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Abstract: Dissolved organic matter present in natural aquatic environments is a heterogeneous
mixture of allochthonous and autochthonous materials. In coastal areas vulnerable to sewage
waste, its biologically active component, the chromophoric dissolved organic matter (CDOM),
is expected to change its composition and distribution in relation to anthropogenic activities,
suggesting the possible use of CDOM as a proxy of fecal contamination. This study aimed
at testing such hypothesis by investigating and relating the optical properties of CDOM with
Escherichia coli abundance, physiological state, and enzymatic activities in a bathing area of the
Northern Tyrrhenian Sea (Latium, Italy) affected by urban wastewaters. The parallel factor analysis
(PARAFAC) applied to the excitation–emission matrices (EEMs) of CDOM allowed us to distinguish
three main components: C1 (λEx/λEm = 342 nm/435 nm), C2 (λEx/λEm = 281–373 nm/460 nm), and C3
(λEx/λEm = 286 nm/360 nm). C1 and C2 corresponded to humic acids of terrestrial origin, while C3
to tryptophan, whose fluorescence peak was detected close to sewage sites, strongly related to
active E. coli cells. The comparison between spectral and microbiological methods is suggested as
a suitable approach to monitor bathing water quality for the implementation of coastal observing
system capability.

Keywords: CDOM; fecal contamination; Escherichia coli; bathing waters; enzyme activities; coastal
observing systems

1. Introduction

Coastal marine environments are known to be highly susceptible to pollution as they are
characterized by the coexistence of multiple human activities (e.g., aquaculture, industries, maritime
transport, and tourism) as well as high population densities. Productive settlements, industries and
power plants, and tourist commercial ports involve the presence of numerous discharges that spill
abundant volumes of organic matter, fecal bacteria, viruses and potentially polluting chemical elements
(e.g., metals, hydrocarbons, pesticides, etc.) into the sea [1–5]. Moreover, during the tourist season or
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under intense rainfall, sewage networks can overload, spreading untreated sewage waste directly into
the sea. Such episodes are the main cause of the occurrence of fecal contamination events on coastal
bathing areas limiting their recreational uses and increasing possible risks for public health [6]. In this
context, monitoring the quality of recreational waters is essential to quickly detect areas exposed to
potential pollution and to prevent the outbreak of infectious diseases. Fecal coliforms and intestinal
streptococci are widely used as fecal pollution indicators due to their easy and low cost determination;
moreover, among fecal coliforms, Escherichia coli is recognized as the best indicator of fecal pollution [7].
In the current European Bathing Water Directive [8] these indicators are included among the criteria
prescribed for the designation of natural waters for bathing purposes. However, laboratory analysis
based on culture methods is time and labor-consuming, making their use in environmental monitoring
largely inadequate [9,10]. To this end, rapid microscopic analytical protocols such as those based
on specifically labeled immune sera, applied in immunofluorescence, provide an estimate of fecal
contamination by E. coli more accurately than conventional plate methods. Indeed, fluorescent antibody
methods allow for the detection of target bacteria, regardless of their physiological status, including
moribund or stressed cells that have lost their ability to grow on conventional culture media [11–13].

In recent years, thanks to its optical properties, chromophoric dissolved organic matter (CDOM)
has been increasingly used as a tracer of organic matter related to urban wastewaters, which are
characterized by a large amount of organic compounds [14–19]. CDOM is a ubiquitous component
of dissolved organic matter (DOM) that absorbs light over a wide range of visible and ultraviolet
wavelengths and can emit part of the absorbed light as fluorescence (FDOM) [20]. Excitation emission
matrices (EEM) and parallel factor analysis (PARAFAC) provide an efficient tool to characterize
CDOM origin and composition [20–27]. Earlier studies have focused on the detection of sewage
contamination through CDOM spectral characterization in groundwater systems [28,29], wastewater
treatment systems [30–32], drinking water treatment plants [33,34], natural surface waters [35],
or sewage-contaminated water bodies [36,37]. However, few studies on Mediterranean coastal areas
have been reported; Tedetti et al. [5] first identified the spectral characteristics of the CDOM pool in a
coastal area affected by the presence of untreated wastewater. Cyr et al. [38] reported the application
of a new glider equipped with tryptophan and phenanthrene fluorometers for the measurement of
DOM in the NW Mediterranean Sea. Zoppini et al. [39] investigated the effects of extreme floods
from the Po River on the physical and chemical seawater properties, together with the responses of
phytoplanktonic and heterotrophic microbial communities to riverine inputs.

