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Abstract: This paper presents a numerical modeling procedure for the idealization of vortex shedding
effects in the wake flow field of a NACA0009 hydrofoil. During the simulation, the lift and drag
acting on the hydrofoil were monitored, and the vortex-shedding frequency of the hydrofoil was
analyzed. The effects of inflow velocity, trailing-edge thickness, angle of attack, and maximum
hydrofoil thickness on vortex shedding were investigated. The results indicate that an increase in the
inflow velocity led to an increase in the vortex-shedding frequency and a negligible change in the
Strouhal number. Furthermore, as the thickness of the trailing edge increased, the vortex-shedding
frequency decreased gradually, whereas the Strouhal number first increased and then decreased.
Vortex shedding and lift curve oscillations ceased altogether after the angle of attack of the hydrofoil
increased beyond a certain threshold. When the maximum hydrofoil thickness was increased
while keeping the thickness and chord length of the trailing edge constant, the vortex-shedding
frequency decreased.
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1. Introduction

Vortex shedding from the trailing edge of a foil is a significant phenomenon in various engineering
disciplines. Flows separated by a foil will recombine at the upper and lower surfaces of the trailing
edge of the foil, forming periodic eddies in the wake field and inducing mechanical vibrations.
This phenomenon was first observed in aircraft airfoils; because airfoils typically exhibit very high
wake-vortex shedding frequencies, they are at a considerable risk of fatigue damage. The damage
caused by vortex shedding is particularly severe if the vortex-shedding frequency approaches a natural
frequency of the airfoil. A similar phenomenon is known to occur in propellers and is particularly
concerning in marine propellers because an intense degree of vortex shedding leads to periodic fatigue
stresses in the blades of the propeller that shorten their service life. Because vortex shedding can lead
to a series of failures in engineered structures, it is important to study the causes of this phenomenon
and elucidate the behavior of vortex shedding in a variety of operating conditions.

The mechanical vibrations induced by vortex shedding have been widely investigated. Vincenc
Strouhal discovered that the audible tone of a wire “singing” in the wind is proportional to the quotient
of the wind speed by the wire thickness (i.e., tone = proportionality coefficient × wind speed/wire
thickness) and that each cross-section has a certain proportionality coefficient in the noncritical range
of Reynolds numbers. This is known as the Strouhal number, and it is an important parameter to
evaluate the vortex-shedding frequency. Theodore von Kármán linked this phenomenon to the stable
and staggered vortices that form behind a cylindrical object, which was later termed the Kármán
vortex street effect. In addition, he proposed the theory of vortex street stability [1]. Perry et al. [2]
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obtained images of the vortex-shedding process from the wake field of a circular cylinder by tracing
the motion of aluminum particles in long-exposure photography. Griffin [3] and Williamson et al. [4]
investigated the alternating shedding of vortices from a cylinder and discovered that this process is
caused by interactions between vortices on the upper and lower surfaces of the cylinder; once a vortex
on a given surface reaches a sufficient strength, it draws the opposing shear layer across the near wake,
causing the vortices to shed alternatingly from the upper and lower surfaces. Gerrard [5] observed
vortex shedding from circular and bluff cylinders with different cross-sectional shapes and deduced
that the vortex generation is affected by the end conditions of the cylinders. Gerich [6] proved that the
shape of the ends of a cylinder affect the mechanism of vortex shedding from these ends. In addition,
Achenbach and Heinecke [7] conducted wind tunnel experiments and discovered that the wake of a
cylinder became more regular as the roughness of the cylinder’s surface increased. Furthermore, the
Strouhal number of a vortex shedding from a rough cylinder was estimated to be much smaller than
that of a vortex shedding from a smooth cylinder.

