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Abstract: The numerical simulation of ship flows has evolved into a highly practical approach in
naval architecture. In typical virtual towing tanks, the principle of Galilean relativity is invoked to
maintain the ship as fixed, while the surrounding water is prescribed to flow past it. This assumption
may be identified, at least partly, as being responsible for the wide-scale adoption of computational
solutions within practitioners’ toolkits. However, it carries several assumptions, such as the levels of
inlet turbulence and their effect on flow properties. This study presents an alternative virtual towing
tank, where the ship is simulated to advance over a stationary fluid. To supplement the present work,
the free surface disturbance is processed into Fourier space to determine the Kelvin half-angle for an
example case. The results suggest that it is possible to construct a fully unsteady virtual towing tank
using the overset method, without relying on Galilean relativity. Differences between theoretical and
numerical predictions for the Kelvin half-angle are predominantly attributed to the assumptions used
by the theoretical method. The methods presented in this work can potentially be used to validate
free-surface flows, even when one does not have access to experimental wave elevation data.

Keywords: CFD; shallow water; restricted water; KCS; spectral analysis of free surfaces

1. Introduction

Computational fluid dynamics (CFD) has become widely accepted as a useful tool to predict
the flow around a ship. This is facilitated by the increase in available computational power, which
has allowed practitioners to re-create the flow around a vessel even on a standard computer. Thus,
the number of cells or, more generally, the computational effort required to perform a numerical
simulation in model-scale is not thought to be prohibitive for practical applications.

Regardless of the advances in every field of numerical modelling, CFD is not yet considered a
replacement of model-scale experimentation. This is because it is not possible to guarantee that a
particular numerical model will perform with the same level of accuracy across all possible case studies.
For example, new energy-saving devices, or novel underwater shapes may require research into the
best applicable modelling approaches. Additionally, the consequences of implementing modelling
assumptions may not be fully understood. Specifically, although in model-scale computations,
a significant portion of the ship hull is covered by a laminar layer, most turbulence models assume the
flow is fully turbulent. Yet, results with accuracy of a few percentage error can be found in the open
literature [1–7].

J. Mar. Sci. Eng. 2020, 8, 258; doi:10.3390/jmse8040258 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0002-1664-6186
https://orcid.org/0000-0002-7032-3038
http://dx.doi.org/10.3390/jmse8040258
http://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/8/4/258?type=check_update&version=2


J. Mar. Sci. Eng. 2020, 8, 258 2 of 24

There are also different aspects of the problem of modelling ship flows that can be validated
with different levels of confidence. For instance, the resistance of a ship can be measured accurately.
However, velocities in the wake of the ship or free surface elevations require complex and expensive
equipment. Thus, in the course of validating a numerical result, researchers typically analyse the error
in observed integral quantities (resistance, motions, etc.) but tend to assume that other flow features are
also accurately modelled as a consequence. Although this may be the true in many cases, an approach
to validate aspects of the flow around a ship, such as the generated wave field, is necessary. Ideally,
such a method would not rely on expensive equipment nor complex mathematics; in other words,
it should be accessible. It is important to mention that some experimental campaigns report on a wide
range of features of the flow around the ship, for instance, the flow properties in the wake [8,9].

The research presented herein is motivated primarily by the manner in which the problem of
ship resistance is typically solved. That is, the principle of Galilean relativity is invoked (also called
frame invariance; further information can be found in [10]). Namely, the water is flowing over a
stationary ship (in the direction of the incoming flow). This assumption has several consequences.
Those particularly important to the naval architect are:

(1) Levels of inlet turbulence.

This can have an impact on the overall properties of the flow [11] and may require calibration in
some cases. For example, according to Lopes et al. [12], the onset of transition from laminar to turbulent
boundary layer is strongly dependent on the level of free-stream turbulence. Some two-equation
models, such as the SST k–ω model (which is widely used in marine hydrodynamics), are known to
predict excessive decay of free-stream turbulence, which may affect the results. More recently,
Lopes et al. [13] examined the same topic. According to them, even if one were to employ a
more advanced eddy-viscosity model, capable of accounting for transition, the location of where
laminar–turbulent transition occurs is highly dependent on the level of inlet turbulence.

(2) Wave reflections and their damping.

In cases where the volume of fluid (VOF) method is used [14], a damping length is often prescribed.
That is, a length over which all waves are damped, extending from the boundary it is applied to in
the normal direction. Setting an inappropriate damping length can have severe consequences to the
predicted parameters [15].

(3) The temporal dependency of free surface flows.

The simulation of free surface flows via CFD cannot be solved using steady-state solvers (except
in rare academic cases), because they require that properties are convected through the domain [14].
Theoretically, in the frame of reference of the ship, the flow—once converged—is steady. Therefore,
ship resistance is frequently classed as a pseudo-steady problem. In reality, towing takes place over
time and is a fundamentally unsteady process. Here, the presence of turbulence, which is by definition
time-dependent [16], should also be kept in mind.

