
Journal of

Marine Science 
and Engineering

Article

Marine Autopilots’ Multipurpose Control Laws
Synthesis for Actuators Time Delay

Evgeny I. Veremey * , Sergei V. Pogozhev and Margarita V. Sotnikova

Computer Applications and Systems Department, Saint-Petersburg State University, Universitetskii prospekt 35,
Petergof, Saint Petersburg 198504, Russia; s.pogozhev@spbu.ru (S.V.P.); s_margosha@mail.ru (M.V.S.)
* Correspondence: e_veremey@mail.ru

Received: 20 May 2020; Accepted: 26 June 2020; Published: 28 June 2020
����������
�������

Abstract: One analytical design problem involves constructing control laws for marine autopilot
systems. Despite numerous known solutions, this problem can still be further developed by taking
into account the actual conditions of the control system operation. An important issue for discussion
is the feedback synthesis for marine ships with time delays in their rudders’ actuators. In this work,
a new approach is proposed for providing all the desirable dynamic features of a closed-loop system
with autopilot while taking into account the presence of a time delay. This approach is based on the
predictive compensation of time delays via the specific transformation of an initially given reference
controller with a special multipurpose structure. The applicability and effectiveness of the proposed
method is further illustrated by a practical example of a controller design.
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1. Introduction

The motion of modern marine ships is achieved under constantly increasing transport traffic and
is extensively influenced by various external disturbances, including sea waves, wind, sea currents,
changes of depth under the keel, etc. This generates many problems in the safety and effectiveness
of sailing. A commonly used approach for solving these problems is the extensive application of
automatic guidance and control systems [1,2], including widely used marine autopilots [1–5]. The main
mission of an autopilot is to enable economical or precision steering while maintaining a given heading
angle for the ship.

The various issues associated with the design of autopilots for marine surface vessels have
already been extensively researched and presented in numerous publications (for example, [1–12]).
Notably, the complexity of this problem is vast because of the many dynamic requirements, restrictions,
and conditions that must be satisfied by the chosen control actions.

In particular, one of the practical difficulties requiring consideration in the design process is the
presence of transport time delays in the control channels. In most cases, this problem is a source of
dynamic instability and poor performance for various systems that were designed initially without
considering time delays. For marine autopilots, these delays are typical for thruster drivers, including
main propellers, tunnel thrusters, azimuth thrusters, and rudders [9–11]. Compared to the rapidly
changing signals from the autopilot controller, the response time of the thrusters, which generally lasts
several seconds, is usually the longest. Therefore, it is suitable to consider the presence of time delays
for the design of an autopilot control law.

Many works, including the work in [9–11], consider the presence of time delays in the design
procedures for marine control systems. All these works directly use modern universal control methods
(sliding mode control, model predictive control, H-optimization, and others), which perceive time
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delays as a partial dynamic feature of the controlled plant. Naturally, some techniques from the theory
of time delay control are also used.

However, another more novel approach is possible, which is developed in this study. For marine
autopilots, the main idea of this approach was first proposed by the authors in [12]. This idea divides
the control law design procedure into two stages. First, feedback is generated for a delay-free plant,
satisfying a certain set of dynamic requirements. Secondly, the resulting controller is transformed in
a specific way to preserve the dynamic properties as much as possible, despite the presence of a delay.

Notably, any modern design for feedback control synthesis can be used to implement the first
stage of delay-free plants. We prefer to focus on developing the concept of a multipurpose control that
can be widely used for marine applications both theoretically and practically. From our perspective,
this concept provides a very flexible control law that supports the feasibility of autopilot turning
during operation depending on the actual conditions of the ships’ sailing [4]. For marine applications,
the multipurpose control theory is presented in detailed in [5–7]. In recent years, some new analytical
and numerical methods of synthesis have been developed based on the special unified structure of the
control laws for marine autopilots [8].

The aforementioned novel structure includes some basic elements and several additional items
that must be adjusted based on the actual external environment. The basic elements are invariant with
respect to the environment, but additional elements can vary in their dynamics and be switched on or
off as necessary to provide the best dynamic behavior for the closed-loop system [5–8]. The novelty of
this approach with respect to other works lies in the universality and flexibility of control laws with
multipurpose (MP) structures, which simplify autopilot turning in a real time regime of functioning
for delay-free plants.

