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Abstract: Underwater acoustic sensor networks (UASNs) can effectively detect and track targets and
therefore play an important role in underwater detection technology. To protect a target from being
detected by UASNs, a distributed barrage jamming layout strategy is proposed, which considers the
detection performance of UASNs as an indicator of the jamming performance. Since common indices
of detection performance often involve specific signal processing methods, the Cramér–Rao bound
(CRB) of multiple targets estimated by an UASN for distributed jammers is deduced in this paper,
which is universal for all signal processing methods. The optimization model of the distributed
jamming layout strategy is designed by maximizing the CRB to achieve the best jamming effect with
limited jammers. A heuristic algorithm is used to solve this optimization model, and a numerical
simulation shows that the optimal layout strategy for distributed jammers proposed in this paper
achieves better performance than traditional jamming layout strategies. Considering the deviation
of the position of the jammers from the ideal value due to the movement of water in a real marine
environment, this paper also analyzes the jamming effects of strategies when there is error in the
position of the jammers. The result proves the effectiveness and superiority of the proposed optimal
layout strategy in an actual environment.

Keywords: distributed jamming technology; layout strategy; underwater acoustic sensor networks;
Cramér–Rao bound

1. Introduction

In recent years, research on underwater acoustic sensor networks (UASNs) has received increasing
attention. UASNs have great application prospects in the submarine field [1–4], including the
monitoring of tsunamis and earthquakes and also military applications such as shore-based observation
and target tracking. Compared with traditional detection systems, UASNs employ multiple sonar
arrays working independently or collaboratively and can achieve direction measurements and also
tracking and identification. Therefore, UASNs play an increasingly important role in the modern
underwater detection field. With the development of related detection technologies, research on
jamming strategies for UASNs is also attracting the attention of researchers [5]. The UASN jamming
scenario usually includes several targets (marine vehicles such as ships and submarines) exposed in
the UASN detection range. In order to avoid being detected by the UASN, the targets usually emit
some noise jammers. Then the targets radiated signal received by the UASN is covered by jamming
noise and the detection performance of the detector reduces. A well-designed jamming strategy can
achieve the goal of protecting targets from being detected more effectively than other strategies and is
an important research problem in underwater jamming technology.
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Currently, the most common jamming method for underwater detection uses a single high-power
jammer at a long distance. However, this approach cannot effectively jam all of the arrays in an UASN.
A more flexible and effective jamming method should be applied in an underwater environment.
Distributed jamming technology is a new type of jamming method [6] that uses many small low-cost
jammers distributed near the receiving system that can jam multiple sensor arrays at the same time.
Compared to traditional jamming methods, distributed jamming technology can achieve better results
for UASNs.

Distributed jamming technology was first used to countermeasure radar systems. There are many
studies on distributed jamming technology for radar systems with strong anti-jamming capabilities,
such as multiple-input multiple-output (MIMO) radar [7–10] and networking radar [11]. However,
most of these studies mainly focus on the power allocation of the jammers [7,8], without considering
the influence of the locations of the distributed jammers. Due to the difference between the propagation
medium and receiving equipment of the ground-based radio sensor networks and the underwater
acoustic sensor networks [12], distributed jamming strategies in the radar field cannot be directly
applied to UASNs. The receiver structures of UASNs are different from those of radar networks,
so they have different detection methods, and the reflections of jamming effects against them are
different. Related work in an underwater environment has only appeared in recent years. Jamming
strategies for UASNs based on game theory were studied by Vadori and colleagues [13] and Xiao and
co-workers [14]. In particular, the location of the jammer was studied by Vadori and colleagues [13],
and the results showed that a jammer in some specific locations will have a stronger jamming effect on
UASNs. However, research is limited to the case of a single jammer, and there is no description of the
locations of distributed jammers.

In this paper, an optimal layout strategy for distributed jammers of UASNs is developed, which
aims to minimize the target detection performance of the sensors by optimizing the location of the
jammers, and thus protect the target from being attacked. Therefore, the detection performance of
the UASNs can be applied as an evaluation index to evaluate the jamming performance. Since the
same detection system using different signal processing methods will produce different estimation
errors when estimating the target parameters, a more universal index should be considered. In a study
by Zheng and colleagues [9], the Cramér–Rao bound (CRB) of MIMO radar was used to reflect the
jamming performance, representing the minimum mean square error that the receiving system can
achieve for an unbiased estimation of the target parameters. However, while the power allocation
strategy of a single jammer was considered in their study [9], the distributed jammers and the effect of
the jammers’ location were not taken into consideration. In this paper, the CRB of an UASN is used
to evaluate its detection accuracy. The larger the CRB, the larger the minimum estimation error that
can be achieved by the receiver and the worse the parameter estimation performance of the receiver.
Correspondingly, due to the effect of distributed jamming, the CRB of the receiver increases, which
means that the jammers weaken the receiver’s estimation performance for the target. Therefore, the
CRB can be used as an evaluation index of the jamming effect. Based on this approach, an optimal
distributed jamming layout strategy is proposed. By maximizing the CRB, the optimal locations of the
distributed jammers can be obtained. In addition, since the calculation of the CRB is not limited to a
specific signal processing method, the jamming layout strategy based on the CRB is applicable to a
variety of receiving systems.