A second aspect inspiring this work partly stems from point (2) above. Although these may
be of less interest to the naval architect, they carry their own importance nonetheless. Specifically,
this concerns the destruction of ship waves, regardless of whether or not damping is prescribed. Once
a ship-generated wave reaches the outlet, it is irreversibly destroyed, and the information it carries is
lost. In shallow and restricted waters, ship waves are of great importance because they cause bank
erosion and may even lead to destruction of coastal features/infrastructure [17,18]. In extreme cases,
they may even be the cause of loss of life, as stated by Soomere [19]. Therefore, the accurate modelling
of ship waves and their interactions with riverbeds or canal sides is important. Soomere [19] also
advances a criticism of ship-induced flow predictions, pointing out that the flow is only described at a
distance of few ship lengths.
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Clearly, ship waves are both of practical and research interest. Therefore, the validation of
numerical ship-generated waves is of high importance. In this respect, the work Caplier et al. [20],
Fourdrinoy et al. [21], and Gomit et al. [22] is important to mention. The authors of the
aforementioned references systematically developed and implemented a technique to capture and
analyse ship-generated waves from a model experiment. Of interest to the present researchh is the
fact that in their studies, the authors proved the dispersion relation in deep and shallow water and
demonstrated its validity for ships experimentally. Since the developed technique relies primarily on
spectral representation of the wave field, it is thought prudent to attempt its application to a numerically
generated free surface disturbance caused by a ship. It is expected that, if applied correctly, it is possible
to validate a numerical wave field simply by means of processing a virtual free surface, which would
be undoubtedly of practical use. Such a method has the potential to change how numerical solutions
of surface piercing bodies are treated.

The present paper will attempt to apply the aforementioned spectral technique on a different
type of numerical towing tank. Instead of relying on Galilean relativity, the present paper will
present a numerical replica of a towing tank, where the ship advances over a stationary fluid. This
is achieved via the overset domain method, where the ship is encased in what is essentially a
moving box. To perform the numerical simulations, the commercial Reynolds-averaged Navier–Stokes
(RANS) solver, Star-CCM+ version 13.06, is used. The specific case studies adopted in this paper
are selected to maximise the practical relevance of the study. Specifically, the New Suez Canal
is replicated, alongside a standard rectangular canal, which were investigated experimentally by
Elsherbiny et al. [23]. The KRISO container ship (KCS) with a scale factor of 1:75, following the
available experimental data, is used for all simulations.

The aim of this paper is primarily to demonstrate that it is possible to create a virtual towing tank
where the ship is towed using the overset method, i.e., a virtual towing tank that does not rely on
Galilean relativity. The generated wave field will then be used to estimate the Kelvin half-angle for an
example case. The adopted approach also allows one to split the near- and far-field wave systems,
which is used on the fully nonlinear disturbance, generated by the KCS at a variety of speeds in two
different canals.

This work is organised as follows. Section 2 contains a description of the adopted case studies,
while Section 3 explains the adopted methodology, which is split into the two techniques used in
this paper, namely the computational set-up and the spectral representation techniques. Section 4 is
dedicated to results and their discussion, whereas Section 5 contains conclusions and summary.

2. Case Studies

As mentioned in the previous section, the case studies adopted for this work are taken from
the experimental work of by Elsherbiny et al. [23]. The rationale behind this choice relates to the
particular objective of this study. To elaborate, shallow-water studies are a natural choice for the
examination of ship-generated waves. This is because they present several features that are absent in
deep-water ship-generated waves. Shallow-water waves are nonlinear, and their Kelvin half-angle
is speed-dependent [24,25]. This is illustrated in Figure 1, which is constructed via Havelock’s [17]
linear method. Here, the Kelvin wake angle increases from its deep-water value of ≈19.47◦ to 90◦.
The theory predicts that at a depth Froude number (Fh = U/

√
gh, where U is the ship speed in m/s, g

is the gravitational acceleration and h is the water depth) of one, Fh = 1, the ship-generated waves will
travel at the same speed as the disturbance, indicating the Kelvin wedge fills the entire half-plane aft of
the disturbance, i.e., at a half-angle of θ = 90◦. The relationships derived by Havelock [17] are omitted
in the present work, as they are available in the open literature.
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Figure 1. Kelvin half-angle of ship-generated waves in shallow waters as a function of the depth
Froude number.

Ship-generated waves are also of greater concern in restricted areas than in deep waters, because
they may affect the surrounding environment detrimentally. In navigational fairways, bank erosion is
of particular concern, which has led to authorities restricting the speed with which vessels are legally
allowed to operate [26]. Such a restriction simultaneously guards against groundings.

The case studies adopted herein are chosen to reflect the aforementioned points. In this respect,
the recent work of Elsherbiny et al. [24] is used as a benchmark. From their experimentally investigated
cases, two different canal cross-sections are selected: the New Suez Canal and a standard rectangular
canal. These are graphically depicted in Figure 2.

J. Mar. Sci. Eng. 2020, 8, x  

 

 

Figure 1. Kelvin half-angle of ship-generated waves in shallow waters as a function of the depth 

Froude number. 

Ship-generated waves are also of greater concern in restricted areas than in deep waters, because 

they may affect the surrounding environment detrimentally. In navigational fairways, bank erosion 

is of particular concern, which has led to authorities restricting the speed with which vessels are 

legally allowed to operate [27]. Such a restriction simultaneously guards against groundings. 

The case studies adopted herein are chosen to reflect the aforementioned points. In this respect, 

the recent work of Elsherbiny et al. [24] is used as a benchmark. From their experimentally 

investigated cases, two different canal cross-sections are selected: the New Suez Canal and a standard 

rectangular canal. These are graphically depicted in Figure 2. 

 

Figure 2. Graphical depiction of the cross-section of the selected case studies. Top: New Suez Canal; 

bottom: rectangular canal. 

The ship used in this study also follows from the experimental campaign of Elsherbiny et al. [23]. 

Namely, the KCS hull form is used, scaled by a factor of 1:75. This translated into a depth-to-draught 

ratio of 2.2, based on the ship’s design draught. In order to ensure that a well-defined Kelvin wake is 
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bottom: rectangular canal.