In coastal areas, CDOM mainly has a terrestrial origin [40–44] with a high fraction of humic
acids produced by the microbial decomposition of plant tissues and derived from soil leaching from
rainfall [45,46]. In sewage-contaminated waters, the protein-CDOM pool is dominated by the presence
of tryptophan, widely recognized as an indicator of microbiological activity and as a useful tool for
marine pollution monitoring [47–49]. Tryptophan fluorescence was attributed either to the presence
of free amino acids [50] or to their association with proteins on the cell walls of microorganisms
in seawater [51]. CDOM is a heterogeneous pool of organic matter that plays a key role in the
biogeochemical carbon cycle in aquatic environments [5,52–54], influencing the quantity and quality
of light available for marine photosynthetic processes and supporting the heterotrophic prokaryotic
growth as a trophic substrate [55–57]. On the other hand, microorganisms are well equipped with a
range of enzymes, allowing them to break down high-molecular weight organic polymers into smaller
ones (<600 Da), so that they can be transported across the cytoplasmic membrane and used for metabolic
and/or catabolic processes [58]. Extracellular enzymatic activities (EEA) can provide important insights
on the relationship between bacteria and CDOM pool [43]. In particular, leucine aminopeptidase
(LA), beta-glucosidase (BG), and alkaline phosphatase (AP), specific for proteins, polysaccharides, and
organic phosphates degradation, respectively, are widely distributed across marine environments [59].
Estimates of their potential activity rates give information on the composition and bioavailability of
organic matter to satisfy the needs of total microbial community. Indeed, LA is an inducible enzyme
related to fresh, labile organic matter derived from phytoplankton production, while BG is an enzyme
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active on more refractory compounds. Coastal areas such as other eutrophic environments are generally
rich in organic polymers, so stimulating the production and release of hydrolytic enzymes by microbes.

This study aimed to evaluate the relationship between CDOM and E. coli abundance, assessed by
standard culture (membrane filtration, MF) and fluorescent antibody technique (immunofluorescence,
IF), and its physiological state, as detected by EEA estimates. This last relationship was also taken
into consideration in order to assess the role of microbial metabolism in DOM decomposition. Finally,
the integration of CDOM measurements to implement the capability of coastal observing systems with
new cost-effective technologies for bathing water quality monitoring is discussed, with a particular
focus on the Civitavecchia Coastal Environment Monitoring System (C-CEMS) [6].

2. Materials and Methods

2.1. Study Area and Samplings

The study area was located in the southern part of the Civitavecchia coast (northern Latium,
Italy) near a permanent coastal discharge (Figure 1). Being used in summer by numerous tourists
and local bathers, the Santa Cecilia bathing area is particularly suitable for the purpose of this study,
having recorded, in the last few years, numerous fecal contamination episodes, that caused bathers
diseases such as skin irritation and gastroenteritis. To detect the distribution of both CDOM and E. coli
abundance within the study area, a dataset collecting together data obtained during the 2015, 2016,
and 2017 summer seasons at seven sampling stations (SC0-SC6) was analyzed. In particular, the SC0
and SC1 stations were located in an area where wastewaters accumulate before their discharge into the
sea and immediately in front of the outflow, respectively; stations SC2, SC3, and SC4 were located
in the zones most frequented by bathers; finally, stations SC5 and SC6 were positioned in two sites
reciprocally opposite with respect to the discharge, in order to spatially define the zone potentially
affected by the wastewater discharge.
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In more detail, during 2015 and 2017, four daily samplings were carried out every three hours on
22 July and 14 August, respectively: Early Morning (EM) sampling was carried out at 07:00 UTC; Before
Lunch (BL) sampling at 10:00 UTC; After Lunch (AL) sampling at 13:00 UTC and Late Afternoon (LA)
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sampling at 16:00 UTC. Sampling activities were repeated over time at all the stations, except at SC0 in
2015 where only during the AL sampling was there enough wastewater to be collected. During 2016,
two samplings were carried out on 30 August and 27 September only at the SC0–SC4 stations and the
sampling activities were only conducted at 7:00 UTC. In each sampling and at each station, subsurface
samples (0.3 m) for CDOM analysis were collected in 200 mL amber glass bottles preconditioned with
ultrapure water and rinsed three times with the sample before its collection. Seawater samples for
microbiological analyses were stored in sterile 50 mL disposable Falcon tubes and kept at 4 ◦C in the
dark prior to laboratory analysis within 24 h. Temperature and salinity were measured at each station
using an Idronaut 316 multiparametric probe.

