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Abstract: This paper deals with simulator development for an underwater aquaculture surveillance
system. The aim is to prevent the intrusion of objects into the water. The simulator checks
the performance of the alarm system prior to installation in the underwater surveillance system.
The simulator tests virtual environments, but reliable experimental results are obtained using two
different methods. First, the state space underwater intruder dynamic models is expressed to
control several variables at once. Second, the sensor model is designed using a statistical approach,
because detection performance decreases for a various reason when detecting objects using the
sensor. This simulator uses Matlab GUI as a tool. Setting various test environments (i.e., sensor
configuration and sensor detection range) allows the user to analyze the performance of the underwater
surveillance system.
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1. Introduction

Statistical data released by the Korean Coast Guard, under the Ministry of Public Safety and
Security, indicate that aquaculture farm thefts are increasing annually, both in terms of the number
and the amount of damages incurred. Aquaculture farm thefts trigger losses in valuable assets
of fishermen through the theft of goods and the destruction of aquaculture facilities; therefore,
systems are urgently needed for active prevention of these thefts [1]. The current status of aquaculture
surveillance system utilization is being examined at the Gomseom fishing village, the Taean trial
sea farm, and a Namhae-gun Angang Bay sea-cucumber farm in Korea, which have employed an
aquaculture surveillance system that prevents thefts through the inter-operation of thermo-graphic
cameras and radars in the aquaculture facilities. However, despite the installation of this anti-theft
equipment, thefts and damage to these facilities continue to rise, suggesting that the current surveillance
system is inadequate for deterring crime and preventing thefts from these facilities [2].

This inadequacy of existing systems has prompted new research into the use of unmanned
airplanes as surveillance systems for aquaculture facilities, as these can provide monitoring on a
continuous basis [3]. Nonetheless, most research in this area is largely confined to improvements
in the radar and imaging process technologies. In addition, the use of radar to track fishing vessels
and cameras to recognize targets may have high performance reliability, as confirmed by long-term
research, but these surveillance measures have limitations when used in aquacultures systems as they
can only monitor the sea surface and cannot track thefts occurring under the sea. Therefore, a tracking
system is needed for performing surveillance both above and below the sea surface.
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Research on and the development of existing ocean surveillance systems has concentrated on
surveillance of the sea surface. However, the existing underwater surveillance systems that could be
used, and that in technical terms cover a large scope, suffer from the high costs of the sensors. In Korea,
aquaculture facilities are operated mostly by individuals, so the currently available underwater
surveillance systems are simply too costly. Therefore, underwater aquaculture facilities operated by
individuals require cost-effective underwater surveillance systems designed for their fish farming
environments [4,5].

The aim of this paper is therefore to develop a simulator that can test diverse experimental
conditions prior to constructing a surveillance system. A reliable underwater surveillance system
simulator requires the establishment of two elements: an intruder behavior model and a sensor
detection model [6]. An intruder behavior model that can simultaneously control diverse variables can
be created by expressing a state space based on understanding of the kinematics involved in designing
the model [7]. However, most intruder behavior models have been modeled in continuous time,
whereas the sensors used in surveillance systems are digital equipment and obtain data over a very
short discrete time. Therefore, the intruder behavior model should also make measurements using a
discrete time, which requires transformation of continuous time into a discrete time. A second issue is
that the sound navigation and ranging (SONAR) system detects underwater objects using ultrasound
passing through a medium and, for several reasons, the detection performance of a SONAR system
decreases with increasing transmission distance. This varying detection performance also needs to
be taken into account scientifically [8,9]; therefore, the sensor detection model, including detailed
measurements such as sampling time, will be designed using a statistical approach that is widely used
for the expression of variations in economic, social, and natural phenomena.

The aim of this work was the development of a simulator to evaluate, prior to installation,
the efficiency of a monitoring system using acoustic sensors to identify intrusions into aquaculture
farms. The work will describe the environment and general conditions of the underwater surveillance
system and the system of interest, and will also briefly discuss the approaches adopted in the design
of the different types of intruder behavior models and the sensor model that takes into account
performance detection and different techniques related to the configuration of the sensors. Moreover in
the manuscript will be treated and examined the elements included in the simulator and the evaluations
of the performance and results observed through the simulation of the surveillance network sensor,
through the integrated system (GUI) based on Matlab graphic interface.

