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Abstract: This study estimated the amount of bilge water spilled from ships during normal operation
and identified the contributing factors of the discharge by building a statistical model. To build the
statistical model, we collected as much information as possible about the amount of bilge water in
ships, then used the collected information to formulate a probability distribution of the discharge
amount according to Bayesian statistics, and determined the parameters included in the model by
applying a Markov Chain Monte Carlo method. The analysis of those parameters shows that the
integrated bilge treatment system (IBTS) primarily contributes to reductions in the discharge amount,
and that the container-type ship is involved with especially large discharge amounts.

Keywords: bilge water; statistical model; Bayesian statistics; Markov Chain Monte Carlo; marine pollution

1. Introduction

Normal maritime operations are one of the sources of hydrocarbon release into the ocean. Liquid,
including hydrocarbons, is discharged through the washing of ballast and oil tanks. Bilge water
(a mixture of water and oil accumulated in the bottom plate of a vessel, which includes a high
concentration of organic hydrocarbons) is discharged into the marine environment for a number of
reasons. Such discharge from vessels during normal operations is predicted to be a major source of
hydrocarbon release into the ocean, along with runoff from rivers and sewage [1]. Bilge water shares a
similarity with ballast water, as both are discharged from ships, then unfavorably influence the marine
environment. A recent status of treating ballast water was reported by the authors of [2]. This paper
presents a method for quantifying the amount of bilge water discharge in order to mitigate marine
pollutions due to the normal ship operations.

Oil spills due to maritime accidents devastate the marine environment, especially if the spilled oil
drifts on the surface of the sea and eventually arrives at coasts adjacent to the accident site. This marine
environmental pollution attracts much attention, because the amount of oil spilled per unit time is
extremely large. Meanwhile, the amount of discharge during normal operations per unit time is small.
However, unlike oil spills due to maritime accidents, bilge water discharge occurs constantly from
numerous vessels [3].

Recently, the United States Environmental Protection Agency (EPA) strengthened requirements
for polluted liquid discharge on all commercial vessels greater than 79 feet in length under normal
operations [4]. These vessels need to meet several requirements of the vessel general permit (VGP) when
they enter within three nautical miles of the United States coastline or inland waters. This enhancement
of the regulation suggests that more attention ought to be paid to chronic discharge, such as bilge
water discharge, as well as to oil spillage due to maritime accidents.
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Several other regulations have been imposed to prevent the marine environment from pollution
owing to normal maritime operations. For instance, to reduce petroleum hydrocarbon input to the
ocean, the 1978 Protocol of the International Convention for the Prevention of the Pollution from
Ships (MARPOL 73/78) was implemented, first in the United States in 1981, and then worldwide in
1983. This regulation mandates the installation of improved ballast tanks to prevent liquids, including
hydrocarbons, from leaking into the ocean. These efforts have reduced pollution by petroleum oil.
Recently, the International Maritime Organization (IMO) discussed the promotion of the Integrated
Bilge Water Treatment System (IBTS), which is able to separately process oily water and clean water to
reduce bilge water production and to reuse oily sludge as fuels.

In order to identify which vessel specifications can be factors in bilge water discharge, this study
attempted to build a statistical model that appropriately expresses the relationship of the vessel
specification with discharge amount. The statistical model developed in this study enables us to
quantify the bilge water discharge from various ship types. The establishment of such a statistical
model provides useful information for refining the structural design of vessels that tend to discharge a
relatively large amount of hydrocarbon, and for updating maritime regulations to protect the marine
environment from pollution due to hydrocarbon discharge. In particular, the quantification of bilge
water and identification of discharge factor can offer optimized usages of the IBTS and efficient
eliminations of discharge factor.

In this study, data were collected through a search of the literature on the amount of bilge water
discharged from ships during normal operations, together with information about ship type and
construction year. The collected data was then used to build a Bayesian statistical model. Bayesian
statistics is a powerful methodology for elucidating a relationship between two variables, even if there
is only a small amount of information available. The authors of [5] constructed a receptor model to
identify air pollution sources based on the Bayesian method. The authors of [6] used the Bayesian
approach to assess the ecological risk in Tokyo surface water due to several toxic substances.

The IBTS mentioned above is expected to contribute to reduction in bilge water. Nevertheless,
other factors that potentially result in the discharge of bilge water must be considered. The main
purpose of this study was to identify other factors through examining the statistical properties of the
parameters used in the model. This study hypothesized that a Bayesian statistical model that involves
multiple parameters would provide us with a way to identify the other factors. This paper describes
how such a model was built and discusses the factors influencing bilge water discharge by interpreting
properties of that model.