To obtain a CRB-based optimal model of the layout strategy for distributed jammers, the CRB of
the target parameter estimation of UASNs under distributed jammers should be studied. There are
studies on the CRB in receiver systems in the presence of multiple targets, mostly under the assumption
of a uniform environmental noise field [15–18]. However, the jamming noise received by each node in
the sensor network should be nonuniform and related under the influence of distributed jammers, and
there is no relevant derivation in the existing literature. Therefore, in this paper, the CRB of UASNs in
a nonuniform noise field under a distributed jamming strategy is derived, similar to the derivation
used by Stoica and Nehorai [15] under the assumption of a uniform noise background.
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According to the obtained CRB, a CRB maximization model with the position of the jammers as a
variable is established and used as the basis of the distributed jamming optimization layout strategy.
To solve this problem, particle swarm optimization (PSO) is adopted to analyze the distributed jamming
strategy proposed in this paper through numerical experiments considering different environmental
parameters. The proposed optimal layout strategy can cause higher CRB of the UASN than other
traditional layout strategies, which means a stronger jamming effect to the UASN and stronger
protection to targets.

The remainder of the paper is organized as follows. The system model of UASNs in the presence
of multiple jamming sources is reviewed in Section 2. The CRB of UASNs for multiple target
angle estimation in a jamming environment is derived in Section 3. The optimization model of
the arrangement of distributed jammers is constructed in Section 4, and numerical results on the
performance of the proposed jamming strategy are shown in Section 5. Conclusions are drawn in
Section 6.

2. System Model

Before this section, some notational conventions used in this paper are shown in Table 1.

Table 1. Notations in this paper.

Notation Description

E[·]
the expectation operator; for deterministic signals,

E[·]= limN→∞(1/N)
∑N

t=1(·)
xH the conjugate transpose of x
xt the transpose of x
A the matrix

δm,n the Dirac delta (=1 if m = n and 0 otherwise)

The jamming model studied in this paper consists of three parts: targets, jammers, and the UASN.
Assuming they are in a two-dimensional plane, the geometric positions of the targets, jammers, and
the UASN are shown in Figure 1. Underwater detection is usually achieved by sonar sensor array
and uniform linear array (ULA) is the most common receiver. In this paper, the UASN is a sonar
receiving system composed of multiple ULAs, which is also called a networking sonar system and
widely used in underwater detection. Suppose the UASN contains L sensor arrays. Denote the center
position of the lth receiving array as (xRl, yRl), the numbers of elements in the lth array as Pl, the space
of each element in the lth array as ∆l, and the tilt angle of the lth array relative to the x-axis as γl, where
l = 1, 2, · · · , L. Suppose there are M targets and K jammers. The position of the mth target is (xTm, yTm),
and the position of the kth jammer is

(
xJk, yJk

)
, where m = 1, 2, · · · , M and k = 1, 2, · · · , K. The distances

between the mth target and the kth jammer to the lth array are

dTm
Rl =

√
(xRl − xTm)

2 + (yRl − yTm)
2 (1)

dJk
Rl =

√(
xRl − xJk

)2
+

(
yRl − yJk

)2
(2)

The angle between the mth target and the lth array (relative to the array normal direction) is

ϕm
l = arctan

(
xRl − xTm

yRl − yTm

)
+ γl (3)

Assume that the sensor arrays in Figure 1 are passive arrays and only receive radiation signals from
the target and jammers and that there are a variety of environmental noise sources in the environment.
Denote the radiation signals from the mth target as sm(t), the radiation signals from the kth jammer
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as nk(t), and the environmental noise influencing the elements of the lth array as el(t). The jamming
strategy involved in this paper is barrage jamming; that is, the target signal is covered by high-power
noise. The research in this paper is based on the following assumptions:

Firstly: The jamming noise emitted by the interference source nk(t) is Gaussian white noise with
an average value of 0 and a variance of σk. Each jammer transmits signals independently, which means
that Enk(t) = 0, Enk(t)nH

k = σkI, and Enk1
(t)nH

k2
= 0. Assume that each element in the same array

receives the same jamming power.
Secondly: All of the elements receive the same environmental noise power and are independent

of each other. The environmental noise on the lth array el(t) is Gaussian white noise with an average
value of 0 and a variance of σ0, where l = 1, 2, · · · , L, Eel(t) = 0, and Eel(t)el

H(t) = σ0I.

Figure 1. Model of the target, jammer, and sensor network.

