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Abstract: The sea surface temperature (SST) is an important parameter of the energy balance on
the Earth’s surface. SST prediction is crucial to marine production, marine protection, and climate
prediction. However, the current SST prediction model still has low precision and poor stability.
In this study, a medium and long-term SST prediction model is designed on the basis of the gated
recurrent unit (GRU) neural network algorithm. This model captures the SST time regularity by using
the GRU layer and outputs the predicted results through the fully connected layer. The Bohai Sea,
which is characterized by a large annual temperature difference, is selected as the study area, and
the SSTs on different time scales (monthly and quarterly) are used to verify the practicability and
stability of the model. The results show that the designed SST prediction model can efficiently fit the
results of the real sea surface temperature, and the correlation coefficient is above 0.98. Regardless of
whether monthly or quarterly data are used, the proposed network model performs better than long
short-term memory in terms of stability and accuracy when the length of the prediction increases.
The root mean square error and mean absolute error of the predicted SST are mostly within 0–2.5 ◦C.
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1. Introduction

The sea surface temperature (SST) is an important parameter of the energy balance on the Earth’s
surface, and it plays a fundamental role in energy, momentum, and water exchange between the ocean
and atmosphere [1–3]. SST changes have an immeasurable effect on global climate and biological
systems [4–6]. Therefore, the timely prediction of SST is crucial in many application fields, such as
climate prediction, marine fishery production, and marine environmental protection [7–9]. However,
the prediction accuracy is unsatisfactory due to the influence of many uncertain factors, such as heat
flux, radiation, and diurnal wind near the sea surface [10].

At present, SST prediction is mainly divided into physics-based numerical prediction [11,12]
and data-driven prediction methods. The former achieves SST prediction by modeling the physical
environment. The accuracy of this method depends on the degree of refinement of the model
parameters. The more refined the physical environment parameters, the higher the prediction accuracy;
however, various problems, such as increased computational complexity and difficulty in obtaining
many parameters, also emerge. The seasonal prediction based on a physics-based numerical model
has satisfactory performance and prediction accuracy, but it performs poorly for the prediction of long
time-series data at a smaller scale. Data-driven prediction methods have gradually developed into
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traditional statistical methods, machine learning, and artificial neural network learning algorithms.
Traditional statistical methods include regression analysis [13], Markov model [14] and harmonic
analysis [15]. Although these methods can predict the trend of SST to a certain extent, the overall
prediction accuracy is low, and the length of prediction time is limited. When the forecast length is nine
in the monthly data, these values basically reach their maximum prediction length. Shallow machine
learning methods, such as the support vector machine [16,17] and genetic algorithm [18,19], have been
applied to SST prediction. These methods can avoid the multiple minima problem associated with
nonlinear optimization and have better prediction accuracy than the traditional prediction method.
However, the performance of these machine learning methods depends on a set of parameters that
appear in the related learning problem. In this way, the choice of appropriate values is a difficult task
that demands the application of structured methods.

With the continuous innovation of deep learning techniques and algorithms, these methods have
been widely used in SST prediction because of their powerful learning and modeling capabilities [20,21].
The recurrent neural network (RNN) can effectively manage time series, but when it processes long
time-series data, a serious problem of gradient disappearance or explosion arises. Long short-term
memory (LSTM) is a special recursive neural network that can preserve and remove data information
by adding “gate” settings and a “cell state” to solve the gradient explosion or disappearance of back
propagation. The approach has been proven to perform better in processing time data than RNN [22].
LSTM can avoid the problem of gradient explosion and dissipation and solve the problem of long-term
dependence. The root mean square error (RMSE) of the daily data for a prediction length of 30
days is within 1.2 ◦C. The CFCC–LSTM (combined full convolution LSTM and convolution neural
network) model is an end-to-end spatiotemporal sequence prediction method which was proposed by
Yang [23] on the basis of LSTM. The spatial information of the image sequences can be considered
in this CFCC-LSTM model to improve the prediction performance. The RMSE of daily data for a
prediction length of 30 days is within 0.75 ◦C, which is obviously better than LSTM. Besides, to
decrease the prediction error of the LSTM model, some scholars use a hybrid mechanism combining
different models to predict time-series data and achieve improved results [24–26]. However, problems
of over-fitting and under-fitting remain due to the high network complexity. The gated recurrent unit
(GRU) [27] is a variant of LSTM that maintains the advantages of LSTM for memorizing long-term
sequences while simplifying the structure, reducing the training parameters, and alleviating the over
and under-fitting phenomena of the network. Although GRU has played a role in acoustic feature
extraction [28], network security [29], text information extraction [30] and other fields, to the best of
our knowledge, this study is the first to attempt to use GRU to solve the problem of SST prediction.

