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Abstract: In 1997, in front of the Pescara Harbour (Italy), a detached breakwater was constructed.
In the successive years, the sediment transport due to the combined action of waves and coastal
currents, in the area between the detached breakwater and the entrance of the Pescara Harbour,
produced an accumulation of about 40,000 m3 of sediment per year. In this paper, the causes of the
accretion of the bottom elevation in front of the Pescara Harbour entrance and the effects produced
by the existing detached breakwater are investigated. The effects on the sediment transport of the
introduction of a new submerged breakwater designed to protect the entrance of the harbour from
sediment siltation are investigated. In particular, the ability of the designed submerged breakwater,
located orthogonally to the longshore current, to intercept the aforementioned solid material and
to significantly reduce the accretion of the bottom in the area in front of the harbour entrance,
was numerically verified. Numerical simulations were carried out by means of a model of the
bottom-change composed of two sub-models: a two-dimensional phase resolving model that is used
to calculate the fluid dynamic variables changing inside the wave period and a second sediment
transport sub-model to simulate the bottom changes, in which the suspended sediment concentration
is calculated by the wave-averaged advection–diffusion equation. The equations of motion, in which
the vector and tensor quantities are expressed in Cartesian components, are written in a generalised
curvilinear coordinate system. The fully nonlinear Boussinesq equations are written in an integral
form and used to simulate the velocity fields.

Keywords: harbour case study; submerged breakwaters; phase-resolving model; intra-wave
quantities; concentration equation; sediment transport; sea bottom modification

1. Introduction

In the literature [1,2], the simulation of sea bottom changes produced by a coastal defence structure
are usually carried out by simulating the hydrodynamic fields and the concentration of the suspended
solid particles. In the framework of coastal sediment transport, 3D models for the simulation of the
hydrodynamic fields [3–6] require considerable computational time, due to the long-time scale of the sea
bottom variations. For this reason, in the context of morphodynamic simulations, the hydrodynamic
equations [7–13] and the suspended sediment concentration equation are usually depth averaged [14].

In this context, the two-dimensional phase-resolving models, in which motion equations are not
averaged over the wave period, employ the so-called Boussinesq equations, obtained with the depth
integration of the motion equations and with the definition of the depth dependence of the variables.
Shock-capturing schemes adopted for numerical integration of the fully nonlinear Boussinesq equations
(FNBE) [15–18] allow explicit simulations of the wave propagation from deep water to the shoreline,
including the wave breaking.
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In the coastal regions, sea bottom modifications are caused by complex hydrodynamic processes;
in these processes, the variation of the hydrodynamic quantities over the wave period causes the
resuspension, transport and settling of the solid particles. The variability of the hydrodynamic field
and the wave–current interactions over the wave period are taken into account in FNBE models.

The undertow is one of the phenomena that play key roles in the solid particles transport. In the
undertow phenomenon, the horizontal velocities that are closest to the bottom are off-shore directed in
the surf zone, while the horizontal velocities that are closest to the free-surface are on-shore directed.
Lynett [19] proposed a correction to the vertical distribution of the horizontal velocity to simulate the
undertow in the context of models that solve depth-averaged motion equations.

In the standard forms of FNBE, in the continuity equation, dispersive terms are present.
In particular, in several works in the literature [20–22], located in the context of hybrid (finite volume—
finite difference) numerical schemes, the dispersive term that is present in the continuity equation
is discretised by means of a second-order cell-centred finite difference scheme. As demonstrated
in [15], in the continuity equation, the truncation errors related to the discretisation of the dispersive
term may reduce the accuracy of the numerical scheme and cause oscillations in the numerical
solution. The dispersive terms in the continuity equation can be avoided by written FNBE in a proper
conservative form.

In this paper, we present a simulation model for the sea bottom modifications, composed by
two sub-models: the hydrodynamic modifications are simulated by means of a two-dimensional
phase-resolving model that considers the variation of the variables inside the wave period and takes
into account the undertow and the sea bottom modifications are simulated by means of a second
sub-model that calculates the suspended sediment concentration by means of the wave-averaged
advection–diffusion equation.

The motion equations and the suspended sediment concentration equations, in which the vector
and tensor quantities are expressed in Cartesian components, are written in a boundary conforming
generalised curvilinear coordinate system. In the region extending from deep water up to the beginning
of the surf zone, the wave and hydrodynamic fields are calculated by an integral form of the FNBE;
in the surf and swash region, the governing equations reduce to the nonlinear shallow water equations,
in order to directly simulate the wave breaking. In the proposed model, in which the continuity
equation is written in an integral form, dispersive terms are avoided. Therefore, the continuity equation
is entirely discretised by a shock capturing finite volume scheme and the errors caused by the low-order
discretisation of the dispersive terms are avoided.

The near-bed velocity, boundary layer thickness, friction velocity and bed shear stress are evaluated
from the integration of the momentum equation over the wave boundary layer. The turbulence
contribution of the wave boundary layer is considered for the evaluation of the eddy viscosity vertical
distribution under breaking waves.

Following Gallerano et al. [16], the hydrodynamic numerical scheme employs genuinely 2D WENO
(Weighted Essentially Non-Oscillatory scheme) reconstructions. As stated by Gallerano et al. [16],
by means of this choice, it is possible to avoid numerical errors that would arise with one-dimensional
reconstructions, in the context of generalised curvilinear coordinate systems.

The bottom modifications are calculated whereby the advection–diffusion equation for the
suspended sediment concentration. The advective sediment transport terms in the advection–diffusion
equation are formulated by using a quasi-three-dimensional (Q3D) approach [23,24].