2.2. Laboratory Analyses

2.2.1. Chromophoric Dissolved Organic Matter (CDOM) Absorption and Fluorescence Measurements

Seawater samples were filtered through 0.22 µm polycarbonate filters (Nuclepore) under low
pressure. CDOM absorbance was measured in the spectral range of 250–700 nm by a Shimadzu
UVmini1240 spectrophotometer with a 10 cm quartz cuvette. The spectrum of Milli-Q water, measured
in the same conditions, was subtracted from each sample. Absorbance values were converted into
absorption coefficients according to Mitchell et al. [60] and Twardowski et al. [61] considering
Equation (1):

aλ = 2.303 × Aλ/l (1)

where Aλ is the absorbance and l is the path length in meters. Absorption coefficients at 280 nm (a280)
and 355 nm (a355) were used as indicators of CDOM abundance since these wavelengths correspond
to the excitation maxima observed for protein-like and humic-like substances, respectively [44].
The spectral slope (S) of the absorption curve [62,63] was calculated according to Equation (2):

aλ = aλ0 × e−S(λ−λ
0

) (2)

where λ0 is the first wavelength in the range and aλ0 is the absorption coefficient at λ0.
Only for the samples collected in 2017, fluorescence excitation emission matrices (EEMs) were

recorded using a Horiba Fluoromax Spex spectrofluorometer with a 1 × 1 cm quartz cuvette, according
to Tedetti et al. [5]. The emission spectra were measured in the range 280–550 nm over an excitation
wavelength ranging between 200 and 500 nm (5 nm increment). Three replicates per sample were
performed (N = 60). The EEMs were corrected for instrumental bias and the EEM of Milli-Q water
measured in the same conditions (blank) was subtracted.

2.2.2. Microbiological Counts and Extracellular Enzymatic Activities

E. coli abundance was determined by immunofluorescence (IF) count under an epifluorescence
microscope using fluorescently labelled anti-E. coli polyvalent immune sera (Behring), according to
Caruso et al. [12]. Simultaneously, the culturable fraction was estimated by plate count method after
filtration of 100 mL of water through 0.45 µm cellulose filter membranes (MF) and incubation at 35 ◦C
for 24 h on E. coli Direct MUG (ECD-MUG) agar (Biolife) selective for E. coli. The total IF labelled E. coli
were reported as cells per 100 mL, while the culturable E. coli were expressed in colony forming units
(CFU) per 100 mL.

For the samples collected in 2015 and 2017, microbial EEA rates of LA, BG, and AP were
measured on unfiltered water samples using fluorogenic 4-methylcoumarinyl-7-amide (MCA) and
4-methylumbelliferone (MUF) derivatives according to Hoppe et al. [58]. The substrates employed for
LA, AP, and BG determinations were MCA-L-leucine, MUF phosphate, and MUF-ß-D-glucopyranoside
(Sigma-Aldrich), respectively. For each sample, the maximum velocity of the reaction (Vmax) was
calculated through a Lineweaver–Burke linear transformation and reported as nanomoles per liter and
hour (nmol l−1h−1). LA and BG activity rates were expressed as the amounts of carbon potentially
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released from proteins and carbohydrates, taking into consideration the number of C atoms in the
final products of enzymatic hydrolysis (leucine and β− glucoside). AP activity was expressed in terms
of the atoms of dissolved inorganic phosphorus (DIP) or orthophosphate potentially released from
organic phosphates [59,64].

2.2.3. Statistical Analysis

To evaluate the relationships between CDOM and microbiological parameters during the three-year
survey, the Pearson correlation coefficients were calculated with the relative confidence intervals using
PAST software [65]. Correlations were considered significant at a probability level of p < 0.05. Analysis
of variance (ANOVA) was computed in order to assess if there were statistically significant differences
among the stations.