The main contributions of this paper are the following: (1) a fully connected neural network model
based on GRU is designed to predict SST with high accuracy over the medium and long term. This
model uses the GRU layer to capture the SST time regularity and the fully connected layer to output the
prediction results; (2) the effectiveness and stability of the proposed method are verified by selecting a
sea area with a large temperature fluctuation and conducting prediction tests on the SST product data
of remote sensing radiometers with long time-series on monthly and quarterly time scales.

The remainder of this article is organized as follows: Section 2 describes the study area and
time-series SST data obtained from the satellite used in this study. Section 3 presents the proposed
network model for SST prediction. Section 4 provides the experimental results and discussion. Finally,
Section 5 summarizes the paper.

2. Materials and Methods

2.1. Study Area

Testing the stability and validity of the prediction algorithm to ensure that the annual temperature
fluctuation varies greatly is an important consideration. The Bohai Sea is located northeast of China,
between latitude 37◦07′ N–40◦56′ N and longitude 117◦33′ E–122◦08′ E. The eastern side of the Bohai
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Sea is adjacent to the Yellow Sea, by the boundary between the Laotie Mountain of the Liaodong
Peninsula and the Penglai Mountain at the northern end of the Shandong Peninsula; the other three
sides are surrounded by land. The Bohai Sea has the largest temperature difference and highest latitude
of the four seas in China. Therefore, this study uses the Bohai Sea, with large temperature changes, as
the study area. From this sea area, six sites are selected for prediction research. Figure 1 shows the
study area.
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Figure 1. Study area in the Bohai Sea. The six selected sites are as follows: P1 (118.625◦ E, 38.375◦ N),
P2 (119.125◦ E, 38.875◦ N), P3 (119.625◦ E, 37.375◦ N), P4 (119.625◦ E, 39.375◦ N), P5 (120.125◦ E, 38.375◦

N), and P6 (120.625◦ E, 39.375◦ N).

2.2. Data Source

The U.S. National Oceanic and Atmospheric Administration 1/4◦ daily Optimum Interpolation
(OISST) is used in this study. This resource contains a global grid SST formed by combining observation
data from different platforms, such as satellites, ships, and buoys. The OISST dataset consists of two
types of data, namely from the Advanced Very-High-Resolution Radiometer (AVHRR) and Advanced
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Since the AMSR-E
stopped working in October 2011, the AVHRR-only dataset with a longer time series than AMSR-E
was adopted in this study. The dataset covers the global daily SST values from 89.975◦S to 89.875◦N
and 0.125◦E to 359.875◦E from September 1, 1981 to the present. This study selects the site data from
January 1982 to December 2019 and reorganizes the data on the basis of the monthly and seasonal
averages. Therefore, each site from P1 to P6, as shown in Figure 1, generates 456 items of monthly data
from January 1982 to December 2019 and 152 items of quarterly data from spring 1982 to winter 2019.
Table 1 shows the basic statistical characteristics of the data used in the experiments.
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Table 1. Statistics of the sea surface temperature (SST) time series at P1 to P6 from Januaray 1982 to
December 2019 (the unit is ◦C).