The ship used in this study also follows from the experimental campaign of Elsherbiny et al. [23].
Namely, the KCS hull form is used, scaled by a factor of 1:75. This translated into a depth-to-draught
ratio of 2.2, based on the ship’s design draught. In order to ensure that a well-defined Kelvin wake is
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simulated, the chosen depth Froude numbers are towards the high end of the experimentally available
conditions. The ship’s particulars are given in Table 1, whereas test matrix alongside the predicted
Kelvin half-angles (via Havelock’s [17] method) are described in Table 2. It should be noted that
Havelock’s [17] method was originally devised for point sources and is therefore not expected to be
perfectly accurate for nonlinear three-dimensional surface piercing bodies. Nonetheless, it is a useful
starting point. Additionally, turbulence, viscosity and vorticity may influence ship-generated waves,
particularly in the near-field [27].

Table 1. Ship characteristics.

Quantity Symbol Value Unit

Scale Factor λ 75 -

Length L 3.067 m

Beam B 0.429 m

Draught T 0.144 m

Depth D 0.253 m

Water depth h 0.32 m

Block coefficient CB 0.651 -

Longitudinal Centre of Gravity LCG 1.488 m

Wetted area S 1.694 m2

Table 2. Test matrix and resultant Kelvin half-angles according to Havelock’s [17] method.

Canal Case Number Depth-to-
Draught (h/T)

Depth Froude
Number (Fh)

Ship Speed
(m/s)

Kelvin
Half-Angle (◦) [17]

Rectangular
canal

1

2.2

0.57 1.01 19.52

2 0.77 1.364 21.58

New Suez
Canal

3 0.47 0.815 19.47

4 0.57 1.01 19.52

The relatively high depth Froude numbers ensure the numerically generated wave field will be
discernible. The spectral method used also performs best at high speeds, where the near- and far-field
disturbances generated by the ship are well visible. This can be seen by consulting the results of
Caplier et al. [20].

3. Methodology

This section is presented in two major parts. These reflect the methodologies used in this work.
The first section presents the numerical set-up, which is followed by an explanation of the spectral
method in the second subsection.

3.1. Numerical Aspects

The solver, Star-CCM+ version 13.06, employs the finite volume method to model the flow, which
uses the integral form of the incompressible RANS equations and divides the computational domain
into a finite number of adjoining cells. Continuity and momentum are linked via a predictor–corrector
approach. Further details pertaining to the implementation and algorithms used can be accessed in
Siemens [28] and Ferziger and Peric [29].

To account for turbulence within the fluid, the k–ω model of Wilcox [30] is used. This choice is
made following previous work, which showed the particular model to be stable and provide the fastest
solution time of all two-equation variants [31]. Benefits of using the k–ω model include its seamless
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application to low y+ type meshes (y+ < 1). This is a desirable feature, because it avoids the use of wall
functions, or any other bifurcations of the solution, as is the case with the k–εmodel [28]. Although wall
functions can predict the forces acting on a body with good accuracy, they may introduce errors in the
modelling of hydrodynamic properties in the wake of a ship. For instance, they are unable to account
for flow separation [32]. To facilitate a good representation of turbulent properties, a second-order
convection scheme is applied throughout all simulations.

To characterise the fluid interphase, the volume of fluid (VoF) method is used [33]. Moreover,
Star-CCM+ offers a high-resolution interphase-capturing (HRIC) scheme to enhance the definition
of the free surface, which is employed in this study [34]. Vertical ship movements, i.e., sinkage and
trim, are not accounted for to reduce the complexity of the simulations. Instead, the ship’s position
in the x–z plane is adjusted prior to initiating the simulation according to the published results of
Elsherbiny et al. [23,35]. This is done in an attempt to reduce the discrepancy between the experimental
results and those derived herein. However, some difference is expected to persist since the experimental
data, reported by Elsherbiny et al. [23], were determined for a free to sink and trim KCS model.

3.1.1. Computational Domain

As stated previously, frame invariance is not used in this work. Instead, the ship is given the
corresponding velocity, which can be consulted in Table 2 for each canal. To model the motion of
the ship along the canal, the overset domain approach is used. Thus, the ship is towed in the virtual
environment over a static fluid. This has two main consequences. Firstly, the computational domain
can no longer conform to the recommendations of the ITTC [36] relating to the positioning and
dimensions of the computational boundaries. Instead, an attempt is made to replicate the towing
tank used for the experimental work, which is used as a benchmark. Specifically, the towing tank
at the Kelvin Hydrodynamics Laboratory at the University of Strathclyde. Naturally, the width and
depth of the computational domain must satisfy the test cases (given in Table 2). On the other hand,
the length of the computational domain is set as 60 m long. The dimensions are kept the same across
case studies (pertaining to the overset domain and the length of the tank). These are shown in Figure 3.
The height of the static domain is set as 1.23 ship lengths from the undisturbed water surface in all
cases to eliminate any possible effects stemming from the height of the domain.
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The dimensions of the overset domain, which are maintained identical across case studies, are also
shown in Figure 3. It should be noted that for visualisation purposes the figures have been mirrored
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about the central plane. Other than the boundary, coincidental with the canal and ship centrelines
where a symmetry condition is imposed, all other boundaries within the background domain are
no-slip walls. This is in line with our goal of designing a more realistic representation of a towing
tank. Specifically, so-called ‘open boundaries’ do not exist in reality [37]. Examples of such boundaries
include velocity inlets and pressure outlets. Although it is easier to define the conditions at such
boundaries mathematically, they are a definite source of modelling error as discussed earlier.

The manner in which the computational domain is constructed allows the removal of wave
damping. Moreover, the definition of turbulent properties on boundaries (such as levels of inlet
turbulence) of the fluid is not necessary since there are no inlets nor outlets present. However, it should
be noted that the initial conditions in terms of turbulence in the fluid must be specified. In this
study, a turbulent viscosity ratio of 0.1% is used, which decays rapidly and is effectively zero in the
nondisturbed region of the domain at the end of the acceleration phase, limiting its influence to the
early stages of the simulation.