To analyze the links and the reciprocal influence existing among the measured parameters, the
principal component analysis (PCA) was only performed on the data that were shared by all variables
using PRIMER (Plymouth Routines In Multivariate Ecological Research) software package v.6.0
(developed at the Plymouth Marine Laboratory, United Kingdom). This analysis, which was carried
out on normalized data, generated new linear components of the original variables, called principal
components (PCs), which explain the dispersion of the samples. Only the PCs with Eigenvalues > 1
were considered.

The PARAFAC model [66] was applied to the spectral measurements to decompose EEMs into
their individual fluorescent profiles by using the MATLAB DOM fluor toolbox [67] together with
N-Way toolbox v.3.1 [68]. Before applying the PARAFAC analysis, different processing steps were
performed on the fluorescence data: (1) The Rayleigh (first- and second-order) and Raman scatter
peaks were removed from the sample and pure water EEMs (measured before each sample in the
same conditions of the sample) and replaced with values calculated by monotone cubic interpolation
(shape-preserving) [69]; (2) Sample EEMs signals were then corrected for the inner-filter effect using
the equation developed by Lakowicz [70]; (3) Sample EEMs were blank corrected subtracting the
pure water EEMs corrected in (1); and (4) the matrices obtained by (3) were normalized to the water
Raman signal, dividing the fluorescence by the integrated Raman band of Milli-Q water (λEx = 350 nm,
λEm = 371–428 nm), measured the same day of the analysis.

The PARAFAC model was run and validated for 60 EEMs according to the method reported in the
literature [21,65]. Before running the PARAFAC, EEMs were normalized to their maximum in order to
facilitate the comparison between the samples analyzed in the discharge area (SC0 and SC1) and those
in the control points (SC3, SC4, SC5, and SC6) [71]. In the first explorative data analysis, three outliers
(all the replicates of SC6 station) were identified in the dataset and were removed from the analysis.
Subsequently, the validation of the PARAFAC model (running with the non-negativity constraint) and
the determination of the correct number of components were achieved through the examination of
the percentage of explained variance, the shape of residuals, the split half analysis, and the random
initialization using the Tucker congruence coefficients [5,72].

3. Results

3.1. CDOM Absorption

A strong salinity gradient was observed among the stations, with minimum medians (0.55–0.47)
at SC0 and maximum ones at the SC2–SC6 stations (38.70–37.52) (Table 1). ANOVA confirmed the
highly significant statistical differences (F = 786.6, p < 0.001) in the salinity values occurring between
the stations. Moreover, the ANOVA results showed the presence of statistically significant differences
between the SC0, SC1, and SC2–SC6 sites considering the CDOM absorption coefficients at 280 and
355 nm (p < 0.01). The absorption spectra recorded at all the stations showed the typical CDOM
decreasing exponential trend at increasing wavelengths, from ultraviolet to the visible region (Figure 2).
According to their range of variations, the stations were classified into three groups: (1) the station
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located in the proximity of the discharge point SC0 (Figure 2a) showed the maximum median values
of the absorption coefficients at 280 nm (a280) and 355 nm (a355), which ranged from 59.88 m−1 and
26.37 m−1 (a280 and a355 in 2017) to 9.45 and 3.02 m−1 (a280 and a355 in 2016), respectively (Table 1),
indicating that at this station, CDOM was abundant; (2) Station SC1 (Figure 2b), immediately in front
of SC0, showed intermediate values ranging from maximum peaks of 19.16 m−1 and 7.44 m−1 (a280

and a355 in 2017) to minimum ones of 2.82 m−1 and 0.78 (a280 and a355 in 2016), respectively (Table 1);
and (3) moving from the discharge to more marine stations, at stations SC2, SC3, SC4, SC5, and SC6
(Figure 2c), significantly lower a280 and a355 values were recorded, with medians that varied from
maxima of 2.49 and 1.02 m−1 (a280 and a355 in 2015) to minimum values of 1.97 and 0.54 m−1 (a280 and
a355 in 2016), respectively.

Table 1. Physico-chemical characteristics, chromophoric dissolved organic matter (CDOM) optical
properties, E. coli abundances, and extracellular enzymatic activities (EEA) of the three groups of
stations: SC0, inside the discharge point; SC1, immediately in front of it; SC2–SC6 within the bathing
area. Each value was obtained as the median of the four daily samplings in 2015 and 2017 and of
the two sampling days in 2016. Temp., Temperature; a280 and a355, CDOM absorption coefficients
at 280 and 355 nm wavelengths respectively; E. coli MF, E. coli abundance obtained by the culture
method; E. coli IF, E. coli abundance obtained by immunofluorescence; BG, beta-glucosidase; leucine
aminopeptidase, LA; AP, alkaline phosphatase.