Through the various studies conducted on the vortex-shedding phenomenon, it was observed that
intense resonance can occur if the vortex-shedding frequency of the Kármán vortex street is equal to one
of the eigenfrequencies of a given object. This discovery shifted the focus of the study of vortex shedding
from simple cylindrical objects to objects of practical interest, such as hydrofoils. A series of analytical
studies were also conducted on the basis of experimental data. Ausoni [8] experimentally investigated
the effects of cavitation on vortex shedding from symmetrical hydrofoils with a blunted trailing edge
and analyzed the wake structure, vortex-shedding frequency, and hydrofoil resonance frequency
associated with each stage of cavitation development. He discovered that the vortex-shedding
frequency can “lock-in” to an eigenfrequency of a hydrofoil. Lotfy and Rockwell [9] investigated
vortex shedding in the near-wake of an oscillating trailing edge. Prasad and Williamson [10] analyzed
the vortex dynamics of hydrofoil wakes based on the instability of the shear layer separating the
water from a bluff body. Dwayne et al. [11] investigated vortex shedding at a high Reynolds number
from hydrofoils with different terminating bevel angles on their trailing edges and found that the
vortex-shedding intensity is higher in blunter and thicker trailing edges. Zobeiri et al. [12] conducted
an experimental study on the effects of the trailing-edge shape on vortex shedding and flow-induced
vibrations and found that oblique trailing edges significantly reduce flow-induced vibrations. This
was attributed to the collisions between upper and lower vortices in an oblique trailing edge, which
leads to vorticity redistribution.

Numerical modeling has been widely employed for the study of vortex shedding. Many previous
numerical studies focused on vortex shedding from circular objects. For example, Williamson [13]
numerically simulated the wake flows of a cylindrical object. William [14] used complex analysis to
formulate an analytical expression for the shedding frequency of Kármán vortex streets from the trailing
edge of an airfoil. However, the shedding frequencies predicted by this expression were typically
much lower than the experimentally observed ones. Huerre and Monkewitz [15] and Oertel et al. [16]
analyzed the effects of flow instabilities on vortex-shedding behaviors of blunt hydrofoils analytically.
Potential flow theory is often used to study the wake-vortex shedding of swinging or flapping objects.
However, current studies on vortex shedding focus on the formation of Kármán vortex streets behind
static objects, which is essentially a boundary layer dissociation problem; these problems are very
difficult to model with the potential flow theory. Another significant feature of this problem is
that the trailing edge of the hydrofoil is often very thin, which leads to very large local Reynolds
numbers. This results in unique physical phenomena that can only be modeled by precise numerical
simulations. Lee et al. [17] studied the vortex shedding of hydrofoils, numerically considering a
variety of trailing-edge shapes, and compared their findings with the experimental findings of Ausoni
and Zobeiri. In addition, they investigated the effects of periodically varying free-stream flows on
vortex shedding.

Many studies using numerical simulations of or experimental tests on vortex shedding have been
conducted, and the subsequent hydrodynamic force fluctuations of hydrofoils have been analyzed.



J. Mar. Sci. Eng. 2020, 8, 195 3 of 20

The main purpose of the abovementioned studies was to evaluate the amplitude and frequency of force
fluctuation, which have significant effects on marine structures. Ausoni [8] experimentally studied
the vortex-shedding frequency of hydrofoils with perpendicularly truncated trailing edges and found
that the increase in frequency was almost linear with the inflow velocity. Dwayne et al. [11] studied
the vortex-shedding frequency of hydrofoils with obliquely truncated trailing edges and found that
thicker hydrofoils or blunter trailing edges correspond to higher vortex-shedding frequencies. Another
experimental study was conducted by Zobeiri [12], wherein it was found that the obliquely truncated
trailing edges can significantly reduce the vortex-shedding strength, and subsequently, the amplitude
of the force fluctuation. Analytical studies of vortex shedding were performed by Blake [14] and
Oertel [16] on hydrofoils and cylinders, respectively. However, the force of analytical results is much
less than that by experiments. The vortex shedding of hydrofoils is strongly related to the formation of
viscous boundary layers. From this perspective, methods based on the potential flow assumptions can
hardly predict vortex shedding precisely. Instead, computational fluid dynamics (CFD) simulations can
effectively represent vortex shedding. Although Reynolds-averaged Navier–Stokes simulations [8] or
large Eddy simulations (LES) [17] cannot fully simulate turbulent flows, their numerical results generally
agree well with experimental results and can reflect the physical characteristics of vortex shedding.

The above discussion shows that vortex shedding from static hydrofoils is a problem of practical
significance and academic interest as it plays a significant role in flow-induced vibrations and noise
and fatigue damage. However, research on this problem is still insufficient, and further elucidations are
required. In this study, we conducted CFD simulations of two-dimensional flows around a NACA0009
hydrofoil in a variety of operating conditions to observe vortex shedding at the trailing edge of a
hydrofoil. We investigated the lift curve and trailing-edge vortex shedding of the hydrofoil with
different inflow velocities, angles of attack, truncation points, and maximum hydrofoil thicknesses
to reveal their correlations with the vortex-shedding frequency. The findings of this study will
provide general rules for the investigation of flow-induced vibrations in objects such as hydrofoils and
marine propellers.