2. The Environment and Conditions of the Underwater Aquaculture Surveillance System

The underwater surveillance system that will be applied at an offshore co-culture of abalone and
sea cucumber, that has a combined structure of an abalone farm at the sea surface and a sea cucumber
farm at the bottom of the sea, is shown in Figure 1. The sea cucumber polyculture farm is installed
about 4 to 5 km away from the seashore at a water depth of 40 to 50 m [10].

An enlarged view of the sea cucumber farm is shown in Figure 1b. It is composed of two elements:
a sea cucumber aquaculture unit where sea cucumbers may inhabit and a sea cucumber farm that
forms the boundary between the aquaculture facility and the surrounding sea and may represent
an additional environment for sea cucumber habitation. A sea cucumber farm with the desired size
and shape is created by assembling different numbers of farming units and utility farming cages.
This paper assumed a sea cucumber farm with a size of 100 × 100 [m2] as the subject system. Figure 2
also shows the farming unit and the utility farming cage, which are the key components of the sea
cucumber aquaculture facility.
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Figure 1. Co-culture of abalone and sea cucumber: (a) floating cages for abalone production and sea
cucumber; (b) sea cucumber cultivation cages at the bottom.

Figure 2. The components of a sea cucumber aquaculture facility: (a) utility farming unit;
(b) cultivation cage.

3. Underwater Aquaculture Surveillance System

This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be drawn.

3.1. An Intruder Behavior Model

3.1.1. The Constant Velocity Case

The state vector of an intruder that behaves at constant velocity is composed of location and
velocity components on the two-dimensional coordinate system, such that the state vector Xcv(k) at
the kth time interval can be defined as follows.

Xcv(k) = [x(k),
.
x(k), u(k),

.
u(k)]T, (1)

where x(k) and
.
x(k) are the location and velocity in the x direction, respectively, and u(k) and

.
u(k)

are the location and velocity in the y direction, respectively. The state-space equation of an intruder
behavior of constant velocity may be defined as follows, using Xcv(k), the state vector from Equation (1).

Xcv(k + 1) = FcvXcv(k) + wcv(k), (2)

where Fcv is a state transition matrix of the intruder behavior model of constant velocity and wcv(k) is
an independent process white noise vector whose average is zero and whose normal distribution is
N(0, Qcv(k)).
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The state transition matrix and the process noise covariance matrix of the intruder behavior model
with constant velocity are shown as follows [11].

Fcv = diag[F2F2], (3)

Qcv(k) = diag[Q2Q2]qcv. (4)

Here,

F2 =

[
1 T
0 1

]
, Q2 =

 T4

4
T3

2
T3

2 T2

, (5)

where qcv refers to the process noise intensity of the intruder behavior model with constant velocity
and T signifies time intervals between each of the samples (in other words, the sampling time).

3.1.2. The Constant Acceleration Case

The state vector of an intruder that behaves with constant acceleration consists of the element of
acceleration in addition to location and velocity, which are the state vectors of the intruder behavior
model of constant acceleration. Therefore, the state vector Xca(k) at the kth time interval may be defined
as follows.

Xca(k) = [x(k),
.
x(k),

..
x(k), u(k),

.
u(k),

..
u(k)]T, (6)

where x(k),
.
x(k), and

..
x(k) are the location, velocity, and acceleration in the x direction, respectively,

and u(k),
.
u(k), and

..
u(k) are the location, velocity, and acceleration in the y direction, respectively.

The state-space equation of an intruder that behaves with constant acceleration may be defined as
follows, using Xca(k), the state vector of Equation (6);

Xca(k + 1) = FcaXca(k) + wca(k), (7)

where Fca refers to the sate transition matrix of the intruder behavior model with constant acceleration
and wca(k) is an independent process white noise vector whose average is zero and whose normal
distribution is N(0, Qca(k)). The state transition matrix and the process noise covariance matrix of the
intruder behavior model with constant acceleration are as follows [12];

Fca = diag[F3F3], (8)

Qca(k) = diag[Q3Q3]qca, (9)

F2 =


1 T T2

2
0 1 T
0 0 1

, Q2 =


T4

4
T3

2
T2

2
T3

2
T2

2 T
T2

2 T 1

. (10)

3.1.3. Measurement Equation

The number N of underwater sensors distributed around the underwater aquaculture facility
may be expressed as two-dimensional coordinates. Hypothesizing that each sensor s1, s2, · · · , sN is
located at the coordinate (xi, yi), (i = 1, 2, · · · , N) this means that N provides the measured value
z1(k), z2(k), · · · , zN(k) at the kth time interval. The measurement equation may then be expressed
as follows.