Then the received signal model of the lth array can be expressed as

yl(t) = Al(θT)ŝ(t) + Bln̂(t) + el(t) (4)

In Equation (4), t = 1, 2, · · · , N. yl(t) ∈ CPl×1 is the noisy data vector. ŝ(t) ∈ CM×1 is the vector of
the target radiation signal amplitudes, and ŝ(t) = [s1(t), · · · , sm(t)]

t. n̂(t) ∈ CK×1 is the jamming noise,
and n̂(t) = [n1(t), · · · , nK(t)]

t. The matrix Al(θT) ∈ CPl×M has the following structure:

Al(θT) =
[√

αT1
Rl al(θT1), · · · ,

√
αTm

Rl al(θTM)
]

(5)

where αTm
Rl is the propagation loss coefficient from the mth target to the lth array and is related to dTm

Rl .
al(θTm) ∈ CPl×1 is the direction vector from the mth target to the lth array. Under the assumption of a
uniform linear array (ULA),

al(θTm) =
[
1, e j

2π∆l
λ sinθTm , · · · , e j(Pl−1)

2π∆l
λ sinθTm

]t
(6)

Under the first assumption, the matrix Bl ∈ C1×K can be expressed as

Bl =

√αJ1
Rle

j
2πdJ1

Rl
λ sinθJ1 , · · · ,

√
αJK

Rl e j
2πdJK

Rl
λ sinθJK

 (7)
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where αJk
Rl is the propagation loss from the kth jammer to the lth array, which is related to dJk

Rl. In the

case of a fixed receiver position (xRl, yRl), α
Jk
Rl depends on the position of the jammer

(
xJk, yJk

)
.

Since the jamming noise and environmental noise received by the lth array are both Gaussian
white noise and independent from each other, the superimposed noise is still Gaussian white noise,
and the total power is the sum of the power of each noise source, which can be expressed as

σ̂l =
K∑

k=1

αJk
Rlσk + σ0 (8)

where σk is the noise power emitted by the kth jammer and αJk
Rlσk is the noise power of the kth jammer

received by the lth array.
Thus far, a receiving signal model of an UASN has been provided, which contains multiple targets

and barrage jammers. The working principle of the barrage jamming method is to transmit high-power
noise and reduce the signal-to-noise ratio of the UASN, thereby increasing its parameter estimation
error. Therefore, the jamming effect depends on the noise power. According to Equations (2) and (8),
the total power of the array receiving noise is closely related to the locations of the distributed jammers,
especially in a sensor network containing multiple arrays. Therefore, the purpose of this paper is to
study the optimal layout strategy for suppressing jammers of UASNs. In the next section, the CRB for
the joint estimation of UASNs is presented to evaluate the jamming effect of distributed jammers.

3. Calculation of the CRB

The CRB is the best accuracy that a receiving system can achieve when estimating the target
parameters. The CRB is usually used to measure the receiver performance and is used as a measure
of the distributed jamming performance in this paper. In the case of constant target parameters, the
higher the CRB of the receiver, the better the jamming effect. In this section, the CRB of the receiving
sensor network for target angle estimation is derived, which considers the position of the jammers(
xJk, yJk

)
as a variable. Based on this approach, the optimal layout strategy for the distributed jammers

based on CRB maximization is presented in the next section. The CRB of a single sensor array with a
Gaussian white noise background was given by Stoica and Nehorai [15]; however, this approach cannot
be adopted directly in the model of this paper, which contains a 10-array network, where the receiving
noise of each array is different but coherent [19] (the noise power of each jammer is superposed).

The CRB of the receiving system can be written as

CRB =

E

∂2 ln L
(
y
∣∣∣ρ )

∂ρ2



−1

(9)

where ρ is a collection of unknown parameters and L
(
y
∣∣∣ρ )

is the probability density function of ρ. In
the model described above, the unknown estimated parameters of the receiving system are

ρ =
{
σ̂,R(ŝ(t)),I(ŝ(t)),θT

}
(10)

where σ̂ is the array receiving noise and is related to the position of the jammers
(
xJk, yJk

)
, the emission

noise power of the jammers σk, and the environmental noise power σ0; θT is the arrival angle of the
target signal, R(ŝ(t)) , Reŝ(t) is the real part of the target signal, and I(ŝ(t)) , Imŝ(t) is the imaginary
part of the target signal.