Station Year Temp Salinity a280 a355 E. coli MF E. coli IF BG LA AP

- ◦C - m−1 m−1 CFU 100 mL−1 Cells 100 mL−1 ng L−1 h−1 ng L−1 h−1 ng L−1 h−1

SC0

2015 29.2 0.527 38.01 18.20 20,000 448,862 51.21 29.25 12.46
2016 22.2 0.470 9.45 3.02 2509 13,543 - - -
2017 26.9 0.550 59.88 26.37 21,205 27,460 20.76 0.88 32.05

median 26.9 0.527 38.02 18.20 20,000 27,460 35.99 15.07 22.26

SC1

2015 28.67 31.434 3.74 1.51 3212.5 3632 8.94 4.11 7.31
2016 23 31.989 2.82 0.78 870 7269 - - -
2017 24.4 31.855 19.16 7.44 17,535 14,355 14.78 2.7 19.52

median 24.4 31.855 3.74 1.51 3213 7269 11.86 3.41 13.42

SC2-
SC6

2015 28.5 38.433 2.49 1.02 25 4894 1.24 1.93 27.04
2016 22.7 38.700 1.97 0.54 412 4000 - - -
2017 23.7 37.525 2.04 0.72 228 1318 2.6 0.51 6.42

median 28.5 38.433 2.04 0.72 228 4000 1.92 1.22 16.73

E. coli abundances measured by both MF and IF methods described a clear decreasing trend as the
distance from the discharge point increased, with maximum values observed at SC0 (median E. coli
MF = 20,000 CFU 100 mL−1; median E. coli IF = 27,460 cells 100 mL−1) and minimum ones at SC2–SC6
stations for all years (median E. coli MF = 228 CFU 100 mL−1; median E. coli IF = 4000 cells 100 mL−1).
In line with the CDOM data, in 2016, consistently lower values were measured at all three groups of
stations (Table 1). ANOVA results confirmed that statistically significant differences (p < 0.01) occurred
between the SC0, SC1, and SC2–SC6 sites when also considering the E. coli abundances measured by
both MF and IF methods.

The patterns of enzymatic activity rates followed the order BG > AP > LA at station SC0, while
at all the other stations, the enzyme patterns were in the order AP > BG > LA (Table 1). Enzyme
values followed a progressively decreasing trend moving from the discharge point toward the stations
unaffected by sewage; they already decreased by 2–3 times at station SC1, where AP and BG were
reciprocally comparable. Activity rates one order of magnitude lower than those measured at station
SC0 were reached at the marine stations SC2–SC6, characterized by high AP. This spatial distribution
confirmed that sewage outflow discharged into the sea organic polymers—mostly polysaccharides and
organic phosphates—prone to microbial degradation; conversely, the low LA activity rates found at all
the examined stations suggested that within the organic matter released by the sewage, proteinaceous
substrates were scarcely represented.
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area, in 2015 (red lines), 2016 (blue lines), and 2017 (green lines).

Pearson correlation coefficients between CDOM, E. coli abundance, and enzymatic data, as reported
in Table 2, showed that both a280 and a355 CDOM absorption coefficients were significantly related
with E. coli abundance (p < 0.001). A more significant correlation was found at 280 nm between
CDOM and MF values (r = 0.939) compared to IF (r = 0.619); a similar result was observed at 355 nm,
suggesting that culturable E. coli cells were sustained by the CDOM pool more significantly than the
total E. coli, these latter including also non culturable or inactive cells that were unable to metabolize
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CDOM. Among the three examined enzymes, BG activity related significantly with all the parameters
(p < 0.001), except with AP, LA only with E. coli IF, and BG (p < 0.05), while AP was not correlated with
any of the parameters.

Table 2. Pearson correlation coefficients (below the diagonal) calculated among CDOM (a280, a355)
and microbiological parameters (E. coli abundances estimated with MF and IF methods, BG, LA,
and AP enzymatic activities) with associated p values (above the diagonal). See caption to Table 1
for abbreviations.

