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Abstract: The near-trapping phenomenon, which can lead to high wave elevations and large
wave drift forces, is investigated by a floating four-column structure. To solve this wave-structure
interaction problem, a numerical model is established by combining the wave interaction theory with
a higher-order boundary element method. Based on this numerical model, behaviors of scattered
waves at near-trapping conditions are studied; and the superposition principle of free-surface waves is
introduced to understand this near-trapping phenomenon. To avoid the near-trapping phenomenon
and protect the structure, a way for rotating the structure to change the wave-approach angle is
adopted, and improvements of the wave elevations around the structure and the wave drift forces
acting on each column are found. Moreover, a genetic-algorithm-based optimization method is
adopted in order to minimize the total wave drift force acting on the whole structure at various
wavenumbers by controlling the draft of floating bodies, the wave-approach angle and the separation
distance between adjacent floating bodies. With the final optimized parameters, the wave drift
forces both on each column and on the whole structure can be significantly reduced. The optimized
arrangement obtained from a certain wavenumber can work not only at this target wavenumber but
also at a range of wavenumbers.

Keywords: near-trapping; multiple floating bodies; wave drift force; wave-approach angle;
optimization method

1. Introduction

The floating column-based structures always face complicated wave-structure interaction
problems in ocean engineering [1]. In these problems, trapping phenomenon on structures occurring
at certain wave frequencies means no waves scatter to infinity, which excites an oscillation of the water
free surface in the vicinity of the structures and extreme wave forces on the structures. The trapped
mode was first identified in an open channel by Ursell [2], and was proven by Callan [3] in the case
of a submerged horizontal cylinder. Subsequently, trapping modes were observed by Maniar and
Newman [4] in a large number of equally-spaced vertical cylinders located in a line. Motivated by
Maniar and Newman [4], Evans and Porter [5] considered a number of bottom-mounted cylinders in
circular configurations and firstly found the near-trapping phenomenon. They defined it as a local
oscillation in the vicinity of the array at a well-defined frequency. At the near-trapping frequency,
Evans and Porter [5] also found high wave elevations near the cylinders and large wave drift forces
acting on each cylinder. Then, Jiang et al. [6] investigated the near-trapping phenomenon of four
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surface-piercing truncated cylinders to explain the relationship between the large wave drift forces
on each cylinder and the high local wave elevations. Wang et al. [7] used a viscous-flow-based
analysis method to study the viscous effects in the near-trapping phenomenon on a truncated
four-cylinder structure. Investigations of the near-trapping have also been extended to second-order
or much higher-order nonlinear wave diffraction problems. Malenica et al. [8] and Grice et al. [9]
have semi-analytically studied the second-order diffraction of monochromatic waves by an array
of bottom-seated cylinders and confirmed that the second-order waves can also be near-trapped
in this type of cylinder array. Wang and Wu [10] employed a time domain method to analyze the
near-trapping in an array of vertical cylinders. Bai et al. [11] used the fully nonlinear boundary
element method to analyze the near-trapping phenomenon and proved the third-order excitation of
near-trapping in these vertical cylinders. Cong et al. [12] showed the first-order and second-order
wave elevations around the four vertical cylinders at the near-trapping frequency under different
wave directions.

Recently, studies for avoiding the near-trapping phenomenon have attracted many researchers’
interests. To avoid the near-trapping phenomenon at a certain frequency, Duclos and Clement [13]
studied a disorder parameter to randomly displace the array of unevenly-spaced vertical cylinders
from a regular array. Chen et al. [14] investigated the effects on the near-trapping due to the porosity of
vertical cylinders and disorder of layout using the null-field integral equations. Evans and Porter [15]
and Cong et al. [12] studied the effects of wave direction on the wave elevation and the exciting
forces in the near-trapping modes of four bottom-mounted-columns; unfortunately, the effects on
wave drift forces were not studied. To reduce the wave drift force and improve the hydrodynamic
performance of the structures in waves, an optimization scheme is a powerful tool for this type
of problem. Newman [16] used WAMIT and the multivariate optimizer PRAXIS to optimize the
wave drift force on multiple truncated cylinders. He found that the scattered wave energy of the
structure with a configuration that a truncated cylinder surrounded by several outer cylinders can
be minimized almost to zero, which is known as the cloaking phenomenon. Following Newman’s
works, Iida et al. [17] minimized the wave drift force on the inner cylinder by adopting a binary-coded
genetic algorithm developed by Tasrief and Kashiwagi [18]. By developing a real-coded genetic
algorithm (GA), Zhang et al. [19] optimized the wave drift force on a structure that a truncated cylinder
surrounded by four outer cylinders at various wavenumbers to achieve the cloaking phenomenon.
Although the optimization method has been widely used for cloaking problems, it has been rarely
introduced into the near-trapping problem.