In the second stage of the proposed approach, a new and specific technique is used to consider the
presence of a time delay. For linear systems, this technique is based on the well-known idea ([13–15]) of
compensating a time delay using state predictions with the help of the Cauchy formula. However, the practical
realization of this idea, as shown in [15,16], faces certain pitfalls associated with the loss of robust properties.
We propose to overcome this obstacle based on a unique transformation of the delay-free controller. This is
an additional novelty of the proposed approach. Lastly, attention should be given to maintaining the
performance features of the time-free closed system used to carry out this transformation. As shown in [12],
for the static-state controller the performance indices can be stored completely. However, in contrast
with [12], this work focuses on dynamic control laws for the measured output instead of the state space
vector. Thus, the new method of process quality assurance proposed here for a time-delayed system has
significant novelty.

In general, the present study is an extension of the multipurpose approach presented in [5–8] and
a development of the ideas discussed in [12], with respect to the marine autopilot control laws with the
novel structure, taking into account the actuators’ time delays.

This article is organized as follows. In Section 2, the compensatory method for control law
synthesis for linear time-invariant (LTI) systems is discussed, taking into account transport delays in
the control inputs. The known background is presented, and the new method is proposed to overcome
existing obstacles using the novel transformation of the reference controller. Section 3.1 is devoted
to the synthesis problem statement for autopilots, taking into account time delays. Here, the initial
LTI models of the ships are considered, and reference control laws using the multipurpose structure
are introduced. Section 3.2 presents an exhaustive solution for the mentioned synthesis problem
based on a compensative transformation of the reference controller with the multipurpose structure.
In Section 3.3, a practical example of autopilot synthesis is provided to illustrate the applicability and
effectiveness of the proposed approach. Finally, Section 4 concludes the article by discussing the overall
results of the investigation and indicates how these results can be further developed.
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2. Materials and Methods

As mentioned above, the essence of this paper involves developing a compensatory method of
control law synthesis for marine autopilots, taking into account transport delays for the actuators.
In this section, let us first consider the background and some essential features of the compensatory
approach that define the methodological basis of the study.

The central idea, which we use below, was first introduced in [13]. In a modern treatment presented
in [14], this idea was implemented based on a linear prediction. To demonstrate the accepted approach,
let us consider the following LTI-controlled plant with input delay h:

.
x(t) = Ax(t) + Bu(t− h) + Ld(t− h),
y = Cx,

(1)

where x ∈ Rn, u ∈ Rm, d ∈ Rl, and y ∈ Rk are the vectors of state, control, external disturbance,
and measurement, respectively. We suppose that matrix A is Hurwitz, that the pair (A, B) is controllable,
and that the pair (A, C) is observable. Along with the plant (1), let us introduce a proportional controller:

u = Kx, (2)

where the matrix K is given such that the matrix A + BK is Hurwitz—i.e., a closed-loop system with
a delay-free plant has the following form:

.
x(t) = Ax(t) + Bu(t) + Ld(t− h),
y = Cx,

(3)

which is asymptotically stable. We identify the closed-loop connection (3), (2) as the reference control
system, unlike the real closed-loop system (1), (2). Clearly, the real system does not have the same
dynamic features as (3), (2) due to the presence of a time delay. In particular, the root spectrum of the
real system is infinite, but the spectrum of the reference spectrum is finite. The predictive approach
proposes a method called finite spectrum assignment ([14,15]), which allows one to design a controller
such that overcomes this distinction. In other words, given a stabilizing matrix K, we seek a control
that provides the following identity:

u(t− h) ≡ Kx(t). (4)

This can be written alternatively as:

u(t) ≡ Kx(t + h). (5)

One can easily see that controller (5) compensates for the time delay in (1), transforming a closed-loop
connection to the delay-free form, (3), (2). Nevertheless, we cannot predict state x directly—this prediction
is impossible at the physical level.

To practically implement such a control, we need to obtain the future values of the state that can
be realized using state prediction with the help of the Cauchy formula for plant (1). This yields the
following feedback control law:

u(t) = KeAhx(t) + KeAt

t∫
t−h

e−Aθ[Bu(θ) + Ld(θ)]dθ. (6)

Note that the obtained controller (6) can be treated as the compensative transformation of the
reference controller (2), providing the identity of the characteristic polynomials for the closed-loop
systems (3), (2) and (1), (6).

