection and transmission coefficients can be obtained by Equations (31) and (32), respectively.
This completes the solution procedure for the EMM.
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Figure 2. Schematics for eight different situations of shelves separated by abrupt connections.

3. Results

The present model is validated using three numerical examples.

3.1. Rectangular Surface-Piercing Structure over a Flat Bottom

First, we consider monochromatic wave trains with incidence angles α = 45o and α = 75o, which
propagate towards a rectangular surface-piercing structure over a flat bottom with water depth h = 1 m,
as depicted in Figure 3. The breadth and depth of the rectangular barrier are set to 2a = 0.6 m and
d = 0.2 m, respectively. Figure 4 shows a comparison of the reflection and transmission coefficients
obtained by the proposed EMM with the results obtained by Lebreton and Margnac [53], Bai [43],
Söylemez and Gören [45]. In the figure, the convergence with respect to the increasing numbers
of evanescent modes, N, is obvious. Both the reflection and transmission coefficients evaluated by
the present model with N = 5 are in good agreement with those in the literature for the whole
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frequency range. This validates the present model for solving problems of oblique wave scattering by
a rectangular surface-piercing structure over a flat bottom.
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Figure 4. Comparison of the reflection and transmission coefficients from the present study with the
results in the literatures for water wave scattering by a rectangular surface-piercing structure over flat
bottom with incidence angles (a) α = 45o and (b) α = 75o.

3.2. Rectangular Surface-Piercing Structure behind Parabolic Breakwater

We now consider oblique monochromatic wave trains that propagate towards a rectangular
surface-piercing structure behind a parabolic breakwater defined by z = −h(x) for |x| ≤ c as

h(x) = (h− hb)

(
1 +

hbx2

(h− hb)c2

)
. (39)
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As shown in Figure 5, the other parameters are set as h1 = 30 m, hb = 15 m, d = 7.5 m, 2c = 200 m,
w = 20 m, and 2a = 30 m, which are exactly the same values as those of Manisha et al. [47]. Furthermore,
40 shelves are used to approximate the parabolic breakwater after performing a preliminary convergence
analysis as shown in Figure 6.
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Figure 6. Convergence analysis of M for the water wave scattering by a rectangular structure behind a
parabolic breakwater.

Figure 7 shows the comparison of reflection coefficients obtained by the present method and those
from Manisha et al. [47]. In the figure, the convergence with respect to the increasing numbers of
evanescent modes, N, can also be observed. The convergent results of the present model are in good
agreement with those in Manisha et al. [47]. This validates the proposed EMM for solving oblique
wave scattering by a rectangular surface-piercing structure over uneven bottoms.
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Figure 7. Comparison of the reflection coefficients from the present study with the results from the
literature for the (a) normal and (b) oblique water-wave-scattering by a rectangular structure behind a
parabolic breakwater.

3.3. Bragg Reflections by Periodic Surface-Piercing Structures over Flat Bottom

As the final example of validation, we consider normal monochromatic wave trains, which
propagate towards a series of periodic rectangular and triangular surface-piercing structures over flat
bottoms with water depth h = 1 m. As depicted in Figure 8, the other parameters are set as α = 0,
L = 3, d/h = 0.25, a/h = 0.25, and S/h = 3, which are exactly the same values as those of Ding et
al. [10]. Typically, 10 shelves are adopted to approximate each triangular structure in this example, as
shown in Figure 9b.
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Figure 9. Comparison of the reflection coefficients from the present study with the results in the
literature for Bragg reflections by periodic (a) rectangular and (b) triangular surface-piercing structures
over flat bottom.

Figure 9 shows the comparison of the reflection coefficients obtained by the present method and
Ding et al. [10]. In the figure, the convergence with respect to the increasing numbers of evanescent
modes, N, is also obvious, and the results by the present model with N = 3 are in good agreement
with those obtained by Ding et al. [10]. In addition, Bragg’s law confirms that intensive reflections
occur for 2S/λ, being positive integers. This validates the present model for solving Bragg reflections
of normal water waves by periodic surface-piercing structures of arbitrary shapes over flat bottoms.

4. Discussion

After the model is validated, the proposed EMM model is applied to solve Bragg reflections of
oblique water waves by periodic rectangular and triangular surface-piercing structures over periodic
parabolic breakwaters as depicted in Figure 10. The parabolic breakwaters are defined by Equation (39)
with h1 = 1 m and 2c = 0.5 m and the surface-piercing structures are either rectangular or triangular
with 2a = 0.5 m and d = 0.25 m, as shown in Figure 8. In addition, S = 3 m is set such that the
problem configuration is reduced to the previous example if hb = 0. The incidence angle α, structure
or breakwater number L, and breakwater height hb are the parameters studied in the following.