Site
Month Quarter

Mean Coldest Warmest Std.dev Coldest Warmest Std.dev

P1 13.12 −0.44 27.05 8.48 2.18 24.09 7.69
P2 12.99 0.22 26.51 8.16 2.65 23.13 7.46
P3 13.59 −0.31 28.59 8.90 1.83 26.06 8.09
P4 12.86 −0.22 26.57 8.33 2.11 23.36 7.62
P5 13.13 0.66 26.79 7.86 3.13 23.21 7.19
P6 12.53 0.26 25.82 7.95 2.75 22.66 7.29

The headings “Mean”, “Coldest”, and “Warmest” represent the mean value, minimum value, and maximum value
for monthly or quarterly data, respectively. Std.dev represents the standard deviation for monthly or quarterly data.
There is no subitem “Mean” for quarter data in Table 1 because the mean values of all quarterly data are the same
as those of monthly data, which are the average temperature of the region for 38 years. Thus, in order to avoid
duplication, only the means of monthly data are shown in the table.

3. Methods

A neural network model for the high-precision prediction of medium and long-term SSTs based
on GRU and a fully connected layer is constructed. The sequential prediction of the time series of SST
data is performed by observing and learning the regular characteristics of historical data over a certain
time window. The time window is moved forward to make predictions for the next time node until all
training data have been covered. The number of trainings can be set to repeat this learning process,
enhancing the accuracy and generalization of the predictive model.

3.1. GRU Neural Network Model

GRU is a variant of LSTM. LSTM adds three gate functions on the basis of the RNN network,
namely the input, forgetting, and output gates to the control input, memory, and output values,
respectively. However, only two gates are present in the GRU model: update and reset gates. Figure 2
presents the specific structure, where σ is the gating function.
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Figure 2. Structure diagram of long short-term memory (LSTM) and gated recurrent unit (GRU)
methods. The upper part is LSTM [25] and the lower part is GRU [27].
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GRU combines the forgetting and input gates of LSTM into a single update gate. This process
effectively reduces the amount of calculation and the probability of gradient explosion or disappearance.
The specific working mechanism is as follows [27]:

Zt = σ(Wz·[ht−1, xt] + bz), (1)

rt = σ(Wr·[ht−1, xt] + br), (2)

h′t = tanh(W·[rt ∗ ht−1, xt] + bh), (3)

ht = (1− zt) ∗ ht−1 + zt ∗ h′t, (4)

yt = σ(W0·ht), (5)

where Zt and rt represent the update and reset gates, respectively. Wz, Wr, W, and W are the weight
parameters of the input data, ht−1 is the output of the previous layer, and xt is the input of the current
layer. bz, br, and bh are the biases, σ is the sigmoid function, and tanh is used to help adjust the value
flowing through the network. The output values after σ and tanh functions are controlled between (0,
1) and (−1, 1), respectively.

After obtaining the final output, the loss value can be calculated by the loss function:

Et =
1
2

(
yd − y0

t

)2
, (6)

E =
∑T

t=1
Et, (7)

where Et is the loss of a single sample at a certain time, yd is the real label data, y0
t is the output value

of the first iteration, and E is the loss of a single sample at all times.
The back-error propagation algorithm is used to learn the network, so the partial derivative of the

loss function for each parameter must be calculated. After calculating the partial derivative of each
parameter, the parameters can be updated and the loss convergence can be determined iteratively.