The depth integration of the product of the horizontal velocity and the concentration vertical
distribution allows calculating the advective sediment transport terms and taking into account the
sediment transport related to the undertow. To calculate the bottom elevation variation over time,
the spatial variation of the bed load transport and the product between the settling velocity and the
difference between reference and actual sediment concentration (i.e., the concentration at a given
distance from the sea bottom) are used.
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The proposed model for the simulation of the sea bottom changes was applied to the
abovementioned case study of the Pescara Harbour (Italy). In this paper, the effectiveness of a
submerged breakwater designed to protect the entrance of the Pescara Harbour from sediment siltation
is investigated by the proposed numerical model.

The present work is structured as follows. In Section 2, the hydrodynamic model and
morphodynamic model are presented. In Section 3, we present the case study of Pescara Harbour
(Italy). In Section 4, the discussion of the results is presented. The conclusions of the study are drawn
in Section 5. At the end of the paper, there are appendices.

2. Motion Equations

2.1. Hydrodynamic Model

Let h be the local still water depth and η be the free-surface elevation with respect to the still free
surface. Let H = h + η be the total local water depth.

The fundamental idea at the basis of the Boussinesq equations is the elimination of the vertical
coordinate from the flow equations and retaining some of the effects of the vertical structure of the flow.
The mathematical procedure commonly used in the standard Boussinesq approximation is based on
the assumption of irrotational flow and can be summarised by the following steps. A Taylor expansion
is made of the horizontal and vertical velocity around a certain elevation. The Taylor expansion is
truncated to a finite number of terms. The conservation of mass for an incompressible flow and the
zero-curl condition are used to replace vertical partial derivatives of hydrodynamic quantities in the
Taylor expansion with horizontal partial derivatives.

In the recent literature, to extend the applicability of the Boussinesq-type models to the surf
zone, as well as to simulate the breaking-generated, horizontal, rotational flow, some authors derived
new form of the Boussinesq equations by a procedure that allows taking into account the vertical
vorticity [20–22]. In fact, as demonstrated in [21,22], fully nonlinear Boussinesq equations derived
from the assumption of potential flow can be readily converted to equations that allow for the partially
rotational flow with vertical vorticity. Wei et al. [20] retained the leading-order vertical vorticity in
their equations. Chen et al. [21] and Chen [22] improved the model of Wei et al. [20] to obtain the
conservation of vertical vorticity correct to second order.

Let z be the vertical coordinate. Let us employ a Taylor expansion of the velocity about an arbitrary
distance from the still water surface; by assuming zero horizontal vorticity, the vertical distribution of

the Cartesian based horizontal velocity
→

U(z) can be written as

→

U(z) =
→
u
+
+
→
v (z) (1)

where
→
u
+

is the Cartesian based horizontal velocity at the chosen arbitrary distance σ from the still
free surface and

→
v (z) is defined in Appendix A.

Let
→

v be the Cartesian based depth averaged value of
→
v (z). In this paper, the conserved

variables are chosen in order to have no dispersive term in the mass conservation equation; therefore,

the conserved variables are H and
→

M, where
→

M is given by

→

M = H
(
→
u
+
+
→

v
)

(2)

in which
(
→
u
+
+
→

v
)

is the depth averaged horizontal velocity. We define the symbol · as the scalar

product in a Cartesian coordinate system. Let L be the contour line of the surface element of area ∆A
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and
→
n the outward normal to the line L. By using the aforementioned choice of conserved variables,

the integral form of the continuity equation reads

x

∆A

∂H
∂t

dA +

∫
L

→

M·
→
n dL = 0 (3)

Let ∇ be the two-dimensional differential operator defined as ∇ = (∂/∂x, ∂/∂y) in a Cartesian
coordinate system. We define the symbol ⊗ as the outer product in a Cartesian coordinate system.

Let G be the gravity acceleration and
→

R,
→

V,
→

T and
→

W be, respectively, the bottom resistance term,
dispersive terms obtained by retaining terms of order O(µ2,ε3µ2) in power series expansion and a

term related to the second-order approximation of the vertical vorticity.
→

V,
→

T and
→

W are defined in
Appendix B. It has to be noted that Equation (3) does not contain any dispersive term since the second
term of the left-hand side of Equation (3) is expressed as a flux term. For this reason, the continuity
equation can be discretised entirely by a high order shock capturing finite volume scheme. With this
choice of conserved variables, the integral form of the momentum equation reads

s
∆A

∂
→

M
∂t dA +

s
∆A ∇·

(→
M⊗

→

M
H

)
dA = −

s
∆A GH ∇η dA−

s
∆A H

(
→

V +
→

T +
→

W +
→

R
)
dA

−
s

∆A H
(
∂
→

v
∂t +

→
u
+
·∇

→

v +
→

v ·∇
→
u
+
+
→

v ·∇
→

v
)
dA

(4)

We define ηc as an arbitrary constant value. In this paper, to obtain a “well-balanced” numerical
scheme, the surface gradient term is decomposed as follows

GH∇η = ∇
(
G

H2

2

)
−G(η− ηc)∇h−Gηc∇h−G∇

(
h2

2

)
(5)

In presence of irregular seabed, this decomposition ensures a balance between flux and source terms
and allows the numerical scheme to satisfy the C-Property.

Furthermore, the term
→

V on the right-hand side of Equation (4) is rewritten as follows

→

V =
∂
→

V
′

∂t
+
→

V
′′

(6)

where
→

V
′

and
→

V
′′

are defined in Appendix C.