As depicted in Figure 11, we extend the previous example by considering waves of different
incidence angles α = 15o and α = 30o. In other words, we set N = 3 and hb = 0, and used 10 shelves to
approximate each triangular structure. In the figure, Bragg’s law is observed that intensive reflections
occur for 2S(cosα)/λ being equal to positive integers. Moreover, it is interesting to find that the case
with a larger incidence angle results in a more intensive Bragg reflection. In addition, it is noticeable
that the secondary resonance 2S(cosα)/λ = 2 is stronger than the primary resonance 2S(cosα)/λ = 1.
In addition, total Bragg reflections occur in the secondary resonances.
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Figure 11. The reflection coefficients with different incidence angles for Bragg reflections by periodic
(a) rectangular and (b) triangular surface-piercing structures over flat bottoms.

Before studying the combined Bragg reflections of periodic surface-piercing and submerged
breakwaters, problems of Bragg reflections solely by three periodic parabolic breakwaters of different
heights are considered. Here, we use 40 shelves to approximate each parabolic breakwater as before
and in the following. As depicted in Figure 12a, the case of higher breakwaters results in a more
intensive Bragg reflection, as expected. In addition, Figure 12b shows the Bragg reflections for different
incidence angles, which also confirm Bragg’s law when 2S(cosα)/λ is equal to a positive integer.
However, it is interesting to observe that a larger incidence angle results in a less intensive Bragg
reflection and the primary resonance 2S(cosα)/λ = 1 is stronger than the secondary resonance
2S(cosα)/λ = 2, which are totally opposite to the situations of Bragg reflections caused solely by
periodic surface-piercing structures.
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Figure 12. The reflection coefficients for Bragg reflections over periodic parabolic breakwaters of
(a) different heights and (b) different incidence angles.

Then the combined Bragg reflections of periodic surface-piercing and submerged breakwaters are
studied by setting different heights of the periodic parabolic breakwaters. As depicted in Figure 13,
the EMM is applied to solve the problems of Bragg reflections of normal incident waves by three
periodic rectangular surface-piercing structures over three periodic parabolic breakwaters. In the
figure, it is clear that the case of higher breakwaters results in a stronger Bragg reflection, as expected.
In addition, if the periodic breakwaters are high, total Bragg reflections occur for both the primary and
secondary resonances.
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Figure 13. The reflection coefficients for Bragg reflections by periodic rectangular surface-piercing
structures over periodic parabolic breakwaters of different heights.
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Then, the study with hb = 0.6 m in Figure 13 is extended to oblique incidence angles, as depicted
in Figure 14a, which also numerically confirms Bragg’s law of oblique waves. As depicted in Figure 14b,
the results are similar if the study is extended to five periodic rectangular surface-piercing structures
over five periodic parabolic breakwaters.
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Figure 14. The reflection coefficients for Bragg reflections by periodic rectangular surface-piercing
structures of different numbers (a) L = 3 and (b) L = 5 over periodic parabolic breakwaters.

Finally, if the surface-piercing structures are treated as floating rather than fixed, previous studies
applied the EMM to problems involving a rectangular structure with surge [54,55], heave [56], and free
motions [57]. Combing the proposed step approximation with these studies, the EMM can be applied
to solve water-wave-scattering by a floating structure of different shapes over uneven bottoms. This is
currently under investigation.

5. Conclusions

In this study, the combined Bragg reflections of oblique water waves by periodic surface-piercing
and submerged breakwaters were solved using the eigenfunction matching method (EMM). In the
solution procedure, the surface-piercing structures and bottom profiles are sliced into a number of
shelves separated by abrupt steps. The solution on each shelf is composed of eigenfunctions with
unknown coefficients. Then, a system of linear equations is obtained by applying the conservations
of mass and momentum. The present method was validated under three problems of oblique wave
scattering by a rectangular surface-piercing structure over a flat bottom, behind a parabolic breakwater,
and Bragg reflection by periodic rectangular/triangular surface-piercing structures over a flat bottom.
Then, the proposed method was applied to solve the Bragg reflections of oblique water waves by
periodic surface-piercing structures over periodic bottoms. For oblique Bragg reflections by periodic
surface-piercing structures, numerical results indicated that the case with a larger incidence angle
results in a more intensive Bragg reflection and the secondary resonance is stronger than the primary
resonance. However, the results are completely opposite for oblique Bragg reflections by periodic
submerged breakwaters. In addition, Bragg’s law of oblique waves was applied in the numerical
experiments. Some theoretical and physical studies on the resonance intensity and incidence angle are
required in future investigation.
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