3.2. Construction of GRU Model for Medium- and Long-term SST Prediction

On the basis of the GRU network structure, we build a six-layer neural network model, which
includes one input layer, three GRU layers, and two dense layers. Figure 3 displays the predictive
model framework structure. The input data are the time series of the SST. In this experiment, the time
series of monthly and quarterly scales are used to verify the model, and the amount of data fed into
the network at one time is determined by the length of the set learning sequence and the number
of batch trainings. On the basis of the variation law of SST, the lengths of learning sequences used
in monthly and quarterly trainings are set to 12 and 4, respectively. The number of neurons in each
layer of the three GRU layers is 100, and the numbers of neurons in the two dense layers are 10 and 1.
The dense layers use the sigmoid and linear activation functions, respectively, to optimize the output.
The dropout with 0.2 is used behind the first and third layers of the GRU neural network layer.



J. Mar. Sci. Eng. 2020, 8, 249 6 of 15

J. Mar. Sci. Eng. 2020, 8, x  5 of 14 

 

𝑍𝑡 = σ(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) , (1) 

𝑟𝑡 = σ(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟), (2) 

ℎ𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊 ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ), (3) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡
′ , (4) 

𝑦𝑡 = σ(𝑊0 ∙ ℎ𝑡), (5) 

where Zt and rt represent the update and reset gates, respectively. 𝑊𝑧, 𝑊𝑟, 𝑊, and W are the weight 

parameters of the input data, ℎ𝑡−1 is the output of the previous layer, and 𝑥𝑡 is the input of the 

current layer. 𝑏𝑧, 𝑏𝑟, and 𝑏ℎ are the biases, 𝜎 is the sigmoid function, and tanh is used to help 

adjust the value flowing through the network. The output values after 𝜎 and tanh functions are 

controlled between (0, 1) and (−1, 1), respectively. 

After obtaining the final output, the loss value can be calculated by the loss function:  

𝐸𝑡 =
1

2
(𝑦𝑑 − 𝑦𝑡

0)2, (6) 

𝐸 = ∑ 𝐸𝑡
𝑇
𝑡=1  , (7) 

where Et is the loss of a single sample at a certain time, 𝑦𝑑  is the real label data, 𝑦𝑡
0 is the output 

value of the first iteration, and 𝐸 is the loss of a single sample at all times. 

The back-error propagation algorithm is used to learn the network, so the partial derivative of 

the loss function for each parameter must be calculated. After calculating the partial derivative of 

each parameter, the parameters can be updated and the loss convergence can be determined 

iteratively. 

3.2. Construction of GRU Model for Medium- and Long-term SST Prediction 

On the basis of the GRU network structure, we build a six-layer neural network model, which 

includes one input layer, three GRU layers, and two dense layers. Figure 3 displays the predictive 

model framework structure. The input data are the time series of the SST. In this experiment, the 

time series of monthly and quarterly scales are used to verify the model, and the amount of data fed 

into the network at one time is determined by the length of the set learning sequence and the 

number of batch trainings. On the basis of the variation law of SST, the lengths of learning 

sequences used in monthly and quarterly trainings are set to 12 and 4, respectively. The number of 

neurons in each layer of the three GRU layers is 100, and the numbers of neurons in the two dense 

layers are 10 and 1. The dense layers use the sigmoid and linear activation functions, respectively, 

to optimize the output. The dropout with 0.2 is used behind the first and third layers of the GRU 

neural network layer. 

 

Figure 3. Model structure used in this study for medium and long-term SST prediction. 

3.3. Data Preprocessing 

Dropout

0.2

GRU Cell

GRU Cell

GRU Cell

GRU Cell

GRU Cell

GRU Cell

… …

GRU Layer

100 

GRU Layer

100 

Dropout

0.2

GRU Cell

GRU Cell

GRU Cell

…

GRU Layer

100 

…

Dense

Sigmoid

10

Dense

Linear

1

t1

SST sequence

…

t2

t3

tn

tm

tn+1

…

Input Layer

tn+2

Figure 3. Model structure used in this study for medium and long-term SST prediction.