Let us define an auxiliary variable
→

D

→

D = H
(
→
u
+
+
→

V
′)

(7)

Let xl = xl(ξ1, ξ2) (with l = 1, 2) be a transformation from the Cartesian coordinate system
→
x

to a curvilinear one
→

ξ . Let
→
g (l) = ∂

→
x /∂ξl be the covariant base vectors and

→
g
(l)

= ∂ξl/∂
→
x be the

contravariant base vectors. The metric tensor and its inverse are given, respectively, by glm =
→
g (l)·

→
g (m)

and glm =
→
g
(l)
·
→
g
(m)

(with m = 1, 2). The Jacobian of the transformation is
√

g =
√

det(glm). Let g(µ)x j
be

the Cartesian based component projected onto the x j-axis of the contravariant base vector
→
g
(µ)

. Let fxi

be the Cartesian based component projected onto the xi-axis (with i = 1, 2) of the generic vector
→

f .
Let ∆A = ∆ξ1∆ξ2 be the generic surface element. ∆ξµ+ and ∆ξµ− (µ = 1, 2 are cyclic) are the

contour line of the area ∆A on which ξµ is constant and which are located at the larger and at smaller
value of ξµ, respectively. Let Dxi be the Cartesian based component projected onto the xi-axis of the



J. Mar. Sci. Eng. 2020, 8, 487 5 of 23

vector
→

D. We indicate by the mark [ˆ ] the cell averaged of the point values. The variable D̂xi is the cell

averaged component of the vector
→

D projected onto xi-axis

D̂xi =
1

∆A

x

∆A
Dxi dA (8)

Let Ĥ be the cell average value of H given by

Ĥ =
1

∆A

x

∆A
HdA (9)

By using Equations (5) and (7) and the chain rules [25] that transform the Cartesian based
differential operators in the differential operators defined in a generalised curvilinear coordinate
system, Equation (4) can be rewritten as

∂D̂xi
∂t = 1

∆A

− 2∑
µ=1

[∫
∆ξµ+

(Mxi Mxj
H g(µ)x j

+ G H2

2 g(µ)xi

)
√

gdξν−∫
∆ξµ−

(Mxi Mxj
H g(µ)x j

+ G H2

2 g(µ)xi

)
√

gdξν
]
+

s
∆A G(η− ηc)

(
∂h
∂ξm g(m)

xi

)
√

gdξ1dξ2 + Gηc
2∑

µ=1

[∫
∆ξµ+

hg(m)
xi

√
gdξν −

∫
∆ξµ−

h g(m)
xi

√
gdξν

]
+

G
2

2∑
µ=1

[∫
∆ξµ+

h2g(µ)xi

√
gdξν −

∫
∆ξµ−

h2g(µ)xi

√
gdξν

]
−

s
∆A HV′′xi

√
gdξ1dξ2 −

s
∆A H

(
Txi + Wxi + Rxi

)√
gdξ1dξ2+

s
∆A

∂H
∂t

(
V′xi
− vxi

)√
gdξ1dξ2 +

s
∆A Hu+

x j

(
∂vxj
∂ξm

g(m)
xi

)
√

gdξ1dξ2+

s
∆A Hvx j

(
∂u+xj
∂ξm

g(m)
xi

)
√

gdξ1dξ2 +
s

∆A Hvx j

(
∂vxj
∂ξm

g(m)
xi

)
√

gdξ1dξ2

}

(10)

The integral form of the continuity Equation (6) reads

∂Ĥ
∂t

= −
1

∆A

2∑
µ=1

∫
∆ξµ+

Mx j g
(µ)
x j

√
gdξν −

∫
∆ξµ−

Mx j g
(µ)
x j

√
gdξν

 (11)

Equations (10) and (11), in which the vector and tensor quantities are expressed in Cartesian
components, are a novel integral form of the fully nonlinear Boussinesq equations written in a
generalised curvilinear coordinate system. Equations (10) and (11) are accurate to O

(
µ2, ε3µ2

)
for the dispersive terms and conserve vertical vorticity with a leading-order error of O

(
µ4

)
.

In Equations (10) and (11) the conserved variables are H and
→

M. Therefore, the momentum equation is
different from the one presented by Cannata et al. [16] and, unlike Gallerano et al. [16], the continuity
equation does not contain dispersive terms. This allows us to entirely discretise the continuity equation
by means of a high-order shock capturing finite volume scheme. By doing so, errors in the numerical
solution due to the discretisation of the dispersive term in the continuity equation, are avoided.
The surface gradient term has been rewritten, in order to discretise it by a finite volume technique and
obtain a "well balanced" numerical scheme.

Lynett [19] proposed a correction to the vertical distribution of the horizontal velocity calculated

by depth-averaged motion equations (
→
u
+
), in order to represent the undertow phenomenon. Let

→
uB(z)

be the corrective velocity vector [19]. The horizontal velocity
→
u(z) is given in Appendix D.

Ω(t) is the thickness of the boundary layer, UΩ(t) is the horizontal velocity at the top of the wave
boundary layer and u f (t) is the friction velocity. ũ f c is the current friction velocity and it can be found
in Appendix E. By integrating the momentum equation in the boundary layer and from the logarithmic
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law of the velocity profile, we calculate: Ω(t), UΩ(t), u f (t) and ũ f c. We indicate by the mark [̃ ] the
wave average over the wave period T of the instantaneous quantities. This calculus procedure is
shown in Appendix E.