3.1.2. Computational Mesh

The computational mesh is generated entirely within the automatic facilities of Star-CCM+.
As stated earlier, the near-wall mesh is generated so that y+ < 1 over the wetted area of the ship. This is
achieved via the prism layer mesher, offered by Star-CCM+. It should be noted that no prism layer
refinement has been applied to the side walls and canal bottom. Therefore, wall functions are employed
on these boundaries. The choice of background and overset mesh is of critical importance. This must
be done in a way that enables the solver to adequately capture flow properties as they transition from
the background into the overset mesh. The cell distribution of each domain is depicted graphically
in Figure 4, whereas Figure 5 depicts the y+ distribution on the hull at a physical time of 40 s for the
Fh = 0.77 case.
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The arrangement of the mesh does not vary across case studies; the total cell numbers for each
canal are shown in Table 3. The circa 8 million cell difference between the two adopted canals is a
direct result of the smaller wetted volume occupied by the Suez Canal.

Table 3. Cell numbers for both canals.

Canal Background Cells Overset Cells Total

Rectangular canal 29,312,452 766,402 30,078,854
Suez Canal 21,496,179 766,402 22,262,581

Figure 4 also depicts the manner in which the mesh coarsens as the distance from the waterline is
increased. This gradual coarsening is implemented to reduce the overall number of computational cells.

3.1.3. Time-Step Selection

Time-step selection is of high importance in CFD. In this respect, the Courant–Friedrichs–Lewy
(CFL) number may be used as an assessment criterion. The CFL number is defined as the product of
the flow speed and time-step, divided by the mesh size [29]. As a fluid parcel propagates through
the mesh, one would ideally aim to capture its properties at each cell. This is satisfied when CFL < 1.
Since the mesh is kept identical for all cases, the highest speed can be used to assess the CFL condition.
Moreover, a CFL condition onto the background domain is not a meaningful metric, since the majority
of the fluid is static. Instead, the CFL number within the overset box is monitored throughout the
duration of the simulation.

Typically, when solid body motion is present, the time-step requirements are relatively low. In this
work, a trial with a time-step of 0.0035L/U, where L is the ship length and U is the ship speed in m/s was
used. The results indicated satisfactory agreement with experimental data, as will be demonstrated
in the following section. For this reason, the time-step is set at 0.0035L/U for all simulations. For the
highest speed, the average CFL within the overset domain did not exceed 0.7, which is considered
adequate for a first-order temporal discretisation scheme. It should also be borne in mind that if the
time-step is too low, severe numerical noise may be noticed in the solution time-history [38].

3.1.4. Time-History of the Solution

An example time-history of the resistance of the ship is given in Figure 6. The figure is characterised
by two distinct regions. Firstly, the ship velocity is linearly increased up to the target velocity. This is
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done by linking the time-step and velocity. The specific approach adopted requires the ship speed
to reach its steady value at the end of the first 1000 time-steps. In other words, the ship’s velocity is
increased by Utarget/1000 each time-step. Thus, after an initial oscillatory behaviour, the resistance
time-history exhibits oscillatory convergence towards its steady-state value. The oscillations are liked
with the reflections of waves from the side walls, which also impact the observed resistance [39].
All final values reported in this work are obtained by averaging over one period of oscillation of the
resistance curve. The specific point where averaging is performed is chosen to be sufficiently far from
the acceleration phase to eliminate its effect.
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3.1.5. Verification

This section contains the numerical verification of the case study in the rectangular canal, Fh = 0.57.
The numerical uncertainties are estimated via the grid convergence index (GCI) method. This is the
standard way to report numerical uncertainties in ship CFD [40]. It is assumed that the remaining
cases are characterised by similar levels of numerical uncertainty.

The GCI method requires three systematically coarsened solutions for the same case. In this
study, the recommendations of the ITTC [40] are followed. Specifically, the refinement ratio, r =

√
2 is

adopted. The refinement ratio is used to coarsen and lessen the grid size and time-step, respectively.
The GCI method assumes that all three solutions are close to the asymptotic range and are sufficiently
different, which may be difficult to achieve in practice. The proximity to the asymptotic range is
typically characterised by the convergence ratio, p, which is shown in Equation (1).

p = ln(ε32/ε21)/ ln r (1)

where ε32 = f3 − f2 and ε21 = f2 − f1. Here, fn represents the n-th solution, generated by a systematic
coarsening/lessening of the input parameter (grid or time-step). If p = 2, then the grid or time-step can
be deemed asymptotic [41]. The convergence properties, however, can be determined in a different
manner, which also carries information on what type of convergence/divergence is achieved with
refinement. This is known as the convergence ratio, R = ε21/ε32 [42]. Based on the value of R,
the following may be interpreted:

1. Monotonic convergence is observed if 0 < R < 1;
2. Oscillatory convergence is observed if R < 0;
3. Divergence is observed if R > 1.

The GCI method is only applicable in case (1). Next, an error estimate (e21) is defined as [43]:

e21 = ( f1 − f2)/ f1 (2)
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Once the error is known, the numerical uncertainty can be calculated as shown in Equation (3) [44]:

GCI = 1.25e21/
(
rp

k − 1
)

(3)

where k represents the k-th input variable (grid or time-step). The factor 1.25 in the numerator of the
expression, defining the numerical uncertainty represents a factor of safety. This has been devised
to ensure that the true solution lies within the bracket provided by the GCI with 95% confidence.
The results from the convergence study can be seen in Table 4.

Table 4. Grid and time independence (rectangular canal, Fh = 0.57). Experimental result: 4.5047 N.