However, as noted in [15] and [16], there is a certain difficulty in directly implementing controller
(6). This difficulty is determined by the requirement to numerically compute an integral over the past
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inputs in (6), leading to digital control, which has some problems with robust features [16]. We propose
to overcome the mentioned obstacle using a novel transformation of (6) to an equivalent form. Let us
introduce a new vector variable, zp, as follows:

zp(t) = eAt

t∫
0

e−Aθ[Bu(θ) + Ld(θ)]dθ. (7)

It is then a matter of simple calculation to verify that the dynamic controller:

.
zp = Azp + Bu + Ld,
u = KeAhx + Kzp −KeAhzp(t− h),

(8)

is equivalent to (6). Both the controllers give the same transfer matrix (from input d to output y) for the
closed-loop system with plant (1). Moreover, this controller coincides with the transfer matrix of the
reference closed-loop system. Nevertheless, controller (8) is free from the drawback mentioned above.

This technique can be extended to control problems in a more general way. In particular, the proposed
presentation of the compensative controller can be generalized for the following reference dynamic
output feedback:

u = W(p)y, p = d/dt, (9)

which we accept instead of the static state controller (2), where W(p) is a rational fraction of variable p.
The corresponding transformation for (9), by analogy with (8), can be presented as:

.
zp = Azp + Bu + Ld,
γk = C

(
eAhx + zp − eAhzp(t− h)

)
,

.
ξ = Akξ+ Bkγk,
u = Ckξ+ Dkγk,

(10)

where Ck(Eρp−Ak)
−1Bk + Dk ≡W(p), and the vector ξ ∈ Rρ presents the state of controller (9).

Notably, the state space vector x cannot be directly measured for the majority of practical problems
to be solved. Thus, we propose the following solution. First, reference controller (9) should be redesigned
for the delay free plant:

.
x(t) = Ax(t) + Bu(t) + Ld(t− h),
η = C1x, C1 = Ce−Ah (11)

with the fictitious output η. This redesigning should be done such that the controller:

u = W̃(p)η, (12)

provides desirable features for the closed-loop system (11), (12).
Next, we have the following compensative variant for reference controller (12):

.
zp = Azp + Bu + Ld,
γ = y + Ce−Ahzp −Czp(t− h),
.
ξ =

~
Akξ+

~
Bkγ,

u =
~
Ckξ+

~
Dkγ,

(13)

which retains the same features as the closed-loop connection, (1), (13). Here, we have

Ck

(
Eρp−

~
Ak

)−1 ~
Bk +

~
Dk ≡

~
W(p).
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Thus, it can be claimed that controller (10) retains all the features of reference controller (9), but this
is not true for compensative feedback (13). Using (13), we only retain the properties of the modified
reference system, (11), (12), which should be considered when redesigning controller (9) for a particular
practical control problem.

3. Results

This section is devoted to a practical implementation of the proposed compensative control law
designed to consider time delays for the rudder actuators of marine ships. Particular attention is given
to the predictive transformations for control laws with multipurpose structures.

3.1. Autopilot Design Problem Statement, Taking into Account Time Delay

To formalize the problem of control law design for autopilot systems, we first introduce a linear
model of ship motion which describes the control processes of the ship’s heading angle stabilization
with autopilot assistance. For the stabilizing regime, this model is a result of the initial nonlinear
dynamic equation linearization in the neighborhood of equilibrium with a constant forward speed of
motion [1,5]. We first present a standard delay-free state space form, as follows:

.
x = Ax + bδ+ λd̃,
y = cx,
.
δ = u,

(14)

where x =
(

x1 x2 x3
)T
∈ R3 is the state space vector, featuring the drift x1, the angle speed x2,

and the heading angle x3. The scalar value δ ∈ R1 denotes rudder deflection; d̃ ∈ R1 presents external
disturbance; y ∈ R1 is the heading angle, which is treated as a measured and controlled variable;
and u ∈ R1 is the control signal for the rudder actuator. All the components of the matrices are
real constants:

A =


a11 a12 0
a21 a22 0
0 0 1

, b =


b1

b2

0

,λ =


λ1

λ2

0

, c =
(

0 0 1
)
.

We also consider system (14) to be controllable and observable and the scalar variables y, δ and d̃
to be measurable with the help of the corresponding sensors.