The probability density function of joint estimation of multiple arrays can be written as

L
(
y
∣∣∣ρ )

=
1

πMNdet(Q)MN exp

− N∑
t=1

[̃
y(t) − Ãŝ(t)

]H
Q−1

[̃
y(t) − Ãŝ(t)

] (11)
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where

Q =


σ̂1

. . .
σ̂L

 (12)

ỹ(t) = [y1(t), · · · , yL(t)]
t (13)

Ã = [A1(θT), · · · , AL(θT)]
t (14)

Dl =
∂Al(θT)

∂θT
(15)

Then according to the derivation method used by Stoica and Nehorai [15], the CRB of the sensor
network’s estimation of the target angle can be obtained (see the detailed derivation process in
Appendix A):

CRB(θT) =

Γ −

N∑
t=1

Re
[
VH

t GVt
]
−1

(16)

where

Γ =
L∑

i=1

L∑
j=1

2
σ̂iσ̂ j

 K∑
k=1

αJk
Riα

Jk
Rjσk

 N∑
t=1

Re
[
ŝH(t)Di

HDjŝ(t)
]

(17)

Vt =
L∑

i=1

L∑
j=1

2
σ̂iσ̂ j

 K∑
k=1

αJk
Riα

Jk
Rjσk

Re
[
Ai

HDjŝ(t)
]

(18)

G = H−1 (19)

H =
L∑

i=1

L∑
j=1

2
σ̂iσ̂ j

 K∑
k=1

αJk
Riα

Jk
Rjσk

Ai
HAj (20)

The CRB of the target angle estimation in Equation (15) is a function of all parameters of the target,
receivers, jammers, and the environment. In this paper, the optimal layout strategy of the jammers is
considered, thus the parameters of the target, receiver, and environment can be assumed to be fixed.
Under this assumption, the CRB in Equation (15) varies only with the noise power emitted by each
jammer σk and their locations

(
xJk, yJk

)
. In practical situations, the available jammer resources are

usually known; that is, the jammer transmit power is known. Under this condition, the CRB obtained
in this paper is only related to the locations of the jammers. Therefore, by optimizing

(
xJk, yJk

)
, the

maximum CRB can be obtained, thereby obtaining the strongest jamming effect, which can reduce the
estimation accuracy of the UASN.

4. Distributed Jamming Strategy Design

4.1. Optimization Model

According to the CRB obtained in the previous section, a distributed barrage jamming layout
strategy for an UASN is proposed, which uses the CRB of the UASN as the evaluation index of
jamming effect to find the optimal distribution of jammers, as shown in Figure 2. In this section, the
distributed barrage jamming layout strategy is transformed into a mathematical model based on CRB
maximization, where the locations of the jammers are used as a variable and the jamming performance
is reflected by the jamming noise power.
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Figure 2. Model of optimal jamming layout strategy. CRB: CraméRao bound.

In the jamming scenario studied in this paper, a self-defense jamming strategy is considered,
where the target signals are received by the receiver and the barrage jamming noise is transmitted
to the receiver. Thus, the signal-to-noise ratio of the receiver is reduced, and the estimation error of
the target is increased, which helps the target escape from the tracking of the UASN. Therefore, the
signal of the receiver should include the target radiated signal, the emission noise of each jammer,
and the environmental noise, as shown in Equation (4). A low-cost jammer is considered, which can
radiate uniform jamming noise in all directions in space, so there is no need to use an array structure to
modulate its phase. The use of such jammers can reduce the cost of the entire distributed jamming
system, so more jammers can be employed to achieve better effects with complex sensor networks.

Since the jammers are launched by the target, the available jamming resources should be known
when the jamming strategy is designed; that is, the number of jammers K, the emission jamming
noise power σk, and the location of the jammers

(
xJk, yJk

)
are known. Suppose that the jammer has

obtained some basic information about the receiver through the detection equipment of the target,
(e.g., the numbers of arrays L and the locations of the arrays (xRl, yRl)), then the CRB of the UASN can
be obtained.

Under the assumptions in Section 2, the calculation of the total power of the received noise of
each array is shown in Equation (8). The total received noise power of each array is the sum of the
jamming noise power after propagation attenuation αJk

Rlσk and the environmental noise power σ0.
Since distributed jammers are usually distributed near the receivers, the propagation attenuation
model of the jamming noise is considered as a spherical attenuation model in this paper. That is

αJk
Rl =

1(
dJk

Rl

)2 =
1(

xRl − xJk
)2
+

(
yRl − yJk

)2 (21)

Nevertheless, the propagation attenuation model of jamming noise depends on the actual marine
environment and the jammer and receivers. Therefore, other propagation attenuation models can be
used according to the actual situation when designing a distributed jamming layout strategy.

In Equation (21), αJk
Rl depends on the distance between the jammers and the receiver dJk

Rl. When the
receiver distance is known, the total power of the receiver noise is only related to the locations of the
jammers

(
xJk, yJk

)
. In polar coordinates, the locations can be expressed as

(
rk sin θJk , rk cos θJk

)
, where

rk is the distance from the kth jammer to the origin of the coordinates. Suppose the kth jammer is sent
by the mth target; the geometry is shown in Figure 3. Usually, the distance between jammers and the
target dJk

Tm is known; it is the distance travelled by the jammer from the target and always equal to the
longest distance that the jammer can travel (to be closer to the receiver to get the maximum jamming
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performance). So dJk
Tm and rk can be different for different jammers, and the latter can be calculated

from the geometry in Equation (22):√(
rk sin θJk − xTm

)2
+

(
rk cos θJk − yTm

)2
= dJk

Tm (22)

Since rk can be calculated from the known parameters, the angle of the jammer is the only variable
in CRB (Equation (16)). Therefore, the optimal location layout strategy for the distributed jammers can
be expressed as the optimal angle layout strategy, which depends on θJk.