Parameter a280 a355 E. coli MF E. coli IF BG LA AP

a280 - 1.40 × 10−55 1.73 × 10−18 2.09 × 10−2 6.14 × 10−5 0.1998 0.2810
a355 0.998 ** - 3.77 × 10−17 7.65 × 10−2 1.88 × 10−5 0.1805 0.2740

E. coli MF 0.939 ** 0.930 ** - 2.72 × 10−2 8.59 × 10−5 0.0701 0.4851
E. coli IF 0.619 * 0.591 0.630 * - 7.11× 10−2 0.0187 0.9092

BG 0.764 ** 0.780 ** 0.785 ** 0.651 - 0.0002 0.5895
LA 0.204 0.213 0.301 0.375 ** 0.554 ** - 0.9547
AP 0.172 0.175 0.118 0.019 0.087 −0.009 -

Asterisks indicate the degree of statistical significance; at a 5% probability level (*) and at a 1% probability level (**).

Additionally, the PCA outputs (not shown) demonstrated that the E. coli MF and IF counts were
inversely related to salinity. The two components PC1 and PC2 explained 86.5 and 13.5% of the total
variability, respectively. Stations SC0 and SC1 (2015 and 2017) were grouped together and were related
to E. coli MF; this relationship confirmed that viable E. coli cells were relevant at the discharge stations.
Conversely, stations SC2–SC6 were reciprocally related and with E. coli IF, whose abundance included
all E. coli cells, regardless of their viability state.

3.2. CDOM Fluorescence

The fluorescence EEM matrix of CDOM is shown in Figure 3. PARAFAC analysis applied to
the EEMs measured on the samples collected in 2017 allowed for the identification of three main
components within CDOM: The C1 (λEx/λEm = 342 nm/435 nm) and C2 (λEx/λEm = 281–373 nm/460 nm)
peaks corresponded to the peak “C” of terrestrial humic acids while C3 (λEx/λEm = 286 nm/360 nm)
was consistent with protein-like fluorophores with particular reference to the peak “T” of tryptophan,
according to the classification proposed by Coble [45]. The results of the fluorescence measures
confirmed the differences within the study area in the CDOM pool, characterized by a mixture of
fluorophores of autochthonous, terrestrial, and anthropogenic origin.
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Figure 3. (Left) EEMs of the three components (C1–C3) identified with PARAFAC analysis. (Right) the
line plots show the excitation (black lines) and emission (red lines) fluorescence spectra.

Figure 4 shows the relative abundances of the three components detected by PARAFAC analysis
within the study area. The C1 and C2 peaks were present with the highest percentages at all the
sampling stations in the four sampling phases, with a median value of 46.6% and 39.2%, respectively.
A significant difference was observed for the C3 peak between SC0 and SC1 stations compared to those
located within the bathing area (SC3, SC4, SC5, and SC6), with median values ranging from 19.91% to
39.21%. Positive Pearson correlations were detected between the C3 peak and microbiological analyses
(MF and IF), and a355 (MF: r = 0.94; IF: r = 0.68, a355 r = 0.87, p < 0.01 for all the parameters) as well
as with all the three examined enzymes (BG: r = 0.83, LA: r = 0.62; AP: r = 0.87, p < 0.01 for all the
parameters). Such results pointed out the strict relation between the CDOM pool and microbial activity
in seawater, giving evidence that the occurrence of CDOM substances depends on the metabolic
dynamics of autochthonous as well as allochthonous microbial communities.
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4. Discussion