3.3. Data Preprocessing

The 38-year history of SST observation data is sorted on the basis of two different scales: monthly
and quarterly. They are fed into the established GRU SST medium and long-term prediction models.
The monthly average data refer to the average daily SST data for each month. From January 1982 to
December 2019, 456 items of monthly time series data are used. The SST in spring is defined as the
average of three months (March, April, and May); summer is the average of June, July, and August;
autumn is the average of September, October, and November; and winter is the average of December
and January and February of the following year. A total of 152 items of quarterly time series data
are used. Normalizing the SST time series data of each site is beneficial for accelerating network
convergence and preventing under-fitting during network training.

xnorm =
x− xmin

xmax − xmin
, (8)

where xnorm is the result after normalization, x is the SST value before normalization, and xmax and xmin
are the maximum and minimum SST values in all time-series data, respectively.

The divisions of training, testing and validating datasets are different according to the predicted
length. However, this generally complies with the following equation:

Lall = Ltraining + Ltesting + Lvalidating = Ltraining + Ltesting + Lprediction (9)

where Lall is data for all series lengths. Ltraining, Ltesting, and Lvalidating represent the lengths of training,
testing, and validating data, respectively. It should be noted that the length of the validating dataset
is our prediction length; that is, Lvalidating = Lprediction. Meanwhile, the values of the training data and
testing data are 85% and 15%, respectively.

4. Results and Discussion

4.1. Experiment Setup

The established neural network model is implemented by Keras under the background of
Tensorflow 1.6 (GPU). The GPU is an NVIDIA GTX 1080 graphics card with 8 GB video memory.

Three evaluation indexes, namely the root mean square error (RMSE), mean absolute error (MAE),
and correlation coefficient (r), are used for the SST prediction results in this study, and they are defined
as follows:

RMSE =

√
1
n

∑n

i=1

(
yi

pre − yi
true

)2
, (10)

MAE =
1
n

∑n

i=1

∣∣∣yi
pre − yi

true

∣∣∣, (11)
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r =

∑n
i=1

(
yi

pre − ypre
)(

yi
true − ytrue

)
√∑n

i=1

(
yi

pre − ypre
)2

√∑n
i=1

(
yi

true − ytrue
)2

, (12)

where yi
pre is the predicted SST value, yi

true is the true SST value, ypre is the mean value of the predicted
SST value, and ytrue is the mean value of the true SST value.

On the basis of the annual periodic change rule of SST, the time window length of monthly data is
set as 12, and the time window length of quarterly data is set as 4. By using monthly data, we make
different predictions for the last 4, 6, 12, 18, and 24 months. By using quarterly data, we make different
predictions for the last 2, 4, 6, and 8 quarters.

The monthly and quarterly data used in this paper are shown in the Figure 4 below.J. Mar. Sci. Eng. 2020, 8, x  7 of 14 
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Figure 4. Monthly and quarterly data used in this paper. (a) Monthly data used in this paper.
(b) Quarterly data used in this paper.

4.2. Results of Using Different Parameters

In the network model, steps_per_epoch (steps) refers to the number of steps contained in an epoch,
and each step is a batch of data input; epochs indicate each data traversal time. The proposed model
is trained by reading data in time series. When all data are covered, the iteration stops. Therefore,
epochs and steps in the network model cannot be simultaneously set to be too large. This study uses
the monthly data of a P2 site to predict the SST for the next 12 months (January 2019 to December 2019)
and explores the optimal parameters by setting different steps and epochs.

Figure 5 shows the SST prediction results for 12 months under different epochs. The results show
that epoch 6 cannot accurately predict the overall trend of SST, whereas the other four epochs can
effectively predict the trend of SST. For epoch 6, the prediction performance of August is the worst of
the entire year, and an unrealistic SST is predicted for winter months as well. Figure 6 presents the
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quantitative prediction accuracy. With the increase in epochs, the prediction accuracy of the model
initially increases and then tends to stabilize with a slight decrease. For epoch 20, the prediction
accuracy is the highest, with an RMSE of 1.273 ◦C, MAE of 1.077 ◦C, and r of 0.99.
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Figure 5. SST prediction for 12 months under different epochs.
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Figure 6. Prediction accuracy for 12 months under different epochs. RMSE: root mean square error;
MAE: mean absolute error.