Parameter Mesh Time-Step Units

r
√

2
√

2 -
f 1 4.325 (29,312,452 cells) 4.325 N
f 2 4.356 (10,955,825 cells) 4.381 N
f 3 5.045 (4,155,326 cells) 4.446 N
R 0.044 0.852 -
p 9.005 0.463 -

GCI (%) 0.6704 19.609 -

The successive grid coarsening resulted in 10,955,825 and 4,155,326 cells for the medium and
coarse solutions, respectively. In terms of spatial dependence, the solution exhibited rapid ranges
with reduction in cell numbers. This ‘superconvergence’ can be deduced by examining the order
of accuracy, p. While in the case of grid coarsening it is approximately 9, when the time-step is
lessened, the solution changes according to ptime = 0.463. According to Eca and Hoekstra [45], orders
of accuracy between in the range 0.5 and 2 can still be treated as asymptotic. Eca and Hoekstra [45]
devised a procedure based on a least-squares fit to estimate the numerical uncertainty. Their method is
not employed in this study, because it requires a minimum of four solutions. Further coarsening of
the computational mesh resulted in divergent behaviour in the simulation. The consequence of the
time-step exhibiting the above order of accuracy means that the GCI method predicts large numerical
uncertainties, even though the overall change between the coarse and fine solution is less than 3% of
the fine solution’s value.

It should be noted that the time-step is kept at the smallest value while coarsening the grid.
Conversely, the finest grid was maintained throughout the temporal convergence analysis. To ensure
that the ratio of overset cell to background cell dimension is kept constant, both domains were
coarsened simultaneously. In this study, it is assumed that all examined cases will exhibit similar levels
of spatial and temporal dependence. For this reason, the above procedure is not repeated.

3.2. Spectral Representation of the Wave Field

In this section, the method devised by Caplier et al. [20] and Gomit et al. [22] is briefly examined.
This method has previously been used to determine a ship’s speed via satellite imagery [46,47].
The essence of the approach is to process an available water surface in Fourier space. To achieve
this, a 2D Fourier transform is used to represent the disturbance in the spectral space (kx, ky). These
arise by defining the angular wavenumber, k, as a vector containing x and y components, k =√

k2
x + k2

y. The spatial equivalent of these components are used to calculate the extents of the spectrum.

The x-direction length of the entire water surface (Lx) becomes kx,max; similarly, using the extent in
the y-direction (Ly) one obtains ky,max, as shown in Equation (4). Likewise, the resolution of the
water surface in real space dictates the steps in Fourier space ∆kx and ∆ky in the x and y directions,
respectively (Equation (5)).

kx,max = 2π/Lx, ky,max = 2π/Ly (4)
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∆kx =
1
2
×

2π
∆X

, ∆ky =
1
2
×

2π
∆Y

(5)

where ∆X and ∆Y are the resolutions in the x and y directions, respectively.
If surface tension is ignored, the dispersion relation in shallow water may be expressed via the

angular frequency (ω) of the waves as shown in Equation (6). This is justified, because surface tension
becomes important only in waves characterised by wavelengths smaller than 7 cm. Alternatively,
the travelling disturbance should propagate with a speed higher than 0.23 m/s [48] for surface tension
to be negligible.

ω(k) = ±
√

gktanhkh (6)

A moving ship will cause the waves to be Doppler-shifted, and setting ω′ = ω−Ukx and k′ = k,
the resulting dispersion relation becomes [20]:

ω′(k) = ±
√

gktanhkh−Ukx (7)

To obtain the locus of the dispersion relation, Equation (7) is solved for ω′(k) = 0 [49], which
yields:

U2k2
x − g

√
k2

x + k2
ytanh

(
h
√

k2
x + k2

y

)
= 0 (8)

Equation (8) is symmetrical with respect to both axes [50]. This is demonstrated in Figure 7, which
includes computed loci (this is used to represent the solutions of Equation (8)) for Fh = 0.57, 0.77,
according to the adopted cases. Alongside these, the critical depth Froude number is depicted to
demonstrate the effect of ship speed on the dispersion relation in shallow water. It should be noted
that the dispersion relation is speed-independent in deep water [20]. The arms of the loci always
begin at ky,x/

(
g/U2

)
= 1 in deep water. This is also the cut-off wavenumber. In shallow waters on

the other hand, the cut-off wavenumber varies with speed. This can be seen by consulting Figure 7,
specifically, where the curves cross the abscissa. Here, the case for Fh = 0.47 is not shown, as it is
practically impossible to distinguish it from the Fh = 0.57 case. Deep and shallow water cases are
essentially identical when kh� 1.
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The cut-off wavenumber separates the near-field disturbance from the far-field waves generated
by the ship. Thus, useful analysis with applications to loads on coastal structures may be performed
by removing the near-field disturbance, which does not propagate away from the ship. To determine
the cut-off wavenumber (kc

x) in shallow water, Caplier et al. [20] solved Equation (9).

U2kc
x − gkc

xtanh(hkc
x) = 0 (9)

Finally, the Kelvin half-angle may be determined by computing tanθ =
(
dky/dkx

)−1
at the

inflection point. According to Nakos and Sclavounos [51], numerical errors will manifest near cut-off

wavenumbers. This can be deduced by examining Figure 7. Even a small deviation in the intersection
between the locus and the abscissa will lead to large errors. The specific example given demonstrates
the relatively short distance between the intersection points of Fh =0.57 and 0.77. On the other hand,
as the speed is increased further, the locus approaches the origin. At the critical depth Froude number,
the locus will transition into crossing the origin and progressing into a quadrant characterised by
opposite signs of the abscissa and ordinate.

The manner in which a numerical free surface generates this pattern is in terms of maxima of the
spectrum in Fourier space. This can be extracted and compared to the theoretical prediction provided
by Equation (8). Caplier et al. [20] demonstrated that the relationship holds well despite its neglect
of nonlinear and three-dimensional terms. Thus, if one can prove that a numerically generated free
surface (once processed to the spectral domain) provides maxima near the locus, then the free surface
can be considered validated. This is explored in the following section.