In the subsequent sections, two statistical models are described: constant and variable discharge
probability models. Through a comparison between those two models, this paper demonstrates the
importance of considering uncertainties in the data and parameters used for constructing the model,
thereby proving the usefulness of the statistical modeling.

2. Data Collection

Published papers and reports [7–10] were referred to for the data on ship type, ship size, amount
of bilge water, and ship construction year (Table 1). In this table, bilge water amount is written in the
unit of m3/day, which was converted from unit of m3 per half year used by the authors of [8], and from
m3 per month used by the authors of [9].

One may claim that factors of the bilge water discharge can be revealed just by reading the values
listed in Table 1. Such a simple analysis may be enough in order to qualitatively evaluate discharge
amounts. However, it cannot serve as a reliable way to address the seawater pollution due to two
problems. First, bilge water amount data are generally contaminated by errors through measurement
and analysis processes. Second, a conclusion from the simple analysis is inapplicable to a prediction of
the amount of discharge from many vessels other than the ones listed in Table 1. Statistical modeling
is one of the rational methods for resolving these two problems and for maximizing the utility of
collected data.
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3. Constant Discharge Probability Model

The binomial distribution function was adopted to express the relationship of the response
variable, that is, the amount of bilge water, with the explanatory variables, that is, factors contributing
to bilge water discharge. The binomial distribution includes a single parameter which determines the
occurrence probability of an independent trial, and is thus suitable to simply represent that relationship
by regarding the parameter as the occurrence probability of a bilge water discharge event, hereafter
referred to as the discharge probability.

The application of the binomial distribution to the present model has the disadvantage of
representing the number of event occurrences, which is an integer. Thus, an amount of bilge water,
which is originally a continuous value, needs to be converted into a discrete value. In this study, the
amount of bilge water ranging from 0 m3/day to 0.5 m3/day was converted to 0 m3/day, that ranging
from 0.5 m3/day to 1.0 m3/day was converted to 1 m3/day, and so forth. In this way, the next larger
integer was assigned to the amount of bilge water as the amount increased by 0.5 m3/day. With this
treatment, a larger amount of discharge was thought of as a larger number of times the trial, that
is, the discharge event, occurs. It may be possible to apply the normal distribution function to the
present model. The normal distribution function involves two parameters, i.e., mean and variance,
both of which have to be specified at the same time for a statistical calculation. By emphasizing
the simplicity of the mathematical expression of the binomial distribution function, which makes
numerical computations correspondingly simpler, this study applied the binomial distribution.

Table 1. Data collected for building statistical models. “ND” (no data) means that the item was
unavailable. In the Integrated Bilge Water Treatment System (IBTS) column, “W/” and “W/O” refer to
vessels with and without IBTS, respectively. In the ship type column, PCC and VLCC stand for pure
car carrier and very large car carrier, respectively.

No. IBTS Size [GT] Ship Type Construction
Year

Bilge Water Amount[
m3/day

] Discrete Value of
Bilge Water Amount Ref.

1 W/ 145635 Tanker 1987 0.0000 0 [7]
2 W/ 149407 Tanker 1999 0.0000 0 [7]
3 W/ 50890 Bulk 1995 0.0010 0 [7]
4 W/ 75637 Container 1997 0.0280 0 [7]
5 W/ 75201 ND ND 0.1753 0 [8]
6 W/ 57623 PCC 1998 0.2330 0 [7]
7 W/ ND Bulk ND 0.2532 0 [9]
8 W/ ND Container ND 0.2532 0 [9]
9 W/ ND PCC ND 0.2532 0 [9]
10 W/ 55880 PCC 2000 0.2890 0 [7]
11 W/ ND ND ND 0.3945 0 [9]
12 W/ 97825 ND ND 0.4148 0 [8]
13 W/O ND Bulk ND 0.4274 0 [9]
14 W/ 53822 Container 2003 0.4880 0 [7]
15 W/ 27986 Bulk 1999 0.5010 1 [7]
16 W/O 108000 Bulk 1987 0.6720 1 [7]
17 W/O 52214 PCC 1977 0.6790 1 [7]
18 W/ ND VLCC ND 0.7562 1 [9]
19 W/O ND PCC ND 0.8219 1 [9]
20 W/O 46047 PCC 1981 0.9770 1 [7]
21 W/ 160079 Tanker 2000 1.0000 2 [7]
22 ND 58192 ND ND 1.1000 2 [10]
23 W/O ND ND ND 1.5123 3 [9]
24 W/O 42145 ND ND 1.6866 3 [8]
25 ND 79275 ND ND 1.7000 3 [10]
26 W/O 42145 Container 1986 1.7100 3 [7]
27 W/O ND VLCC ND 1.8411 3 [9]
28 W/O 145635 Tanker 1987 1.8530 3 [7]
29 W/O 102395 Bulk 1985 1.8810 3 [7]
30 W/O ND Container ND 2.8931 5 [8]
31 ND 141881 ND ND 3.0000 6 [10]
32 W/O 40354 ND ND 4.0893 8 [8]
33 W/O 40354 Container 1986 4.1460 8 [7]
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Denoting the discharge probability mentioned above as q, the likelihood, which measures the
extent to which a specification of the parameter reproduces the observation, is expressed as,