Generally, any dynamic control law for the autopilot of plant (14) can be presented by the
following expression:

u = Win(p)
( y
δ

)
≡Wy(p)y + W0(p)δ, (15)

where matrix Win =
(

Wy W0
)

has fractionally rational components. This matrix is always selected
so that the characteristic polynomial of the closed-loop system (14), (15) is of a Hurwitz type. In addition,
certain performance requirements are taken into account.

As justified in [5–8], to provide desirable features of the closed-loop connection, one can accept
the specific multipurpose (MP) structure of a controller to stabilize the marine ship motion under sea
and wind disturbances. This multipurpose structure consists of the following items:

• An asymptotic observer in the form of:

.
z = Az + bδ+ g(y− cz). (16)

• A dynamic corrector presented by the equation:

ξ = F(p)(y− cz). (17)
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• A composer of the control signal:

u = kzz + k0δ+ νy + ξ, (18)

where the vector z ∈ Rn presents the state of the observer and the scalar variable ξ ∈ R1 is the
output of the corrector. The column vector g and the row vector kz, the constant values k0 and ν,
and the rational transfer function F(s) should next be searched, thereby providing the desirable
stability and performance features of the ship’s dynamics for the specified regime of its motion.
Let us suppose that vectors g and kz and constants k0 and ν are selected such that the matrices

A− gc and
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are of a Hurwitz type, where k = kz + νc.

Presenting the corrector equation in a normalized form, the stabilizing control law (16)–(18) can
be rewritten as follows: .

z = Az + bδ+ g(y− cz),
.
p = αp +β(y− cz),
u = kz + k0δ+ νy + γ f p + m f (y− cz),

(19)

where p ∈ Rn1 is the state vector of corrector (17) and γ f (En1p−α)−1
β+ m f ≡ F(p).

As discussed in detail in [5–8], the essence of this multipurpose approach is the sequential
choice of tunable elements g, kz, k0, ν and F(p) for the MP structure by solving the corresponding
optimization problems.

First, the problem of selecting parameters kz, k0 and ν is solved by optimizing the step response
of the closed-loop system relative to the constant heading reference control signal with no external
disturbances (the motion of one’s own ship).

The next step is to define vector g to optimize the response to the stepwise external disturbance.
Finally, in the third step we optimize the response of the closed-loop system for the actions of sea

waves by selecting the transfer function F(p).
Next, we assume that all the aforementioned elements of the stabilizing controller (19) are

selected according to the presented scheme to satisfy the dynamic requirements necessary for the
aforementioned regimes of motion. Naturally, we seek to retain the obtained features of the closed-loop
connection (14), (19) despite the presence of a time delay.

To this end, we introduce the ship equations along with a delay-free model (14), taking into
account the time delay in the thrust system as follows:

.
x(t) = Ax(t) + bδ(t− h) + λd(t− h),
y(t) = cx(t),
.
δ(t) = u(t),

(20)

where d(t− h) := d̃(t) is an auxiliary external disturbance and h is the given time delay value.
Obviously, the dynamic features of the closed-loop system (20), (19) are essentially different from

those of the reference system (14), (19) because of the presence of a delay. Moreover, if the value of h is
appreciably large, then the system (20), (19) can become unstable despite the asymptotic stability of
the reference system. In this case, it is suitable to set the problem of controller (19)’s transformation
such that the corresponding closed-loop system retains the aforementioned dynamic features of the
reference variant, which is the subject of further discussion in this paper.

3.2. Compensative Controller Synthesis

As mentioned above, to solve the problem of controller (19)’s transformation, we propose to use
a compensative approach with respect to time delay which is based on the linear prediction of the
ship’s dynamics.
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To this end, let us first recall that the state space vector x cannot be directly measured for the ship.
This makes it necessary to redesign the reference controller for the modified plant,

.
x = Ax + bδ+ λd̃(t),
γ = c1x, c1 = ce−Ah,
.
δ = u, y = ϕ = cx

(21)

with the additional output γ. In this case, we treat γ as a measurement variable, and the previous
output y is interpreted as a controlled variable.

By analogy with (19), let us consider a reference controller for the modified plant (21) as follows:

.
z = Az + bδ+ g(γ− c1z),
.
p = αp +β(γ− c1z),
u = kz + k0δ+ γ f p + m f (γ− c1z).