4. Results and Discussion

The presentation and analysis of the results generated in this study are split into two major parts.
The first relates to the computed ship resistance coefficients, while the second subsection relates to the
spectral analysis of ship waves.

4.1. Ship Resistance

In this subsection, the numerically obtained resistance is briefly discussed and compared to the
experimental data. To begin with, the total resistance coefficients are presented in Figure 8 for all
cases. The experimental data of Elsherbiny et al. [23] is included alongside each numerical result to
enable comparison. Figure 8 clearly indicates the numerical prediction has a well-defined tendency to
underpredict the experimental data. Here, the subscripts refer to depth Froude number. As one might
expect, the ship’s resistance at higher speeds becomes more challenging to predict by CFD. This is
evident, especially in the resistance characteristics at the highest depth Froude number for each case.

The overall agreement between the experimental and numerical data is encouraging. This is the
first sign that the constructed towing tank is capable of providing good predictions for the resistance
of a ship. Possible sources of discrepancy are suspected to stem from the fact that the numerical
approach did not model sinkage and trim. In shallow waters, their combined effect, termed ship squat,
is attributed greater relative importance than in deep waters. Thus, the imperfect modelling adopted
may have been partly the cause of the observed levels of discrepancy between the experimental and
numerical results. Moreover, as the ship speed is increased, the difference also grows. This matches
the pattern observed in the sinkage and trim curves for a ship, both theoretically [52,53] as well
as numerically [54]. Turbulence modelling is also a source of error in the results presented herein.
Based on previous research, it is expected and indeed observed that the k–ω model has a tendency
to underpredict resistance [31]. More sophisticated modelling approaches, such as those accounting
for transition or those resolving large parts of the turbulent kinetic energy spectrum, should be
used to assess the sensitivity of the adopted approach to turbulence modelling. Recent studies have
demonstrated that the latter approach can be highly beneficial in terms of accuracy [55].
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In practice, the cell numbers used in this study tend towards being prohibitively high. As stated
earlier, a virtual towing tank where the principle of Galilean invariance has been utilised will consist of
no more than 2–3 million cells. Such simulations can be performed within a few days on a standard
computer. Thus, the adopted approach of virtually towing the ship may not become widespread soon.
Nevertheless, the additional information that may be extracted from a case such as this can be useful.
An example of this is given in the following subsection.

4.2. Spectral Analysis of the Numerical Free Surface

We begin by examining the highest speed, simulated in the virtual towing tank, Fh = 0.77 in the
rectangular canal. The numerical free surface is depicted in Figure 9. Here, the far-field waves generated
by the ship are clearly visible. Due to the lateral restriction, waves have reflected approximately 2.5
ship lengths aft of the ship. It should be noted that Figure 9 and other figures are reflected around the
central symmetry plane to enable a better visualisation.
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Figure 9. Generated wave field in the rectangular canal at Fh = 0.77.

At this point, it is useful to attempt to determine the wave angle. According to Havelock’s [17]
method, the Kelvin half-angle is θ = 21.58◦. Figure 10 depicts an attempt at solving this problem by
projecting a (dashed) straight line from the forward perpendicular (FP) to the sides (and its reflection)
at an angle of 21.58◦. The line ‘lands’ at a wave trough on the canal wall—clearly, this is not the correct
approach. The solid line in Figure 10 represents the same process but in this case beginning from the
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nearest peak downstream at the wall and projecting in both directions. The line intersects the ship
approximately 1/4 L from the forward perpendicular. Then, the broken line is initiated at the highest
peak at the wall, where wave reflection occurs. This intersects the ship approximately 3/4 L from the FP.
Finally, the dotted line shows the same process. It originates at the point of the ship defined by [min(x),
max(y)], representing the point where the aft wave system is generated.J. Mar. Sci. Eng. 2020, 8, x  
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Figure 10. Generated wave field in the rectangular canal at Fh = 0.77 and corresponding half-angle
according to Havelock [17]. Dashed line originates at FP; solid line originates at the nearest downstream
peak, where the dashed line is reflected. Broken line originates at the highest wave elevation on the
wall; dotted line originates at the ship coordinates representing the point where the aft wave system
is generated.

Clearly, neither line in Figure 10 accounts for the wave angle well. This is not surprising since
the method used to estimate the half-angle is linear and devised for a point source. In this case, the
spectral representation may be used to approach the problem. As explained earlier, the first step is to
calculate the Fourier transform of the wave field. This is performed in MATLAB, which uses grayscale
images. For this reason, the images used henceforth to represent the free surface will be shown in the
grayscale format used to perform the analysis. By doing so, other researchers may cross-reference
results obtained herein by analysing the provided images.

Figure 11 depicts the process used in this study. Specifically, the image is first represented in
Fourier space. Then, for each column of the matrix defining the Fourier transform, a maximum is
identified. The kx, ky components of these maxima are then compared to the theoretical relationship
provided by Equation (8). A polynomial fit is constructed from these points to demonstrate the
accuracy of large and small kx on the fit. In the present case, it is apparent that as one progresses in the
kx range to higher values, agreement deteriorates quickly. According to Nakos and Sclavounos [51],
insufficient grid resolution will be manifest as numerical dispersion in the kx, ky plane being curved
towards high values of kx, eventually forming closed curves. Since this is not what is observed in the
present study, it may be concluded that the numerical wave field is represented with sufficient grid
resolution. Nonlinear phenomena will be revealed in the appearance of additional branches in the
spectrum. In each quadrant, a branch, emanating from the origin and propagating linearly to the edge
of the plot, where it reflects, is observed. Moreover, smaller branches of the dispersion relation are
observed, with origins at higher kx values, indicating nonlinearity [21]. These lead to deformation of
the wake in the real space.
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Figure 11. Processing of the wave field. Depicted: Fh = 0.77 in the rectangular canal. Top: the raw
image, where real space extents are 32 m in the stream-wise and 4.6 m in the span-wise directions.
Bottom left: the Fourier representation of the wave field. Bottom right: detected maxima and fit,
superimposed onto the theoretical relationship, Equation (8).