Figure 3. Geometry of the mth target and the kth jammer.

After clarifying the parameters of each component in the jamming scenario, an optimization
model of the distributed jammer layout strategy based on CRB maximization is designed. The CRB of
the UASN for the target angle estimation is given in Equation (16). For M targets, the resulting CRB is
an M×M matrix, and the diagonal elements of the matrix are the estimated variances of the angles of
each target. 

CθT1 =
[
CRBθT

]
1,1

CθT2 =
[
CRBθT

]
2,2

· · ·

CθTm =
[
CRBθT

]
M,M

(23)

By maximizing the weighted average CRB for the estimation of each target angle, the optimal
angle of the jammers can be obtained

max
θJ1,··· ,θJ2

M∑
m=1

λmCm

s.t. σ̂l =
K∑

k=1
αJk

Rlσk + σ0

αJk
Rl =

1

(xRl−xJk)
2
+(yRl−yJk)

2(
xJk, yJk

)
=

(
rk sin θJk , rk cos θJk

)
(24)

where λ1, · · · ,λM are regularization factors that can be determined according to the importance of the
corresponding target.

4.2. Problem Solution

The optimal layout strategy model for distributed jammers provided in this paper is based on
a calculation of the CRB. Since the calculation formula of the CRB is very complicated, integrating
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various parameters of the receiving system and the received system, and highly nonconvex, heuristic
algorithms can be used. Common heuristic algorithms include simulated annealing, greedy algorithms,
tabu search, ant colony optimization, and genetic algorithms [20–25]. This paper uses particle swarm
optimization (PSO) [24,25] to solve the given optimization problem. PSO is an iterative global
optimization algorithm with simple parameters and an easy implementation, which is widely used in
various complex nonconvex function optimization problems.

PSO is an evolutionary computing technology that was proposed by Eberhart and Kennedy in
1995 [25]. PSO simulates the flight and foraging behavior of bird swarms; it is a simplified model based
on swarm intelligence. Each optimization problem solution is imagined as a bird, called a particle.
All particles are searched in a given D-dimensional space, and the search fitness value is calculated

by a given fitness function to judge the current search position x(n)i , where x(n)i =
[
x(n)i1 , · · · , x(n)iD

]
.

Each particle records the best position pbesti
(n) searched so far and uses a speed v(n)

i to determine

the direction and step size of the next iteration, where pbesti
(n) =

[
pbesti1

(n), · · · , pbestiD
(n)

]
and

v(n)
i =

[
v(n)i1 , · · · , v(n)iD

]
. The fitness values of all particles are compared to obtain the best position

acquired by the population gbest(n), where gbest(n) =
[
gbest1

(n), · · · , gbestd
(n)

]
. The iteration formulas

of the speed in each dimension v(n)id and the position in each dimension x(n)id in the PSO algorithm are

v(n)
id = wv(n−1)

id + c1r1

(
pbestid − x(n−1)

id

)
+ c2r2

(
gbestd

(n−1)
− x(n−1)

id

)
x(n)id = x(n−1)

id + v(n−1)
id

(25)

where c1 and c2 are the acceleration constants, r1 and r2 are random functions, and w is the inertia
weight. The specific parameter settings are described in detail by Kennedy and Eberhart [25] and Poli
and colleagues [26].

In the optimization model of this paper, the final solution should be the angles of K jammers.
Therefore, the dimension of each particle should be set as D = K, and the position of each particle
should be set as xid = θJk . According to the block diagram of the PSO algorithm (Figure 4), the optimal
location of each jammer can be obtained.

Figure 4. Flow chart of particle swarm optimization (PSO).
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5. Numerical Experiments

In this section, the effectiveness of the proposed jamming strategy is analyzed through numerical
simulation experiments. The jamming scenario in this paper includes an UASN (consisting of three
ULAs), targets, distributed jammers, and environmental noise. Therefore, different array parameters,
environmental noise, and target parameters are considered to study their impact on the optimal
placement angle of the distributed jammers. In addition, different layout strategies are compared,
including (1) concentrated (all of the jammers are concentrated using the array angle with better
detection performance); (2) random (the jammers are randomly distributed in all array directions);
(3) uniform (the jammers are distributed between array angles of arrays at equal intervals); and
(4) optimized (the proposed layout strategy in this paper) layouts.