(22)

Similar to controller (19), the parameters g, k, k0, and ν, as well as the rational transfer function
F(p) := γ f (En1p−α)−1

β+m f , are determined to provide the desired dynamic features of the closed-loop
system for the specified regime of its motion.

However, it should be noted that the computational methods for adjusting the variable items of
reference controller (22) differ slightly from the recommendations given in [5–8]. This is determined by
the features of the modified plant (21).

Nevertheless, let us suppose that controller (22) is designed in accordance with the scheme
presented above and provides all the desired features of the closed-loop reference connection.

Next, we need to realize the compensative transformation of the reference controller to consider the
time delay for thrusters via the reference control laws with multipurpose structures. Notably, Equation (20)
of the controlled plant represents a particular case of LTI systems with state delays. Such systems can be
analyzed and synthesized with the help of rigorous mathematical methods based on generalizations of
the Lyapunov–Krasovskii approach, as presented in [17,18]. To simplify this particular situation, we can
transform it into a case that includes input delay. Thus, let us accept rudder deflection as a new control
for the plant with the following model:

.
x(t) = Ax(t) + bδ(t− h) + λd(t− h),
y(t) = cx(t).

(23)

Correspondingly, it is possible to rewrite the reference feedback (δ-controller) comprising control
action δz, which is applied to the servo drive of the rudders. The equation for the mentioned reference
δ-controller can then be presented as follows:

.
z = Az + bδm + g(γ− c1z),
.
δm = kz + k0δm + γp + m f (γ− c1z).
.
p = αp +β(γ− c1z),
δz = δm,

(24)

where the new scalar variable δm represents a model of the rudder deflection. Introducing the additional

state space vector
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−1bcd. (26)

Controller (26) provides all desirable dynamic features with respect to the plant:

.
x = Ax + bδ+ λd(t− h),
γ = c1x, c1 = ce−Ah,

(27)

according to (21), and under the condition that δ = δz.
As discussed in Section 2, to realize the compensative transformation of reference controller (25)

(or (24)), we must first design an equation of the predictor as follows:

.
zp = Azp + bδ+ λd. (28)

Then, using its state and real measurement y, we can compute the input variable γ:

γ = y + c1zp − czp(t− h) = y + ce−Ahzp − czp(t− h), (29)

for reference controller (24). Considering (28) and (29), we can obtain the following compensative
transformation of the reference δ controller as follows:

.
zp = Azp + bδ+ λd,
.
z = Az + bδm + g(γ− c1z),
.
δm = kz + k0δm + γp + m f (γ− c1z),
.
p = αp +β(γ− c1z),
γ = y + c

(
e−Ahzp − zp(t− h)

)
,

δz = δm.

(30)

The compensative controller (30) has the output δz, which is not equal to the real rudder deflection
δ. Instead, the value δz presents only the desirable position of the rudder. To achieve this value, we can
apply the following servo drive:

.
δ = u, u = ku(δz − δ), (31)

where ku is the initially given constant of the rudder actuator.
In accordance with Equations (23), (30), and (31), we can compose the scheme of the closed

loop-system presented in Figure 1 in which the compensative controller is used.
The inner structure of the compensative controller is shown in Figure 2.



J. Mar. Sci. Eng. 2020, 8, 0477 9 of 15
J. Mar. Sci. Eng. 2020, 8, 477 9 of 15 

 

 
                  d(t)                                                        y  
 
                     δ                                                                       
             
          
                                        δz  
 
 
                                        δ 
                                        d 
 

Controlled 
Plant (23) 

Actuator 
   (29)    Compensative 

   Controller (30) 

 

 

 

Figure 1. General scheme of the closed-loop system. 

 
                                               zp 
    d                                         
    δ                                                                                                                                                   
                                                                                           γ                                                                               δz    
          
     y                                    
 
 
                                                                      

   
.

,

ccz

kcccc

ξc
bξAξ

=δ
γ+=

 

dpp λbAzz +δ+=  + 
 
- 
 

+ 

he Ac −  

she −c  

 

 

 

Figure 2. Structure of the compensative controller (30). 

3.3. Numerical Example of Synthesis for the Transport Ship 

To illustrate a practical implementation of the proposed compensative approach, let us consider 
a practical example of course-keeping autopilot design for a transport ship with a displacement of 
3950 tonnes, which moves along the assigned heading with a constant forward speed of 15 m/s. 