Figure 7 displays the SST prediction results for 12 months under different steps. The results show
that the predictions of the SST variation—except for step 4—are satisfactory and agree with the real
SST. Figure 8 exhibits the prediction accuracy under different steps, and the results continue to show
that the prediction accuracy initially increases and then decreases with the increase in steps. In this
study, step 15 has the highest accuracy with an RMSE of 0.650 ◦C, MAE of 0.546 ◦C, and r of 1.00.
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Figure 7. SST prediction for 12 months under different steps.
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4.3. Monthly Data Prediction

The last 4, 6, 12, 18, and 24 months are predicted using the optimal parameters of steps and epochs,
which are set as 15 and 20, respectively. The P2 site is used as an example to draw the prediction curves,
as shown in Figure 9. The horizontal axis is the predicted monthly SST data. For example, the last
4 months refer to the 4 months from December 2019 to the historical months; i.e., the predicted months
are September, October, November, and December 2019.
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Figure 9. P2 prediction results for different time lengths. The horizontal axis is the predicted length
(month). (a) Prediction for the last 4 months; (b) Prediction for the last 6 months; (c) Prediction for the
last 12 months; (d) Prediction for the last 18 months; (e) Prediction for the last 24 months.

In terms of the fitting degree, the proposed network model is superior to LSTM except for the
prediction length of step 4. With the increase in prediction length, the advantage is gradually evident.
Figure 10 illustrates the prediction accuracy of quantitative analysis.
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Figure 10. Prediction accuracy for different monthly lengths of the P2 site. (a) RMSE with different
prediction length; (b) MAE with different prediction length; (c) r with different prediction length.

Figure 10 shows that the accuracy of the proposed model and LSTM tends to decline with the
increase in prediction time. However, in comparison with LSTM, the SST prediction error based on the
proposed model fluctuates and exhibits a more stable accuracy. The r values of the proposed model
using different prediction lengths are all above 0.98; in contrast, when using LSTM, r is lower than
0.88 when the prediction runs for 24 months. The accuracy of LSTM prediction is slightly higher than
that of the proposed model when the prediction length is 4 months, with an RMSE of 0.325 ◦C and
MAE of 0.251 ◦C. However, when the prediction length is increased, the accuracy of the SST prediction
model based on the proposed model is significantly higher than that of LSTM, especially for 18 and
24 months, and the RMSE is 1.129 ◦C and MAE is 1.275 ◦C.

However, as shown in Figure 11, we can see from the quantitative prediction results of each month
that the LSTM and the proposed model have a large prediction error in May of each year. The MAEs
of the proposed model and LSTM are 2.641 ◦C and 4.401 ◦C for the first May (fifth month) and 4.159
◦C and 7.030 ◦C for the second May (17th month), respectively. The possible reason for this is that
April to May is the period with the largest temperature change in the entire year, and the prediction
model conservatively predicts the SST. In terms of the monthly prediction accuracy of Figure 11, the
maximum error occurs in the 17th month, with an MAE of 4.2 ◦C by the proposed model and 7.0 ◦C
by LSTM.
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Figure 11. Twenty-four-month prediction accuracy.

To test the stability of the SST prediction neural network model based on the proposed model, we
conducted a quantitative evaluation of the prediction results of six sites with different time lengths.
Table 2 presents the results.
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Table 2. Monthly RMSE and MAE of six sites with different predicted lengths (the unit is ◦C).