2. Materials and Methods

2.1. Mathematical Modeling

In this study, the finite volume method, which satisfies the conservations of mass and momentum,
was used to solve the integral equations. The vertex-centered method was adopted to form the control
elements; the second-order upwind scheme was used for the discrete differentials; the semi-implicit
method for pressure linked equations scheme was used for the flow solution. It firstly assumes a
velocity distribution u∗, v∗, Φ∗(u, v, Φ) in the flow field and then calculates the coefficients and constants
in the discrete-form momentum equations at the first iteration. Then, it guesses the pressure p∗; it
solves the discrete momentum equation from the pressure field and the pressure correction equation
from the velocity field. After correcting the calculated pressure and velocity, all other variables of the
control equation are solved. Finally, the results are verified and iterated until convergence.

Numerical simulations were performed using the Spalart–Allmaras (S-A) turbulence model,
which is suitable for high-precision boundary-layer computations, e.g., lift computations.

Spalart and Allmaras [18] argued that energy and information flow from large scales to smaller
scales in free shear flows and represented the turbulent eddy viscosity coefficient by two terms:
a production term and a diffusion term. They constructed a one-equation turbulence model by
utilizing the experience gained from other turbulence models and by amending the other turbulent
flow-field models.

In the S-A equation, the definition of Reynold stress is:

−uiu j = 2vtSi j, Si j ≡
(
∂Ui/∂x j + ∂U j/∂xi

)
/2 (1)



J. Mar. Sci. Eng. 2020, 8, 195 4 of 20

where, the turbulent eddy viscosity vt can be expressed as:

vt = ṽ fv1, fv1 =
χ3

χ3 + c3
v1

,χ ≡
ṽ
v

, (2)

where v is the kinematic molecular viscosity and ṽ is the working variable. From the above equations,
we obtain the transport equation:

Dṽ
Dt

= cb1[1− ft2]S̃ṽ +
1
σ

[
∇((v + ṽ)∇ṽ) + cb2(∇ṽ)2

]
−

[
cw1 fw −

cb1

κ2 ft2
][ ṽ

d

]
+ ft1∆U2, (3)

where S(~) is the magnitude of vorticity; b is the distance to the nearest wall; ∆U is the velocity
difference between a point in the fluid and a point on the wall; ft1, ft2, and fw are functional equations,
and the rest of the symbols represent constants. The specific definitions of these symbols are as follows:

S̃ ≡ S +
ṽ

κ2d2 fv2, fv2 = 1−
χ

1 + χ fv1
(4)

ft1 = ct1gt exp

−ct2
w2

t

∆U2

[
d2 + g2

t d2
t

], gt ≡ min(0.1, ∆U/wt∆x), (5)

ft2 = ct3 exp
(
−ct4χ

2
)
, (6)

fw = g

 1 + c6
w3

g6 + c6
w3

1/6

, g = r + cw2
(
r6
− r

)
, r ≡

ṽ
S̃κ2d2

, (7)

The S-A turbulence model is more computationally efficient than two-equation turbulence models,
and it is also very stable and accurate. The S-A model accurately simulates the region of the wake
where strain rates are dominated by vorticity, and it predicts the turbulent eddy viscosity.

2.2. Test Case and Computational Mesh

In this study, a two-dimensional flow method was used to study vortex shedding. The model
used in this study was a NACA0009 hydrofoil with a chord length c of 100 mm and a trailing-edge
thickness b of 3.22 mm, which is identical to the model used by Ausoni et al. (2006). Figure 1 shows a
diagram of the hydrofoil model with the chord length (c), trailing-edge thickness (b), and angle of
attack (α).
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Figure 1. Diagram of the hydrofoil model.