The mathematical model of this motion is presented by delay-free equation (14) with the 
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3.3. Numerical Example of Synthesis for the Transport Ship

To illustrate a practical implementation of the proposed compensative approach, let us consider
a practical example of course-keeping autopilot design for a transport ship with a displacement of
3950 tonnes, which moves along the assigned heading with a constant forward speed of 15 m/s.

The mathematical model of this motion is presented by delay-free Equation (14) with the
following parameters:

a11 = −0.140, a12 = −0.634, b1 = −0.0285,λ1 = −1.51 · 10−4,
a21 = −0.108, a22 = −1.08, b2 = 0.0360,λ2 = −0.0102.

For the real plant (20), we accept the presence of a time delay of h = 3 sec.
In accordance with the scheme presented in Section 3.1, to optimize the motion of one’s own ship

we obtain the following coefficients for the basic controller u = k(x− x0) + k0δ:

k =
(

k1 k2 k3
)
,

k1 = 1.44, k2 = −5.28, k3 = −3.16, k0 = −0.680.

Here, x0 =
(

0 ϕ0 0
)T

, where ϕ0 = 10◦ is the heading command signal. The obtained
coefficients provide the eigenvalues s1,2 = −0.327 ± 0.144 j, s3 = −1.05, and s4 = −0.192 for the

matrix
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3.3. Numerical Example of Synthesis for the Transport Ship 

To illustrate a practical implementation of the proposed compensative approach, let us consider 
a practical example of course-keeping autopilot design for a transport ship with a displacement of 
3950 tonnes, which moves along the assigned heading with a constant forward speed of 15 m/s. 

The mathematical model of this motion is presented by delay-free equation (14) with the 
following parameters: 

.0102.0,0360.0,08.1,108.0
,1051.1,0285.0,634.0,140.0
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4
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baa  

For the real plant (20), we accept the presence of a time delay of 3=h  sec. 
In accordance with the scheme presented in Section 3.1, to optimize the motion of one’s own 

ship we obtain the following coefficients for the basic controller δ+−= 00)( ku xxk : 

( )
.680.0,16.3,28.5,44.1

,

0321

321

−=−=−==
=

kkkk
kkkk  

Here, ( )T00 00 ϕ=x , where 100 =ϕ  is the heading command signal. The obtained coefficients 
provide the eigenvalues js 144.0327.02,1 ±−= , 05.13 −=s , and 192.04 −=s  for the matrix 







=

0kc k
bA

A . 

Then, by optimizing the asymptotic observer )( 1zcgbAzz −γ+δ+=  for the modified plant (21), 
we obtain the vector ( )Tggg 321=g , with the items 0121.0,0215.0,00967.0 321 −=== ggg , which 
provide the eigenvalues 570.01 −=s  and js 00729.00406.03,2 ±−=  for the matrix 1gcA − .  

Finally, using the obtained basic components of the reference controller (24), we can synthesize 
a dynamic corrector with the following transfer function: 

.
Then, by optimizing the asymptotic observer

.
z = Az + bδ+ g(γ − c1z) for the modified plant

(21), we obtain the vector g =
(

g1 g2 g3
)T

, with the items g1 = 0.00967, g2 = 0.0215, g3 = −0.0121,
which provide the eigenvalues s1 = −0.570 and s2,3 = −0.0406± 0.00729 j for the matrix A− gc1.

Finally, using the obtained basic components of the reference controller (24), we can synthesize
a dynamic corrector with the following transfer function:

F(p) =
−0.501p2 + 0.0405p− 0.197

p2 + 0.600p + 0.0900
, (32)
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which determines the following matrices of the normal form:

α =

(
0 1

−0.0900 −0.600

)
,β =

(
1.69

0.341

)
,γ =

(
0 1

)
, m f = −0.501.

Note that this transfer function corresponds to the filtering regime of the corrector action [5–8].
In this way, the synthesis of the reference δ controller (24) for the modified plant (21) is fully

performed. The corresponding reference closed-loop system (21), (24) satisfies all the desirable dynamic
requirements illustrated in Figure 3. Here, graphs of the functions y(t) and δ(t) are presented for
this system under the absence of external disturbances—i.e., d̃(t) ≡ 0 is the motion generated by the
aforementioned command signal ϕ0 = 10◦, which is realized by the reference controller (Regime 1
of motion).
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Figure 3. Graphs of the functions y(t) and δ(t) for the reference closed-loop connection in Regime 1
of motion.