Now, it is important to deduce the origin of the apparent disagreement in the high kx region, as
well as its effect on the predicted Kelvin half-angle. One source of disagreement inevitably stems
from the fact that the dispersion relation used for comparison is linear [56]. Ship waves, particularly
in shallow water, are nonlinear. Even in deep waters, Ma et al. [57] found significant nonlinear
influence on the dynamic pressure of the KCS. On the other hand, the experimental data presented
in Caplier et al. [20] suggest that the theory approximates real ship waves very well for the Wigley
hull. This may not be a fair comparison, because nonlinear effects for the Wigley hull are known to be
small [57–59]. In other words, using the parabolic hull plays to the method’s strengths.

The neglect of nonlinear terms is chiefly manifest in the near-field disturbance, close to the ship.
Although a modification to the Kelvin half-angle may be produced as a consequence of modified
pressure in the near-field, the magnitude of such an effect is not known. Interference between transverse
and divergent waves, generated at the ship’s bow, may be one cause of the observed disagreement [60].
This interference effect, along with the nonlinearity exhibited by the KCS, and the influence of viscosity
are all thought to be the contributing to the observed discrepancy.

There is one more aspect of the solution that one should consider carefully. This relates to the
curve fit used to approximate the numerical dispersion for higher kx values than maxima were detected
for. In shallow waters, the arms of the locus are typically not well developed [20]. Thus, it is difficult to
extract a sufficient number of points to perform the analysis. For this reason, the only fair assessment
recommended is within the range where maxima have been detected from the Fourier transform.
The range kx/ (g/U2)∈ [1, 2.5] is used to perform all subsequent analysis. This includes part of the fit
over which no maxima have been detected to illustrate the effect of limited data samples.

Figure 12 contains the derivatives dky/dkx for deep and shallow water, alongside the numerically
generated fit from CFD. This is shown because upon evaluating dky/dkx at the inflection point, the Kelvin
half-angle can be obtained. Moreover, Nakos and Sclavounos [51] recommend the examination of these
derivatives to highlight differences between numerical and theoretical dispersion relations. Figure 12
also includes the area under each curve for reference. Clearly, assessing solely the area under each
curve is not a good approach to determine an apparent disagreement, or error, which is −3.901% in
this case. This is the case because different parts of the kx range over which the derivative is shown
may attenuate or reinforce the total favourably. On the other hand, the RMS (root mean square) of the
difference between the theoretical and numerical curve is predicted as 0.456. The effect of this on the
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predicted half-angle is illustrated in Figure 13, where the consequences of the previously examined
differences are highlighted.
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The net effect of the difference between the fit and theoretical curves is translated into a difference
of approximately 2.6◦ in the predicted half-angle. This is not considered as a substantial discrepancy.
However, the locations where inflection occurs are significantly different between the two sets of data.
This occurs at kx,theory/(g/U2) = 1.06 according to the theoretical relationship, whereas CFD predicts this
at kx,CFD/(g/U2)≈ 1.46. The identification of this half-angle does not help in visualising the wake better.
Plotting a line with origins at the bow with an angle of 24.1◦ causes an intersection with the wall earlier
than what is shown in Figure 10. The relative error between the two predictions is 5.93% (arrived at by
computing |(θtheory − θCFD)/ θtheory × 100)|).

There are several aspects of this technique that should be improved. Firstly, the range over which
it is acceptable to find maxima of the Fourier transform should be defined. The only way to accomplish
this is via an extensive experimental campaign. If such an interval is known, then it may be possible to
define a metric expressing the degree to which waves are correctly modelled. It may also be possible



J. Mar. Sci. Eng. 2020, 8, 258 17 of 24

to link specific parts of the computational free surface with increased error in the representation of
ship waves. The only manner in which this can be achieved is via experimental work, which should
demonstrate the validity of the assumptions as they apply to waves generated by a ship, rather than
point sources. Specifically, this concerns ships causing highly nonlinear flows, thereby generating
waves that may not resemble the method’s predictions well.

This work proceeds with the next aspect of the solution, which one may obtain via the spectral
representation. Specifically, this concerns splitting the near-field from the far-field components. This is
illustrated for the rectangular case study at Fh = 0.77 in Figure 14, where the cut-off wave number is
kc

x = 4.7885. Here, the shape of the ship leaves a small effect onto the corresponding near- and far-field
systems because the outline of the vessel forms part of the free surface itself. The intensity of the
spectrum depends on the input and can be changed based on the brightness of the supplied input.
The range of the spectrum is therefore not shown.J. Mar. Sci. Eng. 2020, 8, x  
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The near-field disturbance is not confined in the immediate vicinity of the ship in Figure 14,
contrary to expectations. Instead, it is shed from the ship downstream, with its influence being clearly
visible near the domain walls. This representation also allows the detection of the far-field waves,
as well as their reflection from the side walls, with ease. It is apparent that the wave system is convex
with respect to the ship centreline. Once reflected, this is not as clearly visible. The full spectrum for
this case can be consulted in Figure 11.