Site
Pre_4m 1 Pre_6m 1 Pre_12m 1 Pre_18m 1 Pre_24m 1

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM

P1 0.631 0.567 1.345 1.176 1.603 1.373 1.386 1.108 2.881 2.238
P2 0.324 0.263 1.670 1.512 2.189 1.908 2.097 4.389 9.954 3.440
P3 1.000 0.937 1.742 1.582 1.772 1.486 1.973 1.736 3.785 2.644
P4 0.616 0.545 1.423 1.183 4.248 3.288 1.958 1.750 1.986 1.494
P5 0.517 0.457 2.298 1.929 1.899 1.565 1.496 1.247 1.775 1.402
P6 0.231 0.200 1.711 1.384 1.466 1.246 2.645 2.060 1.328 0.986

Proposed
model

P1 1.362 1.286 0.598 0.552 1.247 1.168 1.112 1.026 1.613 1.275
P2 0.653 0.569 0.717 0.570 1.258 1.027 1.129 1.275 3.196 1.124
P3 0.677 0.539 1.370 1.261 1.128 0.933 1.645 1.461 2.891 2.353
P4 1.205 1.160 1.216 1.061 1.293 1.153 1.271 1.018 1.419 1.083
P5 0.862 0.807 1.089 0.908 1.256 1.044 1.355 1.158 1.636 1.286
P6 1.155 1.106 1.159 1.477 0.929 0.810 1.676 1.294 1.167 0.991

1 Pre_4m, Pre_6m, Pre_12m, Pre_18m, Pre_24m refer to the prediction lengths of 4, 6, 12, 18, and 24 months for
monthly data, respectively.

A comparison of the prediction results of the six sites indicates that, except for P3, LSTM has a
slight advantage over the proposed model in predicting the SST in a short time; for example, in the 4
month prediction. The maximum differences of RMSE and MAE between LSTM and the proposed
model occurred at P6, at 0.924 ◦C and 0.906 ◦C, respectively. On the whole, in the short prediction
length (4 month prediction), the mean differences of RMSE and MAE between LSTM and the proposed
model are 0.540 ◦C and 0.549 ◦C, respectively, and LSTM is better than the proposed method in terms
of prediction performance. However, with an increased prediction time, the SST prediction results
of the proposed model are significantly better than those of LSTM. The mean differences of RMSE
and MAE between the proposed model and LSTM are 1.292 ◦C and 0.701 ◦C, respectively, and the
proposed method is better than LSTM in terms of prediction performance. Moreover, the monthly SST
data prediction based on the proposed method is more robust and accurate.

4.4. Quarterly Data Prediction

A total of 152 items of quarterly data are used in every site. Different time lengths, such as the last
2, 4, 6, and 8 quarters, are predicted on the basis of the model trained by quarterly data. P2 site data
are used as an example to draw the prediction curves, as shown in Figure 12.
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Figure 12. Prediction results under different quarterly lengths for the P2 site. (a) Prediction for the last
2 quarters; (b) Prediction for the last 4 quarters; (c) Prediction for the last 6 quarters; (d) Prediction for
the last 8 quarters.

From the perspective of fitting degree, although the proposed model and LSTM can effectively
predict the trend of SST, the SST prediction model based on the proposed model is superior to the LSTM
regardless of the prediction length. When the prediction length is small, such as over two quarters,
the difference of prediction accuracy between the two models is small, at about 0.3 ◦C. Overall, the
SST prediction error of quarterly data is within 2 ◦C based on the proposed method; however, the



J. Mar. Sci. Eng. 2020, 8, 249 12 of 15

prediction error based on LSTM can reach 3.5 ◦C. With the increase of prediction length, the GRU
model is relatively stable, while LSTM fluctuates greatly, especially when the prediction length is 4. By
comparing the curves under the four prediction lengths, the prediction results of the two prediction
models are slightly lower than the true SST value. Thus, both models have the characteristics of
conservative prediction. Figure 13 presents the prediction accuracy of the P2 site’s quarterly data.
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prediction lengths; (b) MAE with different prediction lengths; (c) r with different prediction lengths.