5.1. Influence of the Sensor Networks

First, the influence of the sensor network on the optimal distribution angle should be considered.
The array angle, the distance between the array and the target, and the number of array elements in
each array are set as variables, because all three parameters will affect the target detection performance
of the sensor network. In the simulations in this section, a single target scenario is considered in which
the target’s location is set to (0, 0), and the target radiated signal is assumed to be Gaussian white noise
with a power of 110 dB. Meanwhile, three arrays, whose normal directions point to the target, and the
environmental noise received by the array elements, which is Gaussian white noise with a power of
50 dB, compose the sensor network at the same time. The jammer, which is 2000 m away from the
target, emits Gaussian white noise with a power of 110 dB. The tables below show the results of the
following three simulations under different scenarios:

(1) The distribution angle (relative to the target) of each array is used as a variable. The distance of
each array to the target is 2500 m, and all the arrays are eight-element ULAs;

(2) The distance of each array to the target is used as a variable. The angles of the arrays are 10◦, 30◦,
and 50◦, and all the arrays are eight-element ULAs;

(3) The element numbers of each array are used as a variable. The distance of each array to the target
is 2500 m, the angles of the arrays are 10◦, 30◦, and 50◦, and all the arrays are eight-element ULAs.

The first simulation of this section assumes that each array in the sensor network has the same
array structure and the same distance to the target, which means that every array has the same target
detection performance. From the calculation results of the three jammers in Table 2, it can be seen that
when the detection performance of each array is the same, the jammers tend to be placed between each
array and the target. The calculation results of the six jammers indicate the same conclusion. When the
jammers cannot be evenly distributed among the array element angles (the number of jammers cannot
be divided by the number of arrays), such as the case of four jammers, it can be found that three of the
jammers are still distributed on the lines between each array and the target. The other jammer can be
placed on any of the array elements randomly.

Table 2. Optimized angles of the jammers for different numbers of jammers with respect to the
three-array networks with different angles in a single-target scene.

Angles of the Arrays (in ◦) Angles of the Jammers (in ◦)

3 arrays 3 jammers 4 jammers 6 jammers

(10, 30, 50) (11.8, 29.9, 48.4) (11.0, 29.8, 30.1, 48.7) (11.8, 12.3, 29.8, 29.9, 47.8, 48.4)
(10, 40, 70) (10.6, 40.0, 69.0) (10.5, 40.0, 40.1, 69.4) (10.9, 11.3, 39.8, 39.9, 68.9, 69.2)
(0, 20, 60) (2.1, 18.2, 59.6) (1.9, 17.5, 58.6, 59.3) (2.0, 2.3, 17.9, 18.2, 59.5, 59.7)
(0, 20, 80) (2.5, 17.9, 80.0) (1.8, 17.7, 79.5, 79.7) (2.0, 2.1, 17.9, 18.8, 79.9, 80.4)

The second simulation of this section assumes that each array in the UASN has the same array
structure and fixed angles, so the closer the array is to the target, the better the detection performance.
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From the calculation results of the three jammers in Table 3, it can be seen that when the differences
among the distances of the arrays are small, the jammers still tend to be distributed in the same way as
the array angles. However, there also exists a tendency for the jammers to gather at arrays that have
stronger detection performance. The tendency is more pronounced when the differences among the
distances of the arrays are larger. When the difference reaches a certain level, all of the jammers will
focus on the array with the strongest detection performance, which means that the jamming system is
equivalent to a centralized jamming system. The case with four jammers produces similar results, and
when the detection performance of each array is different, the remaining jammers after the equalization
will focus on the array angle with the strongest detection performance.

Table 3. Optimized angles of the jammers for different numbers of jammers with respect to the
three-array networks with different distances in a single-target scene.

Angles of the Arrays (in ◦) Distances of Arrays
(in m) Angles of the Jammers (in ◦)

3 arrays 3 jammers 4 jammers

(10, 30, 50)

(2600, 2500, 2600) (13.1, 30.0, 46.8) (11.9, 29.9, 30.4, 47.8)
(2700, 2500, 2700) (15.8, 29.7, 44.5) (13.4, 30.1, 30.1, 46.7)
(2700, 2500, 2900) (15.1, 31.7, 31.9) (13.6, 31.2, 31.5, 31.7)
(2900, 2500, 2900) (29.8, 30.0, 30.1) (29.6, 30.0, 30.0, 30.2)

The third simulation of this section assumes that the distance from each array to the target in
the UASN is equal and the angles are fixed. The more elements the array contains, the better the
detection performance. The results in Table 4 are similar to those in Table 3. As the difference in the
array detection performance increases, the angles of the jammers tend to be distributed evenly across
the arrays and tend to be concentrated at arrays with the highest performance.

Table 4. Optimized angles of the jammers for different numbers of jammers with respect to the
three-array networks with different numbers of elements in a single-target scene.