The eddy viscosity, within the boundary layer, is given by

νt,r(z, t) = Ku f (t)z

1− z
Ω(t)

1−
ũ f c

u f (t)

(1− z

H̃

)
(12)

The eddy viscosity, outside the boundary layer, is given by

νt,r(z) = ũ f cKz
(
1−

z

H̃

)
(13)

With breaking waves, the turbulence is produced by the current, the wave boundary layer and the
wave breaking. Let l be the turbulence length scale, kt = kt(z, t) the turbulent kinetic energy induced
by the wave breaking and cd equal to 0.08. The kinetic energy production Pk is evaluated according
to Deigaard et al. [26]. In the calculation of the eddy viscosity νt, f (z, t) related to the wave breaking,
the turbulent kinetic energy equation by Deigaard et al. [26] is considered

∂kt

∂t
=

Pk
ρ
− cd

kt
3
2

l
+
∂
∂z

(
νt, f (z, t)

∂kt

∂z

)
(14)

The value of kt, obtained with Equation (14), is used to evaluate the eddy viscosity produced by
the wave breaking, as follows

νt, f (z, t) = l
√

kt (15)

The total eddy viscosity νt(z, t) can be defined as the quadratic sum of two terms: the eddy
viscosity related to the current and wave breaking and the eddy viscosity produced by the wave
boundary layer. Therefore, νt(z, t) is evaluated as follows

νt
2(z, t) = νt,r

2(z, t) + νt, f
2(z, t) (16)

By solving the system of equations composed by Equations (10) and (11), we obtain the cell

averaged value Ĥ and the cell averaged value
→̂
u
+

. By introducing WENO reconstructions, we obtain the

point values H and
→
u
+

. By using these point values, we obtain the vertical distribution of the horizontal
velocity

→
u(z). By using u f (t), we obtain the current friction velocity ũ f c. From Equations (12) and (13),

the vertical distribution of the eddy viscosity, νt,r(z), is calculated inside and outside the boundary
layer. The turbulent kinetic energy is calculated by Equation (14). The eddy viscosity produced by the
wave breaking, νt, f (z, t), is calculated by Equation (15). By using νt,r(z) and νt, f (z, t) in Equation (16),
we obtain the total eddy viscosity νt(z, t).

The instantaneous values of
→
u(z), u f , νt and H are used as input variables of the morphodynamic

model that is shown in Section 2.2.

2.2. Morphodynamic Model

Let C (z) be the wave-averaged value of the suspended solid concentration. Let the mark [ ]

indicate the depth averaged of quantities. Let C be the depth averaged of C (z), defined as

C =
1

H̃

∫ H̃

a
C (z) dz (17)
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where a is a distance from the bottom which delimits the bed load transport region. Moreover, let Ĉ be

the cell average value of C. H̃ is the wave-averaged value of H and ˜̂H is the wave-averaged value of Ĥ.
In the context of a quasi-three-dimensional methodology, the integral form of the solid particle

concentration equation, expressed in a generalised curvilinear coordinate system, reads

∂Ĉ ˜̂H
∂t + 1

∆A

2∑
µ=1

[∫
∆ξµ+

∫ H̃
a C (z) ũx j(z)g(µ)x j

√
gdξν −

∫
∆ξµ−

∫ H̃
a C (z) ũx j(z)g(µ)x j

√
gdξν

]
−

1
∆A

2∑
µ=1

[∫
∆ξµ+

(̃
νtH̃ ∂C

∂ξm
g(m)

x j

)
g(µ)x j

√
gdξν −

∫
∆ξµ−

(̃
νtH̃ ∂C

∂ξm
g(m)

x j

)
g(µ)x j

√
gdξν

]
=

s
∆A(P−De)

√
gdξ1dξ2

(18)

In Equation (18), ũx j(z) is the wave-averaged Cartesian component projected onto the x j-axis of the

vector
→
u(z), ν̃t is the wave- and depth-averaged total eddy viscosity, De is the rate of the sediment

deposition and P is the rate of turbulent sediment pick-up. Let Ca(t) and CR(t) be, respectively,
the actual concentration and reference concentration. We define C̃ a and C̃ R as the wave-averaged
value of the actual and reference concentration, evaluated at height from the bottom a = 2d50 (d50 is
the sediment mean diameter). C̃R is evaluated in Appendix F.

De and P are given by
De = wsedC̃ a (19)

P = wsedC̃ R (20)

In Equations (19) and (20), wsed is the sediment fall velocity.
To solve Equation (18), the solutions of Equations (19) and (20) are needed. Let ν̃t (z) be the

wave-averaged value of the total eddy viscosity νt(z). The value of C̃ a is taken as the lower boundary
condition of the turbulent suspended sediment diffusion equation, defined as follows

−C (z) wsed = ν̃t(z)
∂C (z)
∂z

(21)

and as lower extreme of the integral that gives the depth-averaged value, C, defined by Equation (17).
An iterative procedure is used to calculate C̃a, using Equation (17), in which the values of ν̃t(z) and C
are known from the previous time step.

The total sediment transport is evaluated as the sum of the suspended load transport and of the
bed load transport, which takes into account the near bed transport mechanism. Let p be the sediment
porosity, z f the bottom elevation, and (q̃b)x j

the Cartesian based component projected onto the x j-axis

of the bed load transport vector
→̃
q b, which is the wave-averaged value of

→
q b. The

→
q b equation can be

found in Appendix G. The equation of the bottom modification over time, expressed in a generalised
curvilinear coordinate system, reads

∂z f

∂t
= −

1
1− p

(P−De) +

 1
√

g

∂(q̃b)x j
g(l)x j

√
g

∂ξl


 (22)

A sequence of five steps schematises the way in which the wave and current model is coupled
with the model for the simulation of the bottom changes:

(1) The instantaneous hydrodynamic quantities are computed by the hydrodynamic model presented
in Section 2.1. The simulation time has a duration of about 150 times the mean wave period.

(2) The instantaneous hydrodynamic quantities obtained by Step 1 are averaged over the period T∗

(which is 150 mean wave periods [27]).
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(3) The wave-averaged hydrodynamic quantities obtained by Step 2 are used as input for the solid
particles’ concentration in Equation (18). Equation (18) is numerically integrated and gives the

suspended sediment concentration Ĉ .