L(q) =
N∏

i=1

(
Nd

k

)
qk(1− q)Nd−k (1)

where
(

Nd

k

)
denotes the number of combinations that result from choosing k elements from a set of

Nd elements, N indicates the total number of the vessels in Table 1, and Nd represents the maximum
discrete value of discharge.

The maximum likelihood method was applied to determine q, which, in this model, is constant.
Searching for the value of q that maximizes the log-likelihood (Figure 1), q = 0.2218 was found to
provide the best fit of the probability distribution function to the observation.
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Figure 1. Log-likelihood versus discharge probability.

Comparing the means and variances computed using the observation (Table 1) and applying the
maximum likelihood method revealed that, though the mean of the model agrees with the mean of the
observation, the model underestimated the variance (Table 2). The expected number of vessels that
spill an amount k can be calculated using the formula of the binomial distribution. Comparison of the
calculated numbers with the observed one (Figure 2) showed that this model failed to reproduce the
dispersion exhibited by observation, i.e., the observation was overdispersed, demanding us to conduct
a more sophisticated modeling, which is presented in the next section.

Table 2. Mean and variance of the discrete values of bilge water discharge obtained from observation,
the constant discharge probability model, and the variable discharge probability model.

Mean Variance

Observation [7–10] 1.774 5.143
Constant discharge probability model 1.774 1.381
Variable discharge probability model 1.627 5.886
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4. Variable Discharge Probability Model

Examination of the constant discharge probability model demonstrates that it is unable to
incorporate the dispersion in the actual discharge amount data into its mathematical expression.
This arises from treating the discharge probability as a constant parameter. A resolution of this issue
necessitates an improved model involving individual differences in the discharge probability among
the vessels.

4.1. Formulation

In the variable discharge probability model, the discharge probability qi is regarded as a variable
that depends on i, the index number of vessels. It is assumed to have a relation to parameters β and γi
as follows:

log
qi

1− qi
= β+ γi, i = 1, · · · , N (2)

which is generally referred to as the logit model, and the righthand side is referred to as linear
predictor [11]. β is the parameter of discharge amount that all the vessels have in common, hereafter
referred to as the common parameter; γi (i = 1, · · · , N) is the parameter of discharge amount that
varies for each vessel, hereafter referred to as the individual parameter. Rearranging Equation (2) gives
the discharge probability qi as

qi =
1

1 + exp
{
−(β+ γi)

} (3)

which gives qi monotonically increasing against β+ γi (Figure 3).
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The parameters qi, β, and γi vary stochastically. This aspect is in contrast to the constant discharge
probability model. Distributions of β and γi are described in terms of other parameters, which are
referred to as hyperparameters in the framework of the hierarchical Bayesian model [12].

The prior probability of the parameter β is assumed to follow the normal distribution, expressed as

p
(
β
∣∣∣σβ) = 1√

2πσβ
exp

(
−
β2

2σβ2

)
, (4)

where σβ is a hyperparameter that quantifies the variance of the parameter β and is assumed to be a
constant of 10.0, which is an uninformative prior.

The prior probability of the parameter γi follows the normal distribution as

p(γi
∣∣∣σ) = 1

√
2πσ

exp
(
−
γi

2

2σ2

)
, i = 1, · · · , N (5)
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where σ is also a hyperparameter that characterizes the Gaussian curve expressed by Equation (5) and
is assumed to follow a uniform distribution.