To avoid the effects of the computational boundaries illustrated in Figure 2 on the flow simulation,
the domain was set to relatively large dimensions (13c × 6c). Typically, the outlet boundary has a
greater effect than the inlet boundary owing to the downstream vortex shedding. Thus, the hydrofoil
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was further from the outlet than from the inlet. Neglecting the mutual effect between the inlet boundary
and the hydrofoil, the inlet was set as the velocity inlet. To achieve better conservation and more stable
simulations, the outlet was set as the pressure outlet rather than the velocity outlet. To further avoid
the effects of the boundaries, the upper and lower boundaries were set as symmetrical and slipping,
different from the nonslipping surfaces of the hydrofoil.
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Figure 2. Computational domain.

The grid around the hydrofoil is shown in Figure 3. Two mesh types were used in the computational
domain, namely trimmed and prism layer meshes. The trimmed mesh was the primary type of mesh
used in the fluid region. This part of the mesh consisted of quadrilateral elements parallel to the
inflow; this configuration reduces truncation errors in the calculation. Prism layer meshes were used
to generate the boundary layers. A 3c × 2c refined region was set up around the hydrofoil to refine
the flows around it, and the mesh size in this region was 5% of that of the unrefined region. The
computational domain contained a total of 2,495,989 mesh elements.
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Figure 3. Computational domain mesh.

Figure 4 shows the boundary layer grid of the hydrofoil. In these computations, physical variables
tend to vary most significantly around boundaries. Therefore, a refined boundary layer mesh was used
in the calculations. The thickness of the first mesh layer was determined by the Y+ value. Because
the Reynolds number in the simulation was quite large (Re = 1,194,257.2), the fluid flow became fully
turbulent at positions close to the surface of the hydrofoil. Therefore, the Y+ value was set to 1, which
yielded a first mesh layer thickness of 1.97 × 10−6 m. The growth rate of the prism layer mesh was
set to 1.2, and the boundary layer mesh was configured with a total of 20 layers to ensure a smooth
transition into the outer mesh. The total thickness of the boundary layer mesh was 3.67 × 10−4 m.
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2.3. Convergence Analysis

2.3.1. Mesh Convergence

Using the meshing strategy reported by Ausoni et al. [8], a refined mesh was configured to assess
the mesh convergence.

The medium mesh had a total of 2,495,989 elements, and the thickness of the boundary layer was
3.67 × 10−4 m. The mesh size was further increased and reduced to verify the mesh convergence, and
the resulting mesh had medium and fine grids with 1,562,259 and 4,027,882 elements, respectively.
When the grid scale was changed between coarse, medium, and fine while keeping the number of
boundary layers constant, the extension rates of the layers changed to 1.4, 1.3, and 1.2, respectively.

Then, the time step was set to 1 × 10−6 s. Table 1 lists the drag coefficient Cd, maximum lift
coefficient Cl (max), and Strouhal number (St) obtained with different grid scales.

Table 1. Mesh convergence analysis results.

Mesh Cd Cl (max) St

Coarse 0.0270 0.06018 0.190
Medium 0.0258 0.05605 0.192

Fine 0.0253 0.05521 0.197

From Table 1, it can be observed that the calculation results with the three grid conditions are
similar. The mesh size was further reduced under the medium mesh condition, and the resulting Cd,
Cl, and St changed by 1.9%, 1.5%, and 2.6%, respectively. The degree of change in data is small, and
thus, it can be considered grid-independent.

2.3.2. Time-Step Convergence

We searched for the time step that was required to converge the simulation when the mesh
contained 2,495,989 elements. The time step of the simulation was gradually decreased from 2 × 10−4

to 1 × 10−6 s. The Cd, Cl (max), and St that were obtained with each time step value (Dt) are presented
in Table 2.
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Table 2. Time step convergence.

Dt (s) Cd Cl (max) St

2 × 10−4 0.0145 0.000299 0.112
1 × 10−4 0.0145 8.98 × 10−5 0.150
5 × 10−5 0.0157 0.01663 0.0171
6 × 10−6 0.0239 0.05293 0.188
2 × 10−6 0.0252 0.05599 0.197
1 × 10−6 0.0258 0.05605 0.197

From Table 2, it can be observed that the results become increasingly similar as the time step
shortens. In particular, the results obtained at Dt = 2 × 10−6 and 1 × 10−6 s are very similar, indicating
that the results obtained with Dt = 1 × 10−6 s have converged.