As shown in Figure 13, with the increase in prediction time, the error based on the proposed
prediction model does not present a significant increasing trend. The proposed model exhibits a
further stable performance with high prediction accuracy. The RMSE and MAE are both within 2
◦C, and r is above 0.98. Table 3 displays the quantitative results of prediction accuracy for different
quarterly lengths for the six sites. In contrast to the monthly data, quarterly SST prediction results
based on the proposed model indicate better prediction accuracy than those based on LSTM, even
with a short-term prediction length. The maximum differences of RMSE and MAE between LSTM and
proposed model occurred at P2, at 1.095 ◦C and 1.015 ◦C, respectively. The minimum is P5, and the
differences of RMSE and MAE are 0.182 ◦C and 0.122 ◦C, respectively. The mean MAEs of the six sites
for a predicting length of 2, 4, 6, and 8 quarters based on the proposed method are 1.422 ◦C, 1.675◦C,
1.246◦C, and 1.536 ◦C respectively. For LSTM, these values are 1.801 ◦C, 1.924 ◦C, 1.537 ◦C, and 1.843
◦C, respectively. Moreover, the quarterly SST data prediction based on the proposed method is more
robust and accurate.

Table 3. Quarterly RMSE and MAE of six sites with different predicted lengths (the unit is ◦C).

Location
Pre_2q 1 Pre_4q 1 Pre_6q 1 Pre_8q 1

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM

P1 1.676 1.636 2.150 2.023 2.810 3.045 3.482 3.336
P2 1.964 1.842 3.907 3.513 2.276 2.315 2.980 2.865
P3 3.006 2.334 2.829 2.039 2.175 2.042 3.426 2.711
P4 2.698 2.683 2.292 1.975 1.245 0.993 1.748 1.496
P5 1.578 1.325 2.751 2.433 0.727 0.699 1.395 1.025
P6 1.856 1.587 2.214 1.882 1.593 1.737 2.415 2.264

Proposed
model

P1 1.593 1.575 2.153 1.848 1.86 1.976 1.577 1.305
P2 1.636 1.636 1.628 1.545 1.536 1.553 1.948 1.743
P3 2.239 1.955 0.993 0.794 1.692 1.679 3.423 2.896
P4 2.302 2.165 1.673 1.267 0.937 0.909 0.892 0.687
P5 1.326 1.012 2.635 2.393 0.714 0.705 1.049 0.883
P6 1.504 1.153 1.870 1.763 1.135 1.126 1.600 1.275

1 Pre_2q, Pre_4q, Pre_6q, Pre_8q refer to the prediction length of 2, 4, 6, and 8 for quarterly data, respectively.
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5. Conclusions

In this study, a neural network model based on GRU with fully connected layers is designed
to predict short and medium-term SST. By using the Bohai Sea, characterized by a large annual
temperature difference, as the research area, two different time scales of monthly and quarterly SST
data are used to verify the practicability and stability of the proposed model. The main conclusions are
as follows:

(1) The designed SST prediction model based on GRU can efficiently fit the trend of the real SST and
has high reliability. Additionally, the proposed model in this paper has the characteristics of a
conservative estimation for SST prediction; that is, the predicted value of SST is smaller than
the real value. Furthermore, LSTM experiences the same problem as the proposed method in
this paper.

(2) In the prediction at the monthly time scale, RMSE and MAE are mostly concentrated in the
range of 0–2.5 ◦C. In the prediction at the quarterly time scale, RMSE and MAE are mostly
concentrated in the range of 0–2 ◦C. The r values of both time scales are above 0.98, indicating
high prediction accuracy.

(3) The proposed prediction model has more stable results than LSTM. The advantages are more
evident with an increase in prediction length.

In future, the multi-source physical ocean parameters of the GRU network can be investigated to
construct a physical prediction model of SST. Besides, there may be local outliers on a smaller spatial
scale, so the GRU SST prediction method considering the spatial relationship may effectively improve
the fault tolerance and prediction accuracy of SST.
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