J. Mar. Sci. Eng. 2020, 8, 404 5 of 12

Z(k) =



z1(k)
z2(k)

...
zi(k)

...
zN(k)


=



H1
cvXcv(k)

H2
cvXcv(k)

...
Hi

cvXcv(k)
...

HN
cvXcv(k)


+



v1(k)
v2(k)

...
vi(k)

...
vN(k)


=



H1
caXca(k)

H2
caXca(k)

...
Hi

caXca(k)
...

HN
caXca(k)


+



v1(k)
v2(k)

...
vi(k)

...
vN(k)


(11)

where Hi
cv is the intruder behavior model and Hi

cv is the measurement matrix of the intruder behavior
model with constant acceleration at si, the ith sensor; vi(k) is an independent process white noise vector
whose average is zero, with a characteristic of normal distribution at N(0, Ri(k)). The measurement
matrices Hi

cv and Hi
ca are as follows.

Hi
cv =

[
1
0

0
0

0
1

0
0

]
, Hi

ca =

[
1
0

0
0

0
0

0
1

0
0

0
0

]
. (12)

3.2. Design of a Sensor Model

3.2.1. Application of Statistical Theories

Refraction occurs due to changes in transmission velocity when sound waves from the SONAR
system are transmitted. The detection performance decreases due to the loss of much of the energy
in the process of transmission because of absorption and reflection. As a result, detection becomes
increasingly difficult as the transmission of the sound waves progresses. This paper endeavors to
apply the detection performance of the SONAR system to a sensor model using a statistical approach
to deal with this performance decrease phenomenon.

Social, economic, and natural phenomena take the form of a normal distribution, so the normal
distribution is widely used to explain statistical theories. This study hypothesized that when an object
is detected using the SONAR system, the farther the transmission of sound waves generated from the
transmitter has progressed, the greater will be the decrease in detection performance, and this pattern
will follow a normal distribution.

3.2.2. Convergence of Information from Multiple Sensors

Efficient detection of intruders in a multiple sensor environment will require convergence of
different information on the intruders obtained from each sensor for maximization of the detection
efficiency. This can be done using sensor convergence technologies. The aim of the present study was to
employ a measured value convergence method in consideration of weight, which is appropriate for use
in a system that utilizes multiple sensors of the same type, with a small amount of calculation [13,14].

The measured value zi(i = 1, 2) of a system composed of two sensors with x of a certain value
and a measured error vi(i = 1, 2), an arbitrary, independent value, is as follows;

z1 = x + v1, z2 = x + v2, (13)

where x̂, the estimated value of x in a linear function of the measured value, is as follows.

x̂ = k1z1 + k2z2. (14)

In order to look for the estimated value x̂, the values of k1 and k2 should be derived first. The values
of k1 and k2 are derived using the estimated error x̃, calculated as follows;

x̃ = x̂− x. (15)
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For the optimal standard, a value should be found that minimizes the mean square value of
∣∣∣̃x∣∣∣.

In other words, Equation (15) may be expressed as follows.

E
∣∣∣̃x∣∣∣ = E[k1(x + v1) + k2(x + v2) − x] = 0, (16)

where E is a sign that represents a mean. Because E[v1] = E[v1] = 0 and E[x] = x, the following may
be derived through Equation (16).

k2 = 1− k1. (17)

The mean square error is as follows when the Equation (17) is substituted into Equation (14).

E
∣∣∣̃x2

∣∣∣ = k2
1σ

2
1 + (1− k1)

2σ2
2, (18)

where σ2
1, σ2

2 are the variances of v1, v2, respectively.
Partial differentiation of Equation (18) with respect to k1 leads to the following equation.

2k1σ1
2
− 2(1− k1)σ2

2 = 0. (19)

Here, the value of k1 minimizing E
∣∣∣̃x2

∣∣∣ is as follows.

k1 =
σ2

2

σ1
2 + σ22 . (20)

The estimated mean error of the corresponding least square value is as follows.