Figure 4 shows similar graphs for the same reference controller (24), which closes the following
plant with a time delay:

.
x = Ax + bδ(t− h) + λd(t− h),
γ = c1x, c1 = ce−Ah,
.
δ = u,

(33)

Based on the comparison of these processes, one can easily see that the presence of a time delay
significantly impairs the dynamics of the closed-loop system. The settling time becomes three times
longer, and the overshoot exceeds 45%.

J. Mar. Sci. Eng. 2020, 8, 477 10 of 15 

 

0900.0600.0
197.00405.0501.0)( 2

2

++
−+−=

pp
pppF , (32)

which determines the following matrices of the normal form:  









−−
=

600.00900.0
10

α , 





=

341.0
69.1

β , ( )10=γ , 501.0−=fm . 

Note that this transfer function corresponds to the filtering regime of the corrector action [5–8].  
In this way, the synthesis of the reference δ  controller (24) for the modified plant (21) is fully 

performed. The corresponding reference closed-loop system (21), (24) satisfies all the desirable 
dynamic requirements illustrated in Figure 3. Here, graphs of the functions )(ty  and )(tδ  are 
presented for this system under the absence of external disturbances—i.e., 0)(~

≡td  is the motion 
generated by the aforementioned command signal 100 =ϕ , which is realized by the reference 
controller (Regime 1 of motion). 

  

Figure 3. Graphs of the functions )(ty  and )(tδ  for the reference closed-loop connection in Regime 

1 of motion. 

Figure 4 shows similar graphs for the same reference controller (24), which closes the following 
plant with a time delay:  

,
,,

),()(

11

u

e

htdht
h

=δ

==γ

−+−δ+=
−




Accxc

λbAxx
 (33)

Based on the comparison of these processes, one can easily see that the presence of a time delay 
significantly impairs the dynamics of the closed-loop system. The settling time becomes three times 
longer, and the overshoot exceeds 45%. 

  

Figure 4. Graphs of the functions )(ty  and )(tδ  for closed-loop connection (32), (24)  

in Regime 1 of motion. 

Notably, increasing the time delay to 6=h  sec results in a loss of stability, as illustrated in 
Figure 5. 

0 50 100
0

5

10

t sec

ya
w

 (g
ra

d)

0 50 100
-10

0

10

20

30

40

t sec
ru

dd
er

 (g
ra

d)

0 50 100
0

5

10

t sec

ya
w

 (g
ra

d)

0 50 100
-10

0

10

20

30

40

t sec

ru
dd

er
 (g

ra
d)

Figure 4. Graphs of the functions y(t) and δ(t) for closed-loop connection (32), (24) in Regime 1 of motion.

Notably, increasing the time delay to h = 6 s results in a loss of stability, as illustrated in Figure 5.
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Figure 5. Graphs of the function y(t) for closed-loop connection (33), (24) in Regime 1 of motion for the
time delay h = 6 s (a loss of stability).

To counteract the time delay, we utilize the compensative controller (30), (31) with the parameters
g, k, k0,α,β,γ and the m f obtained above, with the addition of ku = 5. The corresponding transient
process for the real closed-loop system (23), (30), (31) in Regime 1 is presented in Figure 6. A comparison
with the reference process (Figure 3) confirms the retention of the dynamic quality despite a time delay.
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Figure 6. Graphs of the functions y(t) and δ(t) for real closed-loop system (23), (30), (31) in Regime 1
of motion.

Then, let us consider the ship’s motion, which is determined by the action of the wind or sea
current presented as the step disturbance d̃(t) ≡ d0 · 1(t) (Regime 2). Here, we accept the value d0, such
that the compensative rudder deflection is δ = δs = 5◦.

A step response of the reference closed-loop system (21), (24) is shown for this regime in Figure 7,
illustrating an integral action of the reference controller. For comparison, Figure 8 presents the
same regime of ship motion for the real closed-loop system (23), (30), (31). A comparison of these
two processes demonstrates that, again, the dynamic quality is practically retained here by using
compensative feedback in the presence of a time delay.
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Figure 7. Graphs of the functions y(t) and δ(t) for the reference closed-loop connection in Regime 2
of motion.
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Figure 8. Graphs of the functions y(t) and δ(t) for real closed-loop system (23), (30), (31) in Regime 2
of motion.