This study focused on CDOM measurements and their use as a rapid tool to assess and quantify
the occurrence of fecal pollution, allowing the detection of the presence of untreated urban wastewater
in the study area. During 2015–2017 summer seasons, high levels of both CDOM and E. coli abundances
were found at the discharge point. CDOM absorption spectra measured at all the stations showed
a typical descending exponential trend at increasing wavelengths in the Ultraviolet–Visible range,
with a marked decrease in the absorption coefficients moving from the discharge point to the seawater
stations, in concomitance with a strong salinity gradient. In particular, maximum median values of
a280 and a355 were detected at discharge station SC0 (a280 = 38.01 m−1; a355 = 18.20 m−1), where the
maximum E. coli abundances were also found (MF = 20,000 CFU 100 mL−1; IF = 27,460 cells 100 mL−1),
highlighting the presence of highly microbial polluted waters rich in both protein and humic-like
substances [44]. Despite the inputs of organic matter within the bathing area, a280 and a355 median
values at marine stations SC2–SC6 were consistently lower (a280 = 2.04 m−1; a355 = 0.72 m−1) and the
E. coli medians did not exceed the limit value of 500 CFU 100 mL−1 established by Italian Legislation
Decree 116/08, falling within the classification of excellent quality waters, according to Bathing Water
2006/7/EC. Considering the distribution of E. coli, bacterial concentrations only exceeded the threshold
limit during three samplings: at SC2 station in 2015 (1565 CFU 100 mL−1) and at SC4 station in
2015 and 2017 (635 and 846 CFU 100 mL−1, respectively), highlighting the bathing areas where the
probability of pathogenic bacteria to concentrate was higher, with consequent potential human health
risks. Such results pointed out that the overall level of fecal pollution in the Santa Cecilia bathing area
was maintained at low level by the rapid dilution of the polluted waters spilled into the bathing area
with offshore waters, thanks to the high recirculation driven by sea currents in the absence of artificial
barriers limiting water renewal [73]. Conversely, in the bathing area of Santa Marinella, close to Santa
Cecilia, lower E. coli abundances were detected at the discharge point, while the threshold limits were
often exceeded in the area most frequented by bathers, confirming the pivotal role of the hydrodynamic
processes in affecting the dispersion of fecal bacteria [74].

The dual approach applied in our study (i.e., spectral CDOM analysis coupled with estimates
of microbial metabolism through enzyme activities) allowed for the assessment of the spatial impact
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of fecal pollution over the bathing area as well as the role of allochthonous bacterial communities
such as fecal microorganisms in the fate of organic matter. Indeed, microbial community members
(bacteria, archaea, protists) are key elements driving the ecological dynamics of marine environments,
and are characterized by a wide functional diversity [9]. The ability of microbes to respond to natural
and anthropogenic perturbations by modifying their abundance and/or metabolism makes them
sensitive sentinels of environmental changes [75]. In natural ecosystems, heterotrophic microbial
communities use extracellular enzymes to degrade high molecular weight organic matter and high rates
of organic matter degradation are generally found in coastal environments characterized by high trophic
conditions [9,59,76]. Furthermore, through modulation of their enzymatic patterns, microorganisms
may regulate their metabolic activities with important implications in biogeochemical cycles and
organic matter turnover, and, more generally, in ecosystem functioning, especially in the coastal regions
that are among the most biogeochemically active areas [76]. In our survey, peak values of CDOM were
associated with high E. coli abundances and enzyme activity rates at the discharge point compared
with uncontaminated stations. This result suggests that DOM inputs released by sewage wastes acted
as a trophic source, stimulating microbial metabolism and growth. In agreement with our observations,
a coupling between CDOM, microbial abundance, and metabolic activity patterns occurred at riverine
discharges during extreme flood events, suggesting the stimulation of microbial processes in response
to land-derived substrates and contaminants, with consequences on the productivity of the whole
area [39]. In aquatic environments, both photochemical and microbial processes such as enzymatic
decomposition have been reported to modify spectral DOM characteristics, as observed in the marine
zone of the estuarine area of Ria de Aveiro, Portugal [77], where positive correlations between total
bacterial abundance, LA activity, and CDOM a254 and a350 absorption coefficients as well as annual and
inter-annual variations of the relative proportions of “labile” and “refractory” fractions of the DOM
pool were found, suggesting a microbial contribution to the high molecular weight DOM. Among the
enzymes assayed in our study, BG was found to correlate significantly to both E. coli abundance and
CDOM analysis, confirming the relationship linking fecal pollution to this enzyme, synthesized by
human fecal microbiota [78,79].