2.3.3. Turbulence Model Selection

The mesh and time-step convergence analyses show that a converged result can be obtained from
the simulation with a total mesh number of 2,495,989 and a time step of 1 × 10−6 s. Therefore, these
two parameters were used to verify the convergence of the S-A, shear stress transport k-omega, and
K-epsilon turbulence models. The comparison results are shown in Table 3.

Table 3. Comparison of Cl and St obtained by different turbulence models.

Turbulence Model Cl (max) St

S-A 0.05605 0.192

Shear stress transport k-omega 0.06199 0.220

K-epsilon 0.05602 0.186

Ausoni [8] conducted a comparative test between a normal hydrofoil and a hydrofoil with rough
stripes at the leading edge. In the latter case, a strong turbulent boundary layer was developed.
With an inflow velocity of 12 m/s, the normal and rough-stripe hydrofoils had St of 0.245 and 0.174,
respectively, indicating that the vortex-shedding frequency is highly related to the occurrence of
turbulence. However, there is insufficient understanding of the turbulence around the hydrofoil. The
calculation results obtained with the three models are all within the experimental value range and
have no significant differences. The S-A model could accurately calculate the near-wall flow of the
hydrofoil, and thus, was used for the subsequent simulations.

3. Results

3.1. Simulation Results

Based on the results of the mesh and time-step convergence analyses, a base mesh size of 0.005 m
and time step of 1 × 10−6 s were used as the computational parameters of the simulations. The
inflow velocity Ure f was set to 12 m/s. The lift and drag of the hydrofoil were then obtained from
these simulations. A dimensionless time quantity, t = TU/c, was defined as the abscissa to plot the
relevant curves.

Figure 5 shows the changes in the lift curve from the beginning of the simulation until a steady
state was reached. Two distinct stages can be identified from these plots—at the beginning of the
simulation, the flow field is in an unsteady state, and the amplitude of the lift curve oscillations
increases; after some time, the amplitude of the lift curve oscillations stops changing and the flow
field becomes stable. Figure 6 shows the Fourier transform plot of the convergence-time history curve.
From this figure, the frequency (735.3 Hz) and amplitude (0.0689) of the lift curve oscillations under
the given set of operating conditions were obtained.
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Figure 7 illustrates the changes in the drag curve of the hydrofoil over time. Because the flow field
was unsteady in the early stages of the simulation, large changes were initially observed in the drag
coefficient. Once the flow field became stable, the drag coefficient still exhibited periodic oscillation,
similar to the lift curve. The steady-state oscillation frequency of the drag curve (1460.92 Hz) is
approximately twice that of the lift curve, indicating that a pair of vortex shedding form one oscillation
of the lift while a single vortex shedding from the upper or lower surface forms one oscillation of
the drag.
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Here, we define the pressure at some arbitrary point as p, which can be nondimensionalized as
Cp = 1

2
p−p∞
ρU2

re f
, where p∞ = 0.

Figure 8 shows that the pressure distribution on the upper and lower surfaces of the hydrofoil
are similar at t = 2.68; because at this time, the difference in pressures between the upper and lower
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surfaces is small, the corresponding lift coefficient is also small (0.016). Figure 8b,c show the surface
pressure distributions of the hydrofoil when the lift coefficient was at its minimum (t = 2.88) and
maximum (t = 3.12), respectively. In these figures, it may be observed that a significant pressure
difference arises after x/c = 0.75, which induces a lift.
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Two monitoring points (Point 1 and Point 2) were set up at the upper and lower turning points
of the trailing edge of the hydrofoil. The velocity and pressure at the monitoring points are denoted
as U and P, respectively, and we further define a dimensionless variable u = U/Ure f to simplify the
velocity term. The dimensionless velocity–time and velocity–pressure curves obtained at these points
are presented in Figure 9. In the figure, the velocity and pressure curves at both the monitoring points
exhibit similar oscillatory amplitudes and frequencies but in opposing phases. This indicates that the
vortices on the upper and lower surfaces of the trailing edge are symmetrical and that they are shed
alternatingly. At each monitoring point, the velocity and pressure curves have identical periodicities
but opposing amplitudes, i.e., the maximum of one curve always corresponds to the minimum of the
other curve.