Multiplying Equation (4) by Equation (5) yields the final form of the prior distribution as

p(γ1, · · · ,γN
∣∣∣σ) p

(
β
∣∣∣σβ) = N∏

i=1
p(γi

∣∣∣σ) p
(
β
∣∣∣σβ)

= 1
√

2πσ
e−
γ1

2

2σ2 ∗ · · · ∗
1
√

2πσ
e−
γN

2

2σ2 ∗
1

√
2πσβ

e
−
β2

2σβ
2

(6)

The formulation of the prior distribution is followed by the formulation of a likelihood which
conveys the information from observations into a model. In a manner similar to the preceding section,
the probability of bilge water discharge from the i-th vessel (i = 1, · · · , N) follows the binomial
distribution as follows:

p(k1, · · · , kN
∣∣∣β, σ, r1, · · · , rN) =

N∏
i=1

p(ki
∣∣∣β, σ, ri) =

N∏
i=1

(
Nd

ki

)
qi

ki(1− qi)
Nd−ki (7)

where ki denotes the discrete value of discharge amount from the i-th ship.
Using Equations (6) and (7) and according to Bayes’ theorem, the posterior probability distribution

is written as,

p(β, σ, r1, · · · , rN
∣∣∣k1, · · · , kN) =

p(k1, · · · , kN
∣∣∣β, σ, r1, · · · , rN) p(γ1, · · · ,γN

∣∣∣σ) p
(
β
∣∣∣σβ)

p(k1, · · · , kN)
(8)

where p(k1, · · · , kN) denotes the probability that the data k1, · · · , kN occur, which is independent on the
parameters β, σ, r1, · · · · · · , rN, and is thus treated as a constant.

4.2. Numerical Method for Parameter Specification

This study applied the Metropolis-Hastings algorithm, one of the Markov Chain Monte Carlo
(MCMC) methods [13], to the calculation of the posterior probability. In the MCMC method, numerous
samples of a stochastic variable are randomly taken according to a probability density, and as the
samples increase, the discrete set of samples gradually better approximates the continuous distribution
of the probability.

Let θ be a parameter to which we hope to make inference. The Metropolis-Hastings algorithm
generates random samples by consecutively proposing a new value θ∗ (Figure 4). If this proposed
value is accepted according to a criterion mentioned below, it is set to be the next value θ j+1, where j is
a sampling sequence. If the proposed value is rejected, the previous value is retained, i.e., θ j+1 = θ j.

The criterion of whether a proposition is accepted or rejected computes a probability density
p( θ∗), which is in proportion to the posterior probability and, accordingly, also in proportion to
the likelihood. Then, the acceptance probability, defined as r ≡ p( θ∗)/p

(
θ j

)
, is computed. With a

probability of min(1, r), the proposition is accepted. Otherwise, it is rejected with a probability of
1−min(1, r). When the number of samples grows enough, most of the disturbances involved in the
initial guess of the parameters are removed and, consequently, a distribution of the samples with a
density proportional to the posterior probability is determined.
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Figure 4. Flowchart of Metropolis–Hastings algorithm.

4.3. Results and Discussion of Variable Discharge Probability Model

Trace plots of some parameters (Figure 5) generated by MCMC sampling had increasing and
decreasing trends, which resulted from the disturbances due to the initial guess of the parameters.
To prevent the trends from affecting analyses of the posterior distribution, the first 3000 samples were
discarded as burn-in, the remaining samples were used for the analyses.
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Figure 5. Trace plots of sampled values of parameters versus number of trials. (a) Common parameter
β, and individual parameters: (b) γ1, (c) γ25, and (d) γ33.

To see the relationship of numbers of vessels with the bilge water discharge amount, products
of qi and Nd (expected discharge amounts of each vessel) were computed for i = 1, · · · , N. Then,
numbers of the vessels were counted for each discrete discharge amount. The numbers obtained in
this way were compared with the number of vessels based on the observation (Figure 6). The model
was well consistent with the observation, and the variance calculated by the model was markedly
improved compared to the variance obtained by the constant discharge probability model (Table 2).
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The MCMC method generated the samples that approximate the posterior distributions of β
and γi. They were used to analyze the statistical properties of these parameters. Figures 7 and 8
show examples of the histograms of those samples and of the posterior distributions constructed
using the histograms. Averages and 90% confidence intervals of β and γi were calculated from the
posterior distributions.
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Figure 8. Histograms for sampled values of individual parameters: (a) r1, (b) r25, and (c) r33. Solid
lines are normal distributions that approximately fit the histograms. Discharge probabilities qi versus
(d) β+ r1, (e) β+ r25, and (f) β+ r33. In (d–f), 90% confidence intervals of β+ ri are gray-hatched.
Ranges in vertical axis corresponding to hatched regions are intervals of qi.