Angles of the Arrays (in ◦) Numbers of
Elements Angles of the Jammers (in ◦)

3 arrays 3 jammers 4 jammers

(10, 30, 50)

(8, 10, 8) (14.2, 30.2, 46.1) (12.3, 29.7, 30.0, 48.1)
(8, 11, 8) (16.4, 30.1, 43.4) (13.3, 29.9, 30.3, 46.9)

(8, 11, 10) (27.3, 27.5, 48.1) (13.3, 31.1, 31.4, 48.5)
(8, 12, 8) (30.0, 30.0, 30.1) (27.0, 27.3, 27.4, 46.0)

5.2. Influence of Environmental Noise

This section considers the influence of environmental noise on the optimal angles of distributed
jammers, and the simulation scenario is the same as in Section 5.1. The UASN consists of three
8-element ULAs, and the angles of the array relative to the target are fixed to (10◦, 30◦, 50◦). Assuming
that the distance from each array to the target is fixed at (2600 m, 2500 m, 2600 m), in this sensor
network, the array at 30◦ has the strongest detection performance. In the second case, the distance
from each array to the target is fixed to (2500 m, 2500 m, 2500 m), and then the receiving performance
of each array in this sensor network is the same. Table 5 shows the results of the optimal jamming
angles under environmental noise with different values of the variance σ0. Another case adopts
the centralized layout strategy, random layout strategy, uniform layout strategy, and optimal layout
strategy under environmental noise with different variances. The results of the second case are all
indicated in Figure 5.
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Table 5. Optimized angles of three jammers with respect to the three-array networks under
environmental noise with different variances in a single-target scene.

Environmental Noise Variance
σ0 (in dB)

Angles of the Jammers in the
First Situation (in ◦)

Angles of the Jammers in the
Second Situation (in ◦)

40 (12.9, 29.8, 47.3) (11.1, 30.0, 48.1)
50 (13.2, 29.9, 46.9) (11.8, 30.2, 48.2)
60 (29.9, 30.1, 30.2) (12.4, 30.3, 47.8)
70 (29.9, 30.0, 30.2) (30.1, 30.1, 30.2)

Figure 5. Cramér–Rao bound (CRB) under environmental noise with different variances for different
strategies in a single-target scene.

In the first case, the simulation assumes that the array with the 30◦ direction is closest to the
target, so it has the strongest detection performance. Table 5 shows that when the variance of the
environmental noise is small, the optimal angles of the jammers are consistent with the conclusion in
Section 5.1 (i.e., they are close to the array angles, and when the variance of the environmental noise
gradually increases, the optimal angles of the jammers tend to become compact). The second case
shows that regardless of whether the array detection performance is the same, the optimal angle of each
jammer is concentrated in the array in the middle of the sensor network as long as the environmental
variance is large enough.

Figure 5 indicates that the proposed optimization strategy has a higher CRB of the target angle
estimation than the other three strategies, especially in the case of low environmental noise. The CRBs
obtained by the four strategies are not very different under high environmental noise, because the noise
signal affecting the receiver in this case is mainly environmental noise. Therefore, the proposed optimal
distributed jamming layout strategy has greater advantages in the case of low environmental noise.

5.3. Multitarget Scene

In this section, the optimal layout strategy for distributed jammers in a multitarget scenario is
considered, which contains three targets with the same power as the radiation signal and are located
at (0,0), (2000,0), and (0,1000) (the unit is m). Assuming that every target is equally important, the
regularization factor in Equation (23) is λ1 = λ2 = λ3 = 1/3. Similarly, three eight-element ULAs are
used. The angle of each array with respect to the target is fixed at (10◦, 30◦, 50◦), and the distance from
each array to the target is fixed at (2500 m, 2500 m, 2500 m). Six jammers with an emission noise power
of 110 dB are used. Based on the jamming scenario in Figure 1, the optimal angles for σ0 = 30 dB
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are indicated in Figure 6. Then, in the case of σ0 = 30 ∼ 60 dB, four different jamming strategies are
adopted, and the CRBs are indicated in Figure 7.

Figure 6. Locations of the elements in the model of a multitarget scene.

Figure 7. CRB under different environmental noise for different strategies in a multitarget scene.

Figure 6 shows that in the case of multiple targets, the jammers still tend to be distributed according
to the array angles. Since distributed jamming is usually a short-range jamming method, the optimal
distribution of the angles of the jammers has a greater relationship with the structure of the sensor
network. Figure 7 shows the CRB of the target angle estimation of the sensor network obtained by
using the concentrated layout strategy, random layout strategy, uniform layout strategy, and optimal
layout strategy under different environmental noise conditions; from the results, we find that the
proposed strategy has the highest CRB among these strategies, which means it has the strongest impact
on the receiver’s parameter estimation performance. That is, the proposed optimal strategy can also
achieve better jamming performance than the other strategies in a multitarget scenario.
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5.4. Analysis of the Position Error