E
∣∣∣̃x2

∣∣∣ = (
1
σ1

2 +
1
σ22 )

−1
. (21)

Here, the estimated mean error of the square value is smaller than the average measured error of
the square value, and the algorithm to calculate the estimated value is follows.

x̃ = (
σ2

2

σ1
2 + σ22 )z1 + (

σ1
2

σ1
2 + σ22 )z2. (22)

In case of placing the sensor, the detection area may overlap due to the sensor interval and the
detection radius. In the overlapped detection area, the sensors work complementarily to improve
detection performance as shown in Figure 3. The Si is coordinates of the ith sensor, the X is the
coordinate of intruder, the di is distance between ith sensor and the intruder, the P is the overlap
detection probability, the pi is the detection probability of the ith sensor, the rdi−1 is the detection radius
of the (i− 1)th sensor, and the rσi−1 is defined as the distance from the detection radius of the (i− 1)th
sensor, which is 1/3 of the point corresponding to 60.65% in the normal distribution, and the rai−1 is the
distance where the detection performance is improved by overlapping the detection area in the rσi−1 .
The overlap detection probability of the overlapping detection area is calculated as Equation (23).

P = 1− (1− p1)(1− p2) · · · (1− pn), (pi = 1− pi). (23)

This equation needs adjustment when the pi is 1 and 0. If the pi is value of 1, P is 1 since one of the
sensors has a detection probability of 1, andif the pi is 0 the P is not affected by the pi.
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4. An Integrated Simulator

4.1. The Composition of the Simulator

Figure 4 shows the overall form of the Matlab GUI-based simulator. The simulator is composed
of a control panel that sets the simulation environment and a display panel that shows the results of
the simulations into numerical values and graphs.

Figure 4. An integrated simulator for a Matlab GUI-based underwater aquaculture surveillance system.

4.1.1. Sensor Configuration

The sensor configuration in Figure 5a comprises a domain where selection of the sensor structure
is enabled and a sensor property domain controls its detailed content. The sensor structure includes
linear, triangular, rectangular, and hexagonal forms, and one of these is selected. Selection of the sensor
structure is followed by setting the detection radius of the sensor the user desires, the interval between
the sensors, and the number of layers in which the sensors are arranged; these are set by the user
through the sensor properties.
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Figure 5. The control panel: (a) sensor configuration, (b) intruder behavior models, (c) noise intensity
and sampling time.

4.1.2. The Intruder Behavior Model

The intruder behavior model, shown in Figure 5b, is a domain where the type of behavior model
is established. It consists of a straight model (a model of constant velocity), sine wave and pyramidal
models (models of constant acceleration), and a random model with random movement.

4.1.3. Other Issues

Figure 5c shows a noise intensity domain where the size of the covariance of the noise components
is set, and a sampling time domain where the time intervals are set. The size of the covariance, which is
a slide bar of the noise intensity, is set using a mouse. The sampling time is set by the user, who fills in
the value.

4.2. Display Domain

The display panel shown in Figure 6 is a domain where a simulation can be viewed with images
under the method established in the control panel. The simulation provides information that is updated
on a real time basis and the condition of the current progress may be observed, enabling real-time
surveillance. The user can identify its performance with the simulation result values according to the
set environment through graphs and numerical values.

Figure 6. Display screen for control panel.

4.3. Performance Evaluation and Results

For the intruder behavior model, the sampling interval T at 0.1 s, the measured noise intensity qcv,
qca at 5 m2/ sec4, the covariance matrix of the measured values at Ri(k), the initial values of the state
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error covariance matrix for an intruder behavior model of constant velocity and acceleration Pcv(0)
and Pca(0) were set as follows.

Ri(k) =
[

52 0
0 52

]
m2, (24)

Pcv(0) = 102I(4× 4)m2, Pca(0) = 102I(6× 6)m2. (25)

In addition, the intruder behavior model is set with the movement of a sine wave that moves
from the starting point at (20,10) m to the end point at (80,90) m.

The performance of the sensors in the sensor arrangement is evaluated with 12 scenarios, using two
sensors at intervals of 15, 20, and 25 m and sensor detection radiuses at 20, 25, and 30 m. For the
detection probability of the overlapped detection domain, the variance of Equation (22) of the sensor
fusion technology algorithm is set at σ1

2 = σ2
2, and the standard for sounding the alarm is set at a

detection probability of 60.65% or more.
The performance evaluation was conducted using the result value calculated through 100 Monte

Carlo simulations under the same condition.
In addition, the intruder behavior model is set with the movement of a sine wave that moves

from the starting point at (10,20) m to the end point at (80,90) m.
The performance of the sensors in the sensor arrangement is evaluated with 12 scenarios, using two

sensors at intervals of 15, 20, and 25 m and sensor detection radiuses at 20, 25, and 30 m. For the
detection probability of the overlapped detection domain, the variance of Equation (22) of the sensor
fusion technology algorithm is set at σ1