Figure 10 presents a vorticity map of the shed vortices. As can be seen from the figure, vortices
are shed alternatingly from the upper and lower surfaces of the trailing edge. The vorticities at the
core of vortices 1, 2, 3, 4, 5, and 6 are 26,000, 20,000, 16,000, 13,500, 12,000, and 11,000, respectively.
Therefore, the vorticities of the shed vortices dissipate as they move away from the trailing edge, and
the vorticity dissipation is most pronounced when the vortices first begin to dissociate from the surface
of the hydrofoil.
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Because vortex shedding often leads to vibrations in various structures and objects in practical
applications, different operating conditions were set up to investigate the factors that influence vortex
shedding and to elucidate the vortex-shedding behaviors.
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3.2. Frequency of Vortex Shedding at Different Velocities

The value of Ure f was varied to examine the effects of the inflow velocity on vortex shedding. The
value of Ure f was changed by altering the velocity at the inlet. A time step of 1 × 10−6 s was used, and
the thickness of the boundary layer was recalculated considering Y+ = 1 and Ure f that was used in the
simulation. The wake-vortex shedding frequencies that were obtained with different inflow velocities
are presented in Table 4, where f 1 is the frequency that was obtained in this simulation, f 2 and f 3 are the
experimental values obtained by Ausoni et al. [8] in their smooth and rough leading-edge experiments,
respectively, and f 4 is the result that they obtained through a CFD simulation.

Table 4. Vortex-shedding frequency at different inflow velocities; f 1: frequency obtained in this study;
f 2 and f 3: frequencies obtained from smooth and rough leading edge experiments, respectively [8]; f 4:
frequency obtained through a CFD simulation in this study.

Uref (m/s) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) St pre.

10 601.78 795.24 532.04 599.51 0.194
11 672.02 912.15 590.42 0.197
12 735.30 912.15 649.31 0.197
13 780.69 912.15 717.00 0.193
14 861.62 999.18 775.09 0.198
15 902.63 1096.76 833.92 0.194
16 963.06 1174.99 883.14 957.87 0.194
17 1024.57 1223.34 921.82 0.194
18 1118.94 1291.91 989.51 0.200
19 1146.51 1378.94 1058.08 0.194
20 1207.48 1418.49 1116.10 1212.35 0.194
21 1268.45 1184.66 0.194

Figure 11 compares the vortex-shedding frequencies that were obtained in the present simulation
with those obtained by Ausoni et al. (2006). As can be seen from the figure, the CFD calculation results
do not differ significantly from each other, but they do deviate from the experimental results to some
extent. The simulated results are similar to those obtained in the rough leading-edge experiment both
qualitatively and quantitatively, and the results of the latter may be approximated by a linear function
of U (f = 60.97U − 11.925). Ausoni et al. argued that the differences between the numerical and
experimental values were a result of the differences in flow field around the hydrofoil in the numerical
simulation and experiments. Because a turbulence model was used in the numerical simulations, the
flows around the hydrofoil were assumed to be fully turbulent. In the model experiments, there was a
distinct turning point, where the fluid flows changed from laminar to turbulent.
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Figure 12 presents the values of St as a function of inflow velocity. These values in the “smooth”
experiment generally fluctuated around 0.24, and the changes in these values with respect to inflow
velocity were significant. The values of St that were obtained in the “rough leading edge” experiment
are similar to those obtained in our CFD simulation (0.19 versus 0.18), and the changes in St with
respect to inflow velocity were insignificant in both cases.
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3.3. Effects of the Trailing-Edge Thickness

A sharp trailing edge is usually undesirable in marine propellers and hydrofoils. To avoid
resonances in marine propellers, an appropriate trailing-edge thickness must be selected to shift the
vortex-shedding frequency away from the natural frequencies of the propeller. Therefore, numerical
studies on the relationship between the vortex-shedding frequency and trailing-edge thickness are
highly important. The NACA0009 hydrofoil was truncated at different positions to investigate the
effects of the trailing-edge thickness (b) on vortex shedding. The inflow velocity Ure f was set to 12 m/s,
and the thickness of the boundary-layer mesh was set according to the chord length of the hydrofoil.
Each set of vortex shedding data in Table 5 corresponds to a hydrofoil shape with a different truncation.

Table 5. Vortex-shedding frequency corresponding to each trailing-edge thickness.