(4) The concentration values Ĉ (that are depth and wave averaged) are used to compute (by WENO

reconstructions) C and the values wave-averaged actual concentration C̃ a.
(5) The wave-averaged reference concentration C̃R (computed by Step 1), the wave-averaged

actual concentration C̃a (computed by Step 4) and the bed load transport
→̃
q b are used as input

for the equation of the bottom modification (Equation (22)). We define the time step of the
integration of the bed change equation as “morphological time step”. By numerically integrating
Equation (22), it is possible to update the bathymetry for the successive morphological time step.
The morphological time step is greater than the simulation time interval of the hydrodynamic
model. The morphological time step is evaluated, by means of a trial-and-error procedure, by a
posteriori verifying the numerical results.

3. Pescara Harbour Case Study

The case study of the Pescara Harbour, located at the mouth of the homonymous river, represents
an example of how coastal structures can modify the nearshore current patterns and consequently the
sediment transport and siltation phenomena.

The Pescara Harbour is located in the central Italy and overlooks the Adriatic Sea, as shown in
Figure 1.

Figure 1. Map of Italy in which the study site of the Pescara Harbour is indicated by a red point.

Figure 2 shows a satellite view of the Pescara Harbour coastal area.
Figure 3 shows a schematisation of the present configuration of this coastal area. It is characterised

by the presence of two ports: the Canal Port and the Touristic Port. The Canal Port is located along the
terminal part of the Pescara River. The Touristic Port is located southeast of the entrance of the Canal
Port. A detached breakwater is present in front of the entrance of the Canal Port.
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Figure 2. Satellite view of the Pescara Harbour coastal area.

Figure 3. Schematic representation of a plan view of Pescara Harbour and near region. The blue and
orange arrows indicate respectively the primary and secondary sector incoming waves. The green and
red arrows indicate the longshore currents produced respectively by the primary and secondary sector
incoming waves.

The preeminent directions of the incoming waves representative of Pescara annual wave
climate [28] are shown in Figure 3. In this figure, it is possible to notice that there are two preeminent
directions: 345◦ N–15◦ N (primary sector) and 65◦ N–95◦ N (secondary sector). The primary sector
incoming waves (blue arrow) produce a longshore current coming from the northwest direction
(green arrow) and the sediment transport produced by the above current comes from the same
direction. The secondary sector incoming waves (orange arrow) produce a longshore current coming
from the southeast direction (red arrow) and a sediment transport coming from the same direction.
Thus, the potential sediment transport is bimodal and the total resultant is directed from northwest
to southeast.

The wave fronts coming from north direction (before the construction of the detached breakwater)
caused the navigation to be difficult at the entrance of the Canal Port. To protect the entrance of the
Canal Port from the wave motion and ensure good navigability conditions, in 1997, the detached
breakwater was built. After the construction of the detached breakwater, a significant increase of the
sea bottom level has occurred in the area in the front of the entrance of the Canal Port. The impact of the
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abovementioned detached breakwater on the bottom modifications in front of the entrance of the Canal
Port is negative. The wave motion coming from north direction induces longshore currents coming
from northwest direction. The solid material, put into suspension by the wave breaking, is transported
by the longshore current into the area in front of the entrance of Canal Port. In this area, the energy of
the wave motion is consistently damped by the presence of the detached breakwater. Consequently,
the solid material silts near the entrance of the Canal Port, where it produces an increment of the
sea bottom level and makes it difficult to navigate. The sediment transport coming from southeast
is mostly intercepted by the Touristic Port and by the Eastern Jetty, before reaching the proximity
of the entrance of the Canal Port. Consequently, the solid material coming from southeast does not
significantly contribute to the silting of the area in front of the Canal Port. The silting of this area is
due, in minor part, also to the sediment transport coming from the Pescara River during flood events.

In summary, the area in front of the entrance of the Canal Port, bounded by the detached
breakwater, the Eastern Jetty and the Touristic Port, undergoes a process of silting, mainly caused by
the sediment transport coming from northwest. The access to the Canal Port, in absence of periodic
appropriate dredging operations, is prevented in the northwest harbour gate, due to the formation
of extended areas with still water depth less than 1 m. The access to the Canal Port is possible,
with difficulty, only by routes approaching the entrance from east-northeast and only by vessels with
draft less than 2 m.

In Section 3.1, we present the numerical simulations carried out to validate the hypothesis that
the solid material put into suspension by the wave breaking is transported by the longshore current
coming from northwest and silts near the entrance of the Canal Port.

Recently, the Italian Ministry of Public Works has considered the possible construction of a
submerged breakwater that is able to act as an obstacle to the flow of solid material carried by the
longshore current coming from northwest. Such solid material, as demonstrated in the present paper,
settles to the northwest of the submerged breakwater. The reasons at the basis of the decision to
verify the functionality of the submerged breakwater lie in the fact that (in the present configuration,
without the submerged breakwater) the solid material coming from northwest mixes with the one
coming from the Pescara River and settles in front of the entrance of the Canal Port, by increasing the
sea bottom level. The sediment coming from northwest is generally of good quality, while the one
coming from the Pescara River is polluted. The continuous dredging that should be done in front
of the entrance of the Canal Port would not provide good quality sediment to be used for possible
beach nourishment. According to the Italian legislation, the polluted dredged sediment must be
treated, with consequent very high costs. The presence of the submerged breakwater should block
the pollution-free sediment coming from northwest, which could be used for the nourishment of
the touristic beach at the northwest of the submerged breakwater. Furthermore, as stated above,
the submerged breakwater, by blocking the sediment coming from northwest, would limit the increase
of sea bottom level at the entrance of the Canal Port, which is mainly due to sediment carried by the
above mentioned longshore current. Another design solution, which consists in the construction of a
system of long groins that are perpendicular to the shoreline and placed on the northwest side of the
Canal Port entrance, has been considered. This solution has been rejected by the Italian Ministry of
Public Works after a cost–benefit analysis because it is too expensive and is characterised by a main
environmental impact.