There is strong turbulence in a real marine environment, which can have a non-negligible effect
on the position of an underwater combat platform. Thus, the real position of the jammers will deviate
greatly from the original position. In this section, the location error of the jammers is discussed to verify
the effectiveness of the proposed optimized layout strategy. The multitarget scenario is considered, and
the parameters of the targets and UASN in this section are the same as those in Section 5.3. Assuming
that the distance error of the jammer caused by factors such as ocean turbulence and wind follows a
normal distribution with a mean of 0 and a standard deviation of 30 m, the angle error of the jammer
follows a normal distribution with a mean of 0 and a standard deviation of 3◦. Due to the errors,
the actual position of the jammer will fluctuate around the calculated value, so the CRB calculated
from the actual position will also fluctuate near the theoretical value. Figure 8 shows the possible
locations of jammers for σ0 = 30 dB in the presence of errors. The fluctuation range of the CRB
obtained by the proposed optimized layout strategy in the presence of location errors is indicated in
Figure 9. Since the uniform layout strategy achieves better jamming performance than the random
layout strategy and concentrated layout strategy, the uniform layout strategy is used for a comparison
with the optimized strategy.

Figure 8. Range of the real locations of the jammers.

Figure 8 shows obvious error in the location of the jammers compared with the calculated optimal
location, and Figure 9 presents the calculated CRB under this error condition. It is obvious that the
proposed optimal layout strategy achieves a better performance than the uniform layout strategy.
The lower bound of the CRB fluctuation range caused by the position error of the jammers with the
optimized strategy is higher than the upper bound of the CRB fluctuation range with the uniform
strategy for most environmental noise conditions. The CRB fluctuation range is roughly the same for
both the optimized strategy and the uniform strategy, so it can be inferred that for the random layout
strategy and the centralized layout strategy, the CRB fluctuation range is also roughly the same and
lower. Thus, the proposed optimal strategy still achieves the best jamming performance when there is
a deviation in the real location of the jammers. It can also be found that as the environmental noise
increases, the fluctuation in the CRB caused by the position error of the jammers decreases, which
means that the real position of the jammers will not affect the jamming effect. This is because the main
barrage effect for the UASN comes from environmental noise in this case. From the experiment in this
section, a situation close to the real marine environment is considered. The result has proven that the
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optimal strategy proposed in this paper still achieves a significantly better jamming performance even
in the case of uncertain errors, which verifies its practicability.

Figure 9. CRB under environmental noise with different variances.

6. Conclusions

In this paper, the optimal layout strategy for distributed barrage jammers against UASNs is
studied. The CRB of UASNs estimating target angles in the case of multiple targets and multiple
jammers is derived, which uses the angle of the jammers as a variable. Based on this result, a distributed
jamming optimization strategy is proposed, which uses the maximum CRB as the cost function and
aims to obtain the optimal distribution of the jammers. PSO algorithm is used to solve this complex
and nonconvex model. Numerical experiments are executed to compare the jamming strategy with
three traditional strategies. The results show that the proposed optimal layout strategy for distributed
jammers can achieve stronger jamming effects than the other strategies. The position error of the
jammers caused by turbulence and a hurricane in a real ocean is considered, and the result shows that
the proposed optimal layout strategy still performs better than the other strategies under obvious
error conditions.

Future research will focus on more efficient jamming strategies to adapt to complex real-world
scenarios, including using the mix jamming method of barrage jammers and deceptive jammers and
increasing the speed of algorithm operations.
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Appendix A

As shown in Equation (11), the joint likelihood function of the data received by UASNs is

L
(
y
∣∣∣ρ )

=
1

πMNdet(Q)MN exp

− N∑
t=1

[̃
y(t) − Ãŝ(t)

]H
Q−1

[̃
y(t) − Ãŝ(t)

] (A1)

Thus, the log-likelihood function is

In L = const −mN ln
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l=1

σ̂l −

N∑
t=1

L∑
l=1

1
σ̂l
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Denote gl(t) = Bln̂(t) + e(t), as the total noise received by the lth sensor array. The derivatives of
Equation (A2) with respect to R(ŝ(t)), I(ŝ(t)), and θT are
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∂R(ŝ(t))

=
L∑

l=1

2
σ̂l

Re
[
Al

Hgl(t)
]

t = 1, · · · · ·, N (A3)

∂ ln L
∂I(ŝ(t))
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∂I(ŝ(n))

]t

= −
L∑

i=1

L∑
j=1

2
σ̂iσ̂ j

 K∑
k=1

αJk
Riα

Jk
Rjσk

Re
[
Ai

HAj
]
δm,n (A7)

E
[
∂ ln L

∂R(ŝ(t))
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where m = 1, · · · · ·, N and n = 1, · · · · ·, N. δm,n is the Dirac delta function (δm,n = 1 if m = n and δm,n = 0
otherwise).
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Introduce the following notations
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The analysis of the CRB matrix is the same as in the study by Xiao and colleagues [14], so the CRB
can be expressed as

CRB(θ) =

Γ −

N∑
t=1

Re
[
VH

t GVt
]
−1

(A15)
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