C (mm) B (mm) F (Hz) St

29.66 9.00 239.92 0.180
65.45 6.14 464.25 0.237
79.39 4.04 666.22 0.224
88.00 2.69 845.18 0.190
93.30 1.54 1216.55 0.157

Figure 13 illustrates the lift curves that were obtained with different hydrofoil truncations. It can
be inferred from the figure that the lift curves always undergo a period of change before stabilization.
The lift curve has a rather irregular shape when b = 9 mm, as indicated by the different maximum and
minimum values in each cycle, even in the steady state. The changes in lift curve when b = 1.54 mm are
different from those observed with the other trailing-edge thicknesses; in addition to the initial growth
in oscillation amplitude, the oscillations of the b = 1.54 mm lift curve also decrease in amplitude before
they eventually stabilize. The trailing-edge thickness gradually decreases as the truncation approaches
the rear end of the hydrofoil. As this occurs, the lift-curve oscillations gradually decrease in amplitude
but increase in frequency.



J. Mar. Sci. Eng. 2020, 8, 195 13 of 20

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 13 of 20 

 

C (mm) B (mm) F (Hz) 𝑺𝒕 

29.66 9.00 239.92 0.180 

65.45 6.14 464.25 0.237 

79.39 4.04 666.22 0.224 

88.00 2.69 845.18 0.190 

93.30 1.54 1216.55 0.157 

Figure 13 illustrates the lift curves that were obtained with different hydrofoil truncations. It can 

be inferred from the figure that the lift curves always undergo a period of change before stabilization. 

The lift curve has a rather irregular shape when b = 9 mm, as indicated by the different maximum 

and minimum values in each cycle, even in the steady state. The changes in lift curve when b = 1.54 

mm are different from those observed with the other trailing-edge thicknesses; in addition to the 

initial growth in oscillation amplitude, the oscillations of the b = 1.54 mm lift curve also decrease in 

amplitude before they eventually stabilize. The trailing-edge thickness gradually decreases as the 

truncation approaches the rear end of the hydrofoil. As this occurs, the lift-curve oscillations 

gradually decrease in amplitude but increase in frequency. 

0 5 10 15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C
l

t
 

0 1 2 3 4 5 6 7
-0.2

-0.1

0.0

0.1

0.2

C
l

t

 

(a) c = 29.66 mm, b = 9.00 mm (b) c = 65.45 mm, b = 6.14 mm 

0 1 2 3 4
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

C
l

t
 

0 1 2 3 4
-0.08

-0.04

0.00

0.04

0.08

C
l

t
 

(c) c = 79.39 mm, b = 3.04 mm (d) c = 88.00 mm, b = 2.69 mm 

0 1 2 3 4
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

C
l

t
 

(e) c = 93.30 mm, b = 1.54 mm 

Figure 13. Variation of the lift coefficient Cl with respect to the trailing-edge thickness, b.

Figures 14–16 indicate that the oscillation frequency of the lift curve (f ) decreases with increase in
b. Figure 16 shows that St first increases and then decreases with increase in b; the value of St peaks at
b = 6.138 mm. Figure 14 indicates that the steady-state lift curve is rather irregular when b is large, as
indicated by the multiple frequency modes in the lift curve (the higher-order modes are significantly
stronger when b is large). Figure 17 illustrates the changes in vortex shedding that occurred as the
truncation shifted rearward (thus increasing chord length and decreasing b).
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3.4. Effects of Angle of Attack

In most scenarios, the hydrofoil has a certain angle of attack, α, that influences the drag and lift of
the hydrofoil. In this section, the value of α of the hydrofoil was varied to examine its effects on wake
vortex shedding. The parameters of the hydrofoil model were c = 88 mm, b = 2.69 mm, and Ure f = 12
m/s. The mesh parameters are the same as those in the previous simulations.

As shown in Table 6, the shedding of wake vortices directly depends on α. At small values of α
(Figure 18), the vortex-shedding behavior is similar to that at α = 0◦. As α increases to a certain value
(Figure 19), the boundary layer at the frontal edge of the hydrofoil begins to dissociate from the surface,
causing the boundary layer near the trailing edge to become thinner. In this scenario, the vortices
shed from the suction surface are much weaker than those shed from the pressure surface. Therefore,
the vortex street in the wake is dominated by vortices from the pressure surface. The vortices from
the suction surface move along the vortices from the pressure surface and rapidly dissipate. When α
increases further (Figure 20), the boundary layer dissociates from the surface of the hydrofoil at its
frontal edge, and the Kármán vortex street is no longer observed in the wake field.