PARAFAC model application allowed us to identify three main components with different
fluorescence signatures: according to the classification reported by Coble [45]; the C1 (λEx: 342 nm;
λEm: 435 nm) and C2 (λEx: 281/373 nm; λEm: 460 nm) peaks corresponded to the peak “C” (λEx: 350 nm;
λEm: 420–480 nm) characteristics of the humic acids of terrestrial origin (humic-like), while the C3 peak
(λEx: 286 nm; λEm: 360 nm) was homologous to the tryptophan peak “T” of protein-like fluorophores.
As specified by Coble [45], the excitation and emission wavelengths characterizing the peaks may
vary according to the composition of the samples. The relative abundance of the peaks detected at the
monitored stations showed a significant difference between the stations near the discharge (SC0 and
SC1) and those further away (SC2–SC6). The C1 and C2 peaks (humic acids) were mostly constant both
over a spatial and temporal scale, while the C3 peak (tryptophan) was more abundant at the SC0 and
SC1 stations compared to the other ones. Singh et al. [80] reported that the presence of the same peaks
correlated with the microbial activity involved in the organic matter degradation processes. The high
fluorescence of tryptophan has been extensively described in the literature regarding wastewaters,
constituting both a metabolic product and a bioavailable substrate for active bacterial communities [16].
PARAFAC results from EEMs were in agreement with the microbiological analyses, confirming the
link at the discharge point between the abundance of organic matter in terms of tryptophan and the
concentration of E. coli cells measured by both MF and IF methods.

In the last decades, fluorescence spectroscopy allowed us to widely characterize aquatic DOM
from natural or anthropogenic sources, enabling the development of cost-effective technologies for
the rapid monitoring of water quality from various environments [49]. In particular, Moore et al. [81],
Zielinski et al. [82], and Conmy et al. [83] provided in-depth reviews of the in situ monitoring studies
focused on the marine environment and the technical details of the used field fluorometers. Despite
recent technological advances, there are still some limitations in terms of sensitivity as well as the need
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to define a common protocol for data correction (i.e., in relation to suspended particles, dissolved matter,
or temperature) and calibration strategies to obtain more reliable quantitative in situ measurements
for bathing water quality monitoring. The inclusion of real time CDOM/tryptophan fluorescence
measurements within coastal observing systems is essential to quickly detect fecal contamination
events occurring in coastal areas, thus enabling decision makers to promptly set intervention measures
for human health protection. It also responds to the urgent need arisen by the international scientific
governance and policy communities of up-to-date knowledge of the status and trends of coastal
systems, providing essential information on the effects of human pressures on marine ecosystems to
implement new management solutions. In addition, microbial diversity and biomass have recently
been identified as emerging essential ocean variables to be implemented in Global Ocean Observing
Systems [84]. This leads to the need to extend the spatial coverage of observations to coastal waters,
thus requiring additional technologies for the application of integrated multidisciplinary approaches.

To face this issue, a strong effort has been devoted to develop Spectra cost-effective technology [85,
86], which provides continuous real-time information about the physical and biological state of surface
waters (temperature, conductivity, chlorophyll-a fluorescence, CDOM fluorescence). First conceived to
be used onboard both coastal, smaller vessels, and ships of opportunity, it can also be installed as a
coastal fixed station to monitor potentially contaminated discharge inputs, thanks to its modularity
and low power consumption. The acquired time series, integrated with high-resolution remote sensing
data (Sentinel 2-Landsat 8) and mathematical dispersion models are going to be included within the
Civitavecchia Coastal Environment Monitoring System C-CEMS [6], implementing its capability in
forecasting potential pollution phenomena.

5. Conclusions

This study showed that, during the 2015–2017 bathing seasons, coastal marine areas of the
Northern Latium experienced fecal contamination. The association of CDOM composition with fecal
pollution assessment and the measurement of microbial metabolism by enzyme activities could be
a valuable proxy of the physiological state of allochthonous bacteria introduced into the marine
ecosystem, and the results obtained in this survey encourage its use in future monitoring studies.
As a practical application, the same sample could be partitioned and analyzed for spectral and
enzymatic measurements performed in short times and with simple procedures, allowing accurate
information on organic matter origin and composition to be obtained in near-real time. These analytical
approaches could implement the array of methodological strategies available for fecal contamination
determination [87]. Aside from their role for human health risk assessment, the inclusion of microbial
variables as sensitive indicators of overall ecosystem health status has also been suggested by recent
directives regarding the sustainable management and safeguard of marine and coastal ecosystems.
In this context, strong effort must be dedicated to the development of new technologies, which allow
direct in situ bacterial abundance and activity measurements. Enzyme measurements could also be
automatized through the use of advanced systems, allowing the remote addition of reagents [88].
These technologies should be based on low-cost and low power consumption components [89] in order
to expand observatory networks and increase data availability; in addition, the devices should be able
to provide near-real time data in order to set up early-warning systems for monitoring bathing waters.
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