Figure 15 shows the spectral decomposition process as applied to the rectangular canal for
Fh = 0.57. Here, the arms of the spectrum, previously used to extract maxima and compare with the
theoretical relationship, are not formed. This is consistent with findings of other researchers [20].
Specifically, the higher the depth Froude number is, the more clearly the arms of the spectrum are
formed. The physical origins of this relate to the relatively small far-field disturbance generated by the
ship in the examined speed range. Simultaneously, speeds corresponding to Fh ≥ 1 are impractical,
which is why they have not been investigated. Experimental data in terms of resistance are also not
available for the adopted case studies at the aforementioned speeds. In any case, several features of the
spectrum can be observed. Firstly, the low-intensity arms, observed in Figures 11 and 14, extending
into the far field are reproduced. However, in Figure 15, the arms are not reflected from the boundaries
of the plot; instead, they exhibit periodic structures, which vanish near the limits.
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It is now appropriate to shift the focus onto the Suez Canal and the spectral representation of the
wave field obtained. As before, the higher speed (Fh = 0.57) is examined first, as shown in Figure 16.
An immediately apparent difference relates to the structure of the wave field. Specifically, the slopped
canal banks have caused a rundown of the water surface. Since the theoretical relationship used to
plot the solid line in the plot can only account for a single depth, it is not seen to represent the Fourier
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representation of the numerical wave field well. Interestingly, the spectrum contains maxima arranged
in semi-circular arcs. An interpretation of this is not attempted at present; instead, this is left for a
more theoretical piece of work. Such research would need to determine the form of the dispersion
relation in nonconstant water depths. The cut-off wave number used to produce Figures 15 and 16 is
the same (kc

x = 9.5796 m−1) for this reason. As was the case for Fh = 0.77, the near-field disturbance is
trapped near the canal walls and shed over a great distance downstream.J. Mar. Sci. Eng. 2020, 8, x  
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x = 9.5796). Longitudinal extent: 13 m.

The lower speed investigated in the Suez Canal and the Fourier representation of its wave field are
depicted in Figure 17. As expected, the disturbance generated by the ship at Fh = 0.47 is significantly
smaller than that produced at Fh = 0.57 (Figure 16). The spectrum exhibits a similar structure to what
was previously observed for Fh = 0.57. For both results shown in Figures 16 and 17, the near-field
hydrodynamic response has caused bright parts of the spectrum, which are periodically broken. These
correspond to what is identified as a near-field wave by the method, trapped at the lateral extents
of the tank. This is primarily the case due to the relative size of these disturbances. Namely, their
wavelength is of the order of magnitude of the ship itself. Whether this classification itself is correct
probably requires further research. However, their effect on the Fourier representation is clearly visible,
especially in Figure 16, where a high-intensity patch can be seen undulating along the ordinate.
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5. Summary and Future Work

This paper presented a towing tank which does not make use of on the principle of Galilean
relativity. This was accomplished via the overset method, which was used to actually ‘tow’ the KCS
model in a virtual environment. The main benefits of adopting such an approach were identified in
terms of the reduced number of assumptions needed to perform the analysis. Specifically, all boundaries
(except those prescribed as symmetries or overset boundaries) are no-slip walls, which is more physically
consistent than ‘traditional’ virtual towing tanks. Since the ship advances over a static fluid, the
approach presented in this paper does not require the definition of inlet turbulent properties, as is
usually the case. Thereby, one major source of modelling error and uncertainty is removed.

The adopted case studies numerically replicated recently published results in a rectangular
canal and in the New Suez Canal [23]. The computed resistance of the ship was compared to the
experimentally obtained values. Satisfactory agreement was found, although some discrepancy
persisted in the highest speeds examined. The source of the difference between the experimental
and numerical results is primarily attributed to the fixed sinkage and trim used in the virtual towing
tank. The study was supplemented by a recently developed method to decompose the wave field and
determine the Kelvin wake angle. In terms of the former, it was discovered that near-field disturbances
propagate outwards towards the canal sides and are shed by the ship downstream. Their effect
persisted over a significant distance. This is of practical interest, because near-field disturbances
are typically linked with strong pressure variations. Thus, information extracted via the spectral
decomposition method may be used to assess the optimum slope and positioning of canal sides to
avoid excessive forces linked with bank erosion.

On the other hand, it was shown that it is difficult to identify the boundaries of the Kelvin wake
in a narrow canal. Values for the half-angle computed via linear point-source methods were compared
with those obtained by CFD. The effects of nonlinearity and interference of wave systems shed by the
bow and stern were identified potential sources of discrepancy. The numerical (θCFD = 24.1◦) and
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theoretical (θTheory = 22.756◦) Kelvin wake half-angles for Fh = 0.77 in the rectangular canal were found
to compare reasonably well. However, the inflection point, which governs the value of the half-angle,
was found to be in some disagreement. According to the theory, this should occur at approximately
kx = 1.06, whereas CFD suggests the inflection point is located at kx = 1.46. The potential sources of this
discrepancy likely pertain not only to limitations in terms of mesh size and time-step in CFD, but also,
and likely more importantly, the theoretical assumptions.

One of the main conclusions drawn from this study is that the theoretical method used to predict
the locus location has great potential for validation of numerical free surface problems. However,
bounds of validity are yet to be determined. This forms the primary recommendation for future work.
Specifically, a method should be devised to equip the practitioner with a number indicating how
well the problem at hand is modelled. The answer to such a question can be found by performing a
systematic experimental campaign, which should feature a variety of hull forms. These must ensure
that the method is challenged with nonlinear forms to rigorously test its applicability. For example,
these would include ships with high block coefficients, nonslender forms, as well as immersed transoms,
where separation would be expected.

Another aspect requiring further attention is the manner in which the ship is accelerated up to the
target velocity. In this study, the velocity changes linearly, inducing shocks onto the ship at the initial
and target speeds. This results in longer times for convergence. To reduce the time taken to converge
the result, different acceleration profiles must be compared, such as sinusoidal velocity changes. This is
left as a piece of future work, alongside a turbulence dependence study and the relative impact of
sinkage and trim.
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