The distributions of β and γi determine the distributions of the discharge probability qi (Figure 8).
The differences in qi among the vessels arise from the individual parameter γi. Factors causing the
discharge are discussed by examining γi. As expected, the computed individual parameter γi was
larger for a larger discharge amount (Figure 9). A closer examination of the relationship between γi and
the discharge amount provides insight into the effect of the IBTS. The averages of γi were computed
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separately for the vessels with and without the IBTS (Table 3). The comparison of γi for the vessels
with and without the IBTS shows that the IBTS certainly reduced the bilge water discharge amount.

This was also demonstrated by analyzing the relationship of γi to the year of construction
(Figure 10). Relatively new vessels constructed in the 1990s and 2000s were equipped with the IBTS
and exhibited low γi values. Under the MARPOL 73/78, the oil content of discharged effluent must not
exceed 15 ppm. Both this regulation and the IBTS installation unquestionably suppressed the amount
of discharge.

Table 3. Mean of individual parameter ri.

With IBTS Without IBTS

−1.571 1.233
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Figure 10. Relationship between construction year and individual parameters. Opened and closed
circles are plots for vessels with IBTS and without IBTS, respectively. Solid line is mean of individual
parameters, and dashed lines are upper and lower limits of 90% confidence interval.

Next, by examining γi in terms of the types of vessel, the question of which type of vessel has an
especially large amount of discharge can be answered. Figure 11 depicts the individual parameter γi
versus ship type. Whereas the vessels with the IBTS overall had smaller γi values than the vessels
without the IBTS, special attention should be paid to the fact that γi of the vessels without the IBTS
varied depending on the ship type. Container ships had a larger γi than the other types. The values of
γi for two of the three container ships listed in Table 1 exceeded or approached the limit of the 90%
confidence interval. To more clearly bring confirmation of the dependence of γi on the ship type, the
averages of γi were computed for each ship type (Table 4). The container ships and unknown ships
had greater averages of γi than the other ship types.

Those results indicate that the container-type ship is somehow linked with the discharge of larger
amounts of bilge water, and can be regarded as a secondary factor, while the absence of the IBTS
constitutes the primary factor. Plotting the individual parameter γi against ship size (gross tonnage
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(GT)) shows that the vessels of around 40000 GT had extremely large discharge amounts (Figure 12),
which exceeded the 90% confidence interval.

It follows that the container-type ship and/or the vessel size of about 40000 GT were linked to a
very large amount of bilge water discharge. It is unlikely, however, that ship size alone is related to the
increase in the discharge. Technological problems might exist in the structural design of container
ships without the IBTS, and/or there might be careless handling of the bilge water in those vessels.

The statistic model enables us to consider the uncertainties involved in the original data and,
accordingly, to use results of the model to predict the bilge water discharge amount for a variety of
vessels and propose an adequate strategy to improve ship designs toward smaller amounts of bilge
water discharge.
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Figure 11. Relationship between ship type and individual parameters for vessels (a) with IBTS and (b)
without IBTS. PCC and VLCC stand for pure car carrier and very large car carrier, respectively.

Table 4. Mean of individual parameter ri for various ship types. PCC and VLCC stand for pure car
carrier and very large car carrier, respectively.

With IBTS Without IBTS

Bulk −1.615 −0.060
Container −1.794 2.919
PCC −1.594 −0.259
Tanker −1.029 1.200
VLCC 0.065 1.420
Unknown −2.765 1.631
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Figure 12. Relationship between ship size and individual parameters. Opened and closed circles are
plots for vessels with IBTS and without IBTS, respectively. Cross symbols are plots for vessels for which
information on the install of IBTS was unavailable. Solid line is mean of individual parameters, and
dashed lines are upper and lower limits of 90% confidence interval.

5. Conclusions

For the purpose of identifying the major contributing factors of bilge water discharge from ships
into the surrounding marine environment during normal operations, this study developed a statistical
model that expresses the relationship of the amount of bilge water discharge with a few explanatory
variables. This study collected as much data on bilge water as possible and used them to build the
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statistical model according to Bayesian statistics. Parameters included in the model were determined
by applying the Metropolis-Hastings algorithm, one of the MCMC methods. The examination of
the model results confirmed that the model well represents the expected values and variances of the
probability distribution of the discharge amount. Interpretations of those parameters showed that
the container-type ship is related to notably large amounts of bilge water discharge, while this large
amount of discharge arises principally from the absence of the IBTS in the vessels.
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