In Section 3.2, we present the results of the investigation over the effectiveness of the introduction,
in the coastal area of the Pescara Harbour (Italy), of the submerged breakwater.

Figure 4a shows the present configuration (Configuration 1), in which there is only the detached
breakwater (drawn in red). Figure 4b shows the designed configuration (Configuration 2), in which
the submerged breakwater (drawn in yellow) connects the detached breakwater to the shoreline.
The dimensions of the submerged breakwater are: crest width equal to 3 m, larger base equal to 23 m
and slope of banks equal to 1 : 2. The maximum depth where the breakwater is placed is equal to
5 m and the freeboard is equal to 0.5 m. The submerged breakwater is modelled as a bottom increase.
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In both figures, the still water depth measured from mean water level is reconstructed based on
bathymetric data which have been obtained after dredging operations. The still water depth in Figure 4
(measured from mean water level) is assumed as initial conditions for the simulations.

Figure 4. Plan view of Pescara Harbour and the still water depth measured from mean water level: (a)
Configuration 1; and (b) Configuration 2.

The primary sector incoming waves are characterised by a significant wave height of 1.5 m,
which has an occurrence frequency at least 320 h/year.

By the proposed model, the simulations of the wave motion and the sea bottom changes that
occur over three years in both Configurations 1 and 2 were carried out. To reproduce the primary
sector wave forcing, in the numerical simulations, we generated, as initial conditions, random waves
incoming from 0◦ N, represented by a spectrum belonging to the JONSWAP type characterised by a
significant wave height equal to 1.5 m, which act for 320 h/year for a total of 960 simulated hours.

3.1. Configuration 1

Figure 5 shows an instantaneous wave field related to the Configuration 1 whose initial still water
depth is shown in Figure 4a. In Figure 5, it is possible to notice that the waves, between Y = 100 m
and Y = 700 m, at first undergo an increase of the wave height and a reduction of the wavelength
(shoaling) and then a decrease of the wave height due to the wave breaking. In particular, we note that
the waves, intercepted by the west edge of the detached breakwater, undergo a rotation (diffraction)
and, proceeding to the coast, a reduction of the wave height due to the breaking. In the same figure, it is
possible to see that, between Y = 700 m and Y = 1500 m, the waves are intercepted by the detached
breakwater and the Eastern Jetty and undergo a reflection effect due to such structures.
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Figure 5. Instantaneous wave field. Present sea bottom level. Configuration 1.

Figure 6 shows a three-dimensional view of the wave field that is shown in Figure 5. In Figure 6,
it is possible to notice that the numerical simulation produces wave heights equal to 0.40 m in
correspondence of the entrance of the Canal Port: these reduced values of the wave height underline
that the detached breakwater improves the navigability conditions at the entrance of the Canal Port.

Figure 6. The instantaneous wave field. Present sea bottom level. Configuration 1.

Figure 7 shows wave- and depth-averaged velocity field produced by the wave field in Figure 5.
In Figure 7, it is noted that, in Configuration 1, between Y = 400 m and Y = 1000 m, the simulation
produces a longshore current that is parallel to the shoreline, characterised by maximum values of the
velocity equal to 0.45 m/s. Furthermore, between Y = 1000 m and Y = 1500 m, the abovementioned
coastal current passes through the detached breakwater and the Eastern Jetty, where it reaches
maximum values of the velocity equal to 0.6 m/s.
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Figure 7. Calculated wave- and depth-averaged velocity field (one vector out of every four). Present
sea bottom level. Configuration 1.

Figure 8a shows the still water depth (measured from mean water level) produced by the wave
field in Figure 5, at the end of the first simulated year in Configuration 1. The still water depth
initial conditions used in this numerical simulation are the ones shown in Figure 4a. Compariing
Figures 4a and 8a, it is noted a decrease of the still water depth (with consequent sea bottom level
increase) in the area between about X = 500 m and Y = 700 m and in the area between X = 450 m
and X = 550 m, Y = 950 m and Y = 1050 m. In this area, at the end of the first simulated year,
the 3 m still water depth contour line moves toward the north, with respect to the initial conditions.
This comparison also shows a still water depth contour line decrease (with consequent sea bottom level
increase) in front of the entrance of the Canal Port. Comparing Figures 4a and 8a shows a decrease of
the still water depth (with consequent sea bottom level increase) in the area between Y = 700 m and
Y = 1000 m, in proximity to the shoreline, where an offshore shift of the 2 m still water depth contour
line occurs, from X = 800 m to X = 700 m.

Figure 8b presents the still water depth, at the end of the third simulated year in Configuration 1,
produced by the wave field in Figure 5. Comparing Figure 8a,b, it is possible to notice a further decrease
of the still water depth (with consequent sea bottom level increase) in the area between X = 500 m and
between Y = 700 m and Y = 850 m. In this area, at the end of the third simulated year, the 3 m still
water depth contour line shifts further toward the north. Furthermore, by the same comparison, it is
highlighted that there is a further decrease of the still water depth in front of the entrance of the Canal
Port. Figure 8b shows that the area (between X = 675 m and X = 750 m, Y = 925 m and Y = 1100 m)
bounded by the 1 m still water depth contour line increases with respect to the one presented in
Figure 8a. The same figure also shows that the 2 m still water depth contour line further advances
toward the northeast, by reaching Y = 1100 m at the end of the third simulated year. Comparing the
results at the end of the first and third simulated years also shows a further decrease of the still water
depth (with consequent sea bottom level increase) in the area between Y = 650 m and Y = 800 m
and close to the shoreline, where an offshore shift of the 2 m still water depth contour line occurs.
The numerical simulations are conducted without taking into account the supply of sediment from
Pescara River.
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Figure 8. Configuration 1. Still water depth, measured from mean water level, after: (a) one year;
and (b) three years.