Next, let us discuss the ship’s motion under a sea wave disturbance (Regime 3) with spectral
density Sd(s) = Sd1(s)Sd1(−s), s = jω, whereω is the current frequency:

S1d(s) =

√
αDd
π

2s
s2 + 2α+ α2 + β2 ·

20s2

20s2 + 13.5s + 5
. (34)

where β = 0.6501/s, α = 0.21β, Dd = 4.82. This spectrum can be treated as an approximate
representation of sea wave action with an intensity of 5 on the Beaufort scale and the central
frequency β.

Figures 9 and 10 show the yaw and rudder deflections for the reference closed-loop system in
Regime 3 of motion. Notably, Figure 10 illustrates the filtering effect provided by corrector (32), which is
switched on starting from the 1000th second.
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Figure 9. Graph of the function y(t) for the reference closed-loop connection in Regime 3 of motion.
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Figure 10. Graph of function δ(t) for the reference closed-loop connection in Regime 3 of motion.

For the real system with a time delay, a graph of the rudder deflection for the closed-loop
connection (23), (30), (31) is shown in Figure 11.
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Figure 11. Graph of the function δ(t) for the real closed-loop system (23), (30), (31) in Regime 3 of motion.
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Here, the compensative controller clearly retains the filtering feature of the system for Regime 3 of
the ship’s motion.

In addition, the simulations for this example were carried out via the MATLAB-Simulink package
using the ode45 (Dormand–Prince) solver with the variable-step option.

To confirm the viability of the obtained results, the functionality of all the controllers was also
checked for the initial nonlinear plant using the following mathematical model:

.
x(t) = Fx(x(t), δ(t− h), d(t− h)),
y(t) = cx(t),
.
δ(t) = u(t),

(35)

which was linearized to obtain system (20). Here, the nonlinear function Fx was taken from the usual
ship model provided in [1,2]. Naturally, the processes of the linear and non-linear model of the ship
practically coincide since, in these control modes, the angle does not exceed 30 degrees, and all the
velocities are small.

However, special methods should be used for substantially nonlinear situations. In particular,
the unique approach proposed in [19] seems to be suitable for development considering a time delay.

4. Discussion

The main goal of this work was to propose constructive methods for marine autopilot analytical
design taking into account the real conditions of a ship’s motions. We focused our main attention
on a situation where the rudders’ actuators have a time delay with respect to the control signal.
It is well-known that this delay has a significant impact on the control processes in a closed-loop
system [14,15]. As a rule, such an impact is substantially negative. This factor motivated us to make
the corresponding changes to the control design procedures for a delay-free situation to account for the
presence of time delays.

To this end, we propose to use a compensative approach based on linear predictions of the future
behaviour of a ship’s state [14–16]. This approach aims to retain the desirable dynamic features of the
closed-loop system despite the presence of time delays. To achieve this goal, it is possible to use the
following two-step scheme. First, it is necessary to design a reference control law for the reference
delay-free plant that provides stability and all the desirable properties of the reference closed-loop
connection. Second, one must produce a predictive transformation of the reference controller to
provide dynamic compensation for the delay.

In contrast to well-known approaches [1–4], we applied reference dynamic output feedback as
a control law with a special multipurpose structure [5–8]. The main advantage of this approach is the
essential flexibility of the control that it offers with respect to actual external conditions. Alongside
this feature, our multipurpose technique facilitates the separate tuning of all items in this structure.
Such an idea has not yet been fully realized in existing control laws for marine autopilots.

Unlike our previous publication [12], the focus here is on the design of a reference controller using
a measured output instead of a state space vector of the ship. Accordingly, we modified the equations
of the control plant by introducing a fictitious measured variable. Then, a reference controller was
designed for the modified plant based on the newly corrected design procedures of the multipurpose
approach [5–8].

The main result of this study is the development of a new method for the compensative
transformation of reference dynamic output controllers and its application to the design of an autopilot
control law, taking into account input time delays. The practical applicability and effectiveness of the
proposed method is illustrated by a controller design for a transport ship.

The investigations presented above could be further developed to consider the robust features of
the autopilot control law, the nonlinearity of the controlled plant, information about the measurement
noise, and the presence of transport delays—not only for the input but also for the output variables.
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The scope of the proposed approach may additionally include remotely operated vehicles [20] and
offshore structures [21].
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