Table 6. Effects of α on wake vortex shedding.

A (◦) Cl F (Hz) St

0 0 845.18 0.190
1 0.086 865.05 0.194
2 0.230 856.60 0.192
3 0.343 855.43 0.192
6 0.618 812.98 0.183
9 1.042 757.99 0.170
12 1.304

By comparing Figure 21a,b and Figure 22, it is found that there is always a stagnation point on the
pressure side at which Cp = 1.0 and that the stagnation point moves away from the leading edge as
the angle of attack increases. As shown in Figure 21a, at α = 3, the lift on the hydrofoil is relatively
small. At the trailing edge, the pressure on the pressure side is lower than that on the suction side.
As shown in Figure 21b, when the angle of attack increases to 6◦, the flow becomes stronger, and the
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pressure difference between the pressure and suction sides increases, which effectively increases the
lift on the hydrofoil.
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Figure 22 shows the pressure distribution on the surfaces of the hydrofoil with a stable lift
coefficient. As shown in Figure 23, where α is large, the lift curve of the hydrofoil stabilizes after a
short period of growth. It can be inferred from the figure that the pressure on the suction and pressure
surfaces of the trailing edge gradually converge to the same value. Then, because these pressures are
the same, the lift can no longer change.
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3.5. Effects of Hydrofoil Thickness

Based on the NACA00 series of hydrofoil models, we designed a set of hydrofoil models with a
trailing-edge thickness and chord length of b = 2.69 mm and c = 88 mm, respectively. These models
were placed in a Ure f = 12 m/s flow field to calculate their flow and drag coefficients. The mesh
parameters used in this simulation are the same as those used in the previous simulations. Vortex
shedding data for different hydrofoils are shown in Table 7.

Table 7. Results obtained after changing the thickness of the hydrofoil.

Hydrofoil Type f (Hz) Cl (max) St

0009 845.18 0.0561 0.190
0012 794.18 0.0497 0.178
0014 743.03 0.0353 0.167
0016 697.51 0.0287 0.157
0018 654.81 0.0215 0.147

The test yielded a time-averaged Cl value of the symmetrical hydrofoil of 0 at α = 0◦. Therefore,
Cd is used to compare the experimental and simulated values. Owing to the lack of test results on
hydrofoils with truncated trailing edges, we only compared the results of the original hydrofoil test
with the simulation results, as shown in Table 8. As shown in the table, the S-A model predicted the
drag fairly precisely.
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Table 8. Results obtained after changing the thickness of the hydrofoil (Re = 3.4 × 10−6).

Hydrofoil Type Cd (exp.) [19] Cd (pre.)

NACA0009 0.00654 0.00649
NACA0012 0.00657 0.00652
NACA0018 0.00725 0.00720

By observing the vortex-shedding states in Figures 24 and 25, it is clear that vorticity of the shed
vortices induced by thicker hydrofoils are significantly lower. Table 6 indicates that the vortex-shedding
frequency decreases with increase in hydrofoil thickness. Furthermore, the effects of vortex shedding
on the lift also decrease with increase in hydrofoil thickness. From Figure 26, it can be observed that
increases in the hydrofoil thickness lead to larger position-dependent changes in the surface pressure;
the position that produces a pressure differential also becomes closer to the trailing edge.
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4. Conclusions

We simulated vortex shedding in the wake flow of an NACA0009 hydrofoil using the S-A
turbulence model. The main purpose of the simulation was to investigate the factors that affect the
vortex-shedding frequency, including the inflow velocity, angle of attack, and trailing-edge thickness.
Firstly, it was found that the increase in vortex-shedding frequency was almost linear with the inflow
velocity. However, the nondimensional Strouhal number remained almost constant at 0.19. Secondly,
the oscillation of vortex shedding could be reduced by increasing the angle of attack. When the angle
of attack was sufficiently large, the oscillation was negligible. Thirdly, increases in the trailing-edge
breadth led to increases in the vortex-shedding frequency. Importantly, there was a specific breadth
corresponding to the maximum Strouhal number. Finally, it was found that a larger maximum thickness
of the hydrofoil led to lower frequency and more condense vorticity of vortex shedding.
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