3.2. Configuration 2

Figures 9–11 show, respectively, the wave field, the wave- and depth-averaged velocity field and
the still water depth, measured from mean water level, related to Configuration 2 characterised by the
presence of the submerged breakwater.

Figure 9. Instantaneous wave field. Present sea bottom level. Configuration 2.
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Figure 10. Calculated wave and depth averaged velocity field (one vector out of every four). Present sea
bottom level. Configuration 2.

Figure 11. Configuration 2. Still water depth, measured from mean water level, after: (a) one year;
and (b) three years.

In Figure 9, an instantaneous wave field, produced by the same initial conditions used for the
simulations of the wave field in Figure 5, is shown. Configuration 2 is characterised by the still
water depth shown in Figure 4b. In particular, it can be noticed that the waves, intercepted by the
west edge of the detached breakwater, undergo a rotation (diffraction), then proceed towards the
shoreline and undergo a reduction of the wave height due to the wave breaking. The same figure
shows that the waves diffracted by the west edge of the detached breakwater pass over the submerged
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breakwater and undergo a reduction of the wave height. In Figure 9, it can be noticed that there are no
significant modifications of the wave height in correspondence of the submerged breakwater. This is
in marked contrast to the real situation. The reduction of the simulated wave heights is due to the
lack of refinement of the computational grid near the submerged breakwater. The fundamental aim
of the present study was related to the evaluation, from a global point of view, of the effects on the
bottom changes due to the submerged breakwater. The detailed analysis on the wave heights in the
area close to the submerged breakwater and on the top of the submerged breakwater is not required
for the abovementioned global analysis. The detailed analysis requires the use of small spatial and
temporal discretisation steps that increase the computational time very much.

In Figure 10, the wave- and depth-averaged velocity field, produced by the wave field shown in
Figure 9, is presented. Figure 10 shows that, in the area between the submerged breakwater and the
Eastern Jetty, the maximum value of the velocity is equal to 0.55 m/s. The wave- and depth-averaged
velocities on the submerged breakwater are significantly greater than the ones in all the domain and,
for this reason, they are not represented in the figure.

Figure 11a shows the still water depth produced by the wave field in Figure 9, at the end of the
first simulated year in Configuration 2. The still water depth initial conditions used in this numerical
simulation are the ones shown in Figure 4b. Comparing Figures 4b and 11a, it can be noticed that,
in the area between the submerged breakwater, the detached breakwater and the entrance of the Canal
Port, the still water depth is slightly different from the initial conditions. From the same comparison,
it can be also noticed that, in the west area of the submerged breakwater, there is an increase of the
sea bottom level. In the area between about X = 700 m and X = 1050 m, the 1 m, 2 m and 3 m still
water depth contour lines advance in the direction of the detached breakwater, with respect to the
initial conditions.

In Figure 11b, the still water depth, at the end of the third simulated year, produced by the wave
field in Figure 9, is shown. Comparing Figure 11a,b, it can be noticed that, in the area between the
submerged breakwater, the detached breakwater and the entrance of the Canal Port, the still water
depth is slightly different from the initial conditions. The only contribution of solid material that could
modify such sea bottom level is the one coming from the Pescara River. This solid material was not
taken into account in the numerical simulation. Comparing Figure 11a,b, it can be noticed that, in the
west area of the submerged breakwater, at the end of the third simulated year, there is an accretion of
the sea bottom level. In the abovementioned area and between about X = 650 m and X = 1050 m the
Figure 11b shows that the 1 m, 2 m and 3 m still water depth contour lines advance in the direction of
the detached breakwater. There is a significant increase of the seas bottom level in the area between
X = 800 m and X = 950 m and between Y = 660 m and Y = 750 m, where the still water depth is 1 m.

4. Discussion

In this section, we present summary considerations on the results of the numerical simulations
relative to the sea bottom changes after three simulated years, either in absence or in presence of the
submerged breakwater.

As stated above, the wave motion coming from north direction induces longshore currents coming
from northwest direction. The solid material, put into suspension by the wave breaking, is transported
by the abovementioned longshore current in the area in front of the entrance of Canal Port. In this area,
the energy of the wave motion is consistently damped by the presence of the detached breakwater.
Consequently, the solid material silts near the entrance of the Canal Port. The siltation increases the
sea bottom levels in front of the entrance of the Canal Port where makes it difficult to navigate.

Figure 12 shows the still water depth contour lines after three simulated years, for Configuration 1.
In this figure, the main accretion areas are shown. In the initial configuration (Figure 4a), in front of
the entrance of the Canal Port, the still water depth with respect to the mean sea level is about 3 m.
After three simulated years, in the area coloured in blue in Figure 12, the sea bottom levels increase
by about 1 m on average, with a maximum increase of about 2 m, and the volume of accumulated
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sediment is about 25,000 m3. The area in front of the beach, at the northwest of the entrance of the
Canal Port, indicated by the red colour in Figure 12, shows an increase of the sea bottom levels by about
1 m on average, with a maximum increase of about 2 m, with respect to the initial configuration in
Figure 4a. In this area, the volume of accumulated sediment is about 65, 000 m3 (after three simulated
years). Finally, the area coloured in green in Figure 12, located close to the northwest edge of the
detached breakwater (after three simulated years), shows an increase of the sea bottom levels by
about 1 m, with respect to the initial configuration shown in Figure 4a. In this area, the volume of
accumulated sediment is about 20,000 m3.

Figure 12. Configuration 1. Accretion areas after three simulated years.