2 = σ2
2, and the standard for sounding the alarm is set at a

detection probability of 60.65% or more.
The performance evaluation was conducted using the result value calculated through 100 Monte

Carlo simulations under the same condition. Table 1 shows that a narrower interval between the
sensors or a greater detection radius increased the number of instances of intrusion into the alarm
domain. In other words, the performance in terms of finding intruders was improved. Nonetheless,
in the case where the interval between the sensors were 25 and 30 m and the detection radii of the
sensors were 20 and 25 m, the number of intrusions into the alarm domain did not change. This was
considered a problem with the sampling time interval; therefore, an additional performance evaluation
according to the sampling time was also performed.

Table 1. Performance comparison of the various sensor interval and detection radius.

Detection Radius
Sensor Interval = 15 m

Alarm Intrusion Alarm Domain Intrusion Detection Domain

20 m 1155
times 1400 times 3900 times

25 m 1116
times 1400 times 4300 times

30 m 1002
times 1255 times 4700 times

Detection Radius
Sensor interval = 20 m

Alarm Intrusion alarm domain Intrusion detection domain

20 m 1674
times 2040 times 4900 times

25 m 1579
times 1800 times 5300 times

30 m 1522
times 1800 times 5700 times
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Table 1. Cont.

Detection Radius
Sensor interval = 25 m

Alarm Intrusion alarm domain Intrusion detection domain

20 m 2269
times 2700 times 5904 times

25 m 2187
times 2600 times 6500 times

30 m 2033
times 2600 times 6706 times

Table 2 shows that when the sampling time is changed from 0.1 s (the first assumed sampling
time) to 0.05 s and to 0.01 s, changes in response to the detection radius are observed in Table 2 that
did not occur in Table 1. In other words, for detailed measurements, the sampling time should be
set short. Nonetheless, shortening of the sampling time interval results in accumulation of a lot of
information, but the obtained information becomes imprecise, resulting in increased operation time.
In other words, the user should establish an appropriate size for the sampling time that considers the
measurement environment.

Table 2. Comparison of performance according to sampling time in 25 m sensor interval.

Detection Radius
Sampling Time = 0.01 s

Alarm Intrusion Alarm Domain Intrusion Detection Domain

20 m 20,781
times 21,700 times 20,318 times

25 m 24,900
times 26,200 times 24,800 times

30 m 59,900
times 64,300 times 67,900 times

Detection Radius
Sampling time = 0.05 s

Alarm Intrusion alarm domain Intrusion detection domain

20 m 4550
times 5300 times 11,900 times

25 m 4348
times 5200 times 12,900 times

30 m 4084
times 5000 times 13,500 times

Detection Radius
Sampling time = 0.1 s

Alarm Intrusion alarm domain Intrusion detection domain

20 m 2269
times 2700 times 5904 times

25 m 2187
times 2600 times 6500 times

30 m 2033
times 2600 times 6706 times

5. Conclusions and Future Plans

This paper dealt with the development of a simulator for an underwater aquaculture facility
surveillance system. The simulator enables a performance evaluation of an alarm through a computer
program prior to the establishment of the actual surveillance system. A reliable simulator measurement



J. Mar. Sci. Eng. 2020, 8, 404 11 of 12

result was obtained by two methods. First, an intruder behavior model was expressed into a state space
equation that can control several variables at the same time to express various movements of intruders.
A sensor model was then designed with a statistical approach to deal with the decreased detection
performance that occurs for diverse reasons when detecting objects with sensors; Matlab GUI was used
as a simulator. The resulting system allows diverse experimental environments to be set simply by
the arrangement of the sensors and the detection radius of the sensors, thereby enabling comparative
analysis of performance of underwater surveillance systems under different experimental environments.

Nonetheless, this study did not examine the actual perception of intruders, although a high
possibility of malfunctions could occur in an ocean environment where diverse variables exist.
Moreover, the user should establish an appropriate size for the sampling time, due to accumulation
of a lot of information the obtained information becomes imprecise, resulting in increased operation
time. In particular, when intruders appear in the underwater surveillance system, they have different
positions; therefore, meeting the conditions for perceiving intruders will be challenging. Thus,
formulating an algorithm for intruder perception should be addressed in future studies that identify
the appropriate characteristic conditions for perceiving intruders.
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