After the construction of the detached breakwater, periodic measurement campaigns of the
still water depth have been carried out by the Italian Ministry of Environment and Protection of
Land and Sea [29] in the area between the detached breakwater and the entrance of the Canal Port.
In Figure 13, three areas, indicated by A–C, are shown. This classification comes from the fact that,
by the abovementioned measurement campaigns, the Italian Ministry of Environment and Protection
of Land and Sea carried out an evaluation of the volume of sediment that have accumulated over
time in Zone A. The quantification carried out by the measurement campaigns indicates a volume of
accumulated sediment of about 40,000 m3/year.

The volumes of accumulated sediment obtained by the numerical simulations (carried out
without the sediment contribution coming from the Pescara River) are: 34,200 m3/year in Zone A,
24,500 m3/year in Zone B and 22,500 m3/year in Zone C. The volume of sediment coming from Pescara
River is estimated as 10,000 m3/year by [29]. By taking into account this contribution, the results
obtained by the proposed model are consistent with the measurements carried out by Italian Ministry
of the Environment and Protection of Land and Sea [29].
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Figure 13. Zones partition for the evaluation of the volume of settled sediment. Configuration 1.

Figure 14 shows still water depth contour lines after three simulated years, for Configuration 2,
in the presence of the submerged breakwater. In this figure, the area coloured in green represents the
main area that undergoes an increase of the sea bottom level. The volume of sediment accumulated in
the area coloured in green, to the northwest of the entrance of the Canal Port, is about 60,000 m3 (after
three simulated years).

Figure 14. Configuration 2. Accretion areas after three simulated year.
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Figure 15 shows the areas in which the volumes of accumulated sediment are calculated by the
numerical simulations. In this configuration, the area previously called A is divided into two sub-areas,
A1 and A2, because of the presence of the submerged breakwater. The volumes of accumulated
sediment obtained by the numerical simulations (carried out without the sediment contribution coming
from the Pescara River) are: 7000 m3/year in Zone A1, 11,100 m3/year in Zone B and 16,100 m3/year
in Zone C. The designed submerged breakwater represents an obstacle to the solid material transport
by the longshore currents. This solid material tents to settle in Zone A1, B and C (corresponding to the
area bounded by the designed submerged breakwater in the east, by the detached breakwater in the
north and by the shoreline in the south).

Figure 15. Zones partition for the evaluation of the volume of sedimented materials. Configuration 2.

In absence of the submerged breakwater, the sediment coming from northwest mixes with the
sediment coming from the Pescara River and settles in front of the Canal Port. The sediment coming
from the northwest is of good quality, while the one coming from the Pescara River is polluted
and cannot be used for beach nourishment. The presence of the submerged breakwater blocks the
pollution-free sediment that can be used for beach nourishment. Furthermore, as stated above,
the submerged breakwater, blocking the solid material coming from northwest, significantly limits the
increase of the sea bottom level in front of the entrance of the Canal Port and, consequently, makes it
possible to maintain good navigability conditions.

5. Conclusions

The real case study of Pescara Harbour (Italy) was investigated by means of a numerical
bottom-change simulation model, composed by a hydrodynamic sub-model and a morphodynamic
sub-model. In particular, the effects of the introduction of a designed submerged breakwater in
the existing context were studied in terms of morphodynamic alterations. The used hydrodynamic
model is based on an integral form of the fully nonlinear Boussinesq equations, while the proposed
morphodynamic model is based on a quasi-three-dimensional approach. It was demonstrated (by
numerical simulations) that the detached breakwater, built to reduce the navigation risks at the entrance
of the Canal Port, damps the energy of the wave motion and causes the siltation of the solid materials,
transported by the longshore current coming from northwest, in front of the harbour entrance. From the
numerical investigation carried out, it can be seen that the designed submerged barrier substantially
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modifies the hydrodynamic field and the morphodynamic evolution of the zone near Pescara Harbour.
In particular, the ability of the designed submerged breakwater, located orthogonally to the longshore
current, to intercept the aforementioned solid material and to significantly reduce the accretion of the
bottom in the area in front of the entrance of the Canal Port entrance, was verified.
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Appendix D

By indicating by
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→
u(z) is written as

→
u(z) =

→
u
+
+ (σ− z)∇

[
∇·

(
h
→
u
+
)]
+

[(
σ2/2

)
−

(
z2/2

)]
∇

[
∇·
→
u
+
]
+
→
uB(z) (A9)

where
→
u
+

is the horizontal velocity vector computed by Equations (17) and (19) in Section 2.

Appendix E

Let k be the bed roughness; let K be the von Karman constant; and let k/30 be the characteristic
length scale.

By integrating the momentum equation in the boundary layer and from the logarithmic law of
the velocity profile, we have
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The thickness of the boundary layer can be obtained by
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Therefore, the values of u f (t) and Ω(t) are obtained by solving the system composed by
Equations (A10) and (A11). Inside the boundary layer, turbulence is produced by the interaction
between waves and current. Let ũ f c be the current friction velocity, which is given by
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Appendix F

Let Cm be the maximum volumetric concentration that can be reached, θcr, and let
∣∣∣∣∣→θ ∣∣∣∣∣ = ∣∣∣∣∣→θ(t)∣∣∣∣∣ be

the parameter of the stability and mobility of Shield. Let
→

θ(t) be the bed shear stresses induced by
wave and current.

C̃ R is the wave-averaged value of the reference concentration and it is evaluated by averaging
over the wave period the instantaneous values of CR(t), which is calculated according to [27]:

CR(t) =
0.031

(∣∣∣∣∣→θ ∣∣∣∣∣− θcr

)1.75

1 + (0.031/Cm)
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Appendix G

Let β be the dynamic friction coefficient and let ρs/ρw be the ratio between the sediment density
and water density.
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The wave-averaged value of
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