Above all, some issues about the near-trapping phenomenon still require further studies. In this
paper, the occurrence mechanism, wave direction effects on the wave drift force and the optimization
method for near-trapping phenomenon are studied using four surface-piercing truncated cylinders.
First, to investigate the mechanism of local oscillation of the water free surface at near-trapping
frequencies, the behaviors of scattered waves and the superposition principle of waves are studied
based on a combination of the wave interaction theory and the higher-order boundary element
method. Second, a way for rotating the structure to change the wave-approach angle is conducted
to avoid the near-trapping modes. A significant reduction of wave drift forces on each cylinder is
found. Third, to reduce the wave drift force on the whole structure, the real-coded genetic algorithm
developed by Zhang et al. [19] is adopted at near-trapping frequency by controlling the dimension
of the structure and the angle of wave approach. It is found that the wave drift force not only on
the whole structure but also on each column can be reduced for the optimized arrangement. Finally,
the optimizations of the structural dimension and wave-approach angle are conducted at various
wavenumbers to reduce the wave drift force on the whole structure. It is found that the optimized
arrangement obtained from a certain wavenumber can work not only at this target wavenumber but
also at a range of wavenumbers.
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2. Theory

In this study, the wave interaction theory [20] is adopted to model this wave-structure interaction
problem, while a higher-order boundary element method [21] is introduced as a numerical tool to
discrete the equations. For the optimization problem, a real-coded genetic algorithm [19] is used to
build the optimization scheme.

2.1. Structural Arrangement

A configuration of four identical truncated cylinders is considered, as shown in Figure 1. Each
cylinder locates regularly with a distance, L, from the coordinate origin. The incident wave comes
from the direction of the negative x-axis. The wave-approach angle β, of the four-column structure
changes clockwise.
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(a) Top view

a 

d 

(b) Perspective view

Figure 1. Notation of parameters: (a) wave-approach angle β and parameter L; (b) radius a and draft d
of the cylinders.

The radius a of the cylinders is fixed (a = 1.0 m). The draft d of the cylinders and the parameter L
and the wave-approach angle β, as shown in Figure 1, are set as variables to optimize the wave drift
force on the whole structure in the following optimization process. All geometric dimensions of the
cylinders are normalized with respect to the radius a of the cylinders.

2.2. Wave Drift Force and Wave Elevation

This wave-structure interaction problem is solved based on the linear potential theory, while the
Laplace’s equation is taken as the governing equation of the flow field.

∇2Φ (x, y, z; t) = 0 (1)

The linearized boundary conditions that are satisfied by the velocity potential are summarized
as follows:

[F]
∂2Φ
∂t2 + g

∂Φ
∂z

= 0 , at z = 0 (2)

[H]
∂Φ
∂n

= 0 , on the surface of a cylinder (3)

[B]
∂Φ
∂z

= 0 , at z = h (4)

where, F, H and B denote the free surface condition, the body surface condition and the water bottom
condition, respectively; h denotes the water depth and deep water condition considered in this paper.

Using the wave interaction theory, besides the global coordinate system o − xyz, the local
coordinate systems on − xnynzn fixed at the center of the n-th cylinder is used, as shown in Figure 2.
A Cartesian coordinate systems of the form on − xnynzn and a cylindrical coordinate system o− rθz
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are both adopted. The positive direction of the z-axis is in the downward vertical direction, and the
origin of each coordinate system (z = 0) is spaced on an undisturbed free surface.

xk 

o 

x 

zk 

yn 

xn zn 

knk  z 

nok  

On 

ok 
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yk 

noL  

knL  

Figure 2. Global and local coordinate systems.

Based on the principle of linear superposition, the velocity potential can be expressed as follows:

Φ(x, y, z; t) = Re[
gζ0

iω
ϕ(P)eiωt] (5)

where
ϕ(P) = ϕI(P) + ψ(P) (6)

Here, Re[ ] in Equation (1) means the real part to be taken; ω and ζ0 denote the circular frequency
and amplitude of the incident waves, respectively; g is the gravitational acceleration; P = (r, θ, z) is
a field point in the flow; In Equation (2), ϕ(P) is the sum of the incident-wave potential ϕI(P) and
disturbance potential ψ(P). The cylinders are assumed to be fixed, and only the diffraction problem
is considered.

The linear regular waves are considered, and the incident-wave is assumed to come from the
negative x-axis; therefore, the incident potential ϕI(P) can be introduced in a cylindrical coordinate
as follows:

ϕI(P) =
cosh k0(z− h)

cosh k0h
e−ik0x

=
∞

∑
m=−∞

αmZ0(z)Jm(k0r)e−imθ
(7)

where

αm = e−imπ/2, Z0(z) =
cosh k0(z− h)

cosh k0h
(8)

K =
ω2

g
= k0 tanh k0h (9)

Here, the Bessel function of the first kind of order m is denoted by Jm(k0r).
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The disturbance potential, due to the presence of multiple floating bodies in the incident waves,
is denoted as ψ(P). As derived in Kagemoto and Yue [20], the total disturbance potential ψ(P) for a
four-column structure can be expressed as:

ψ(P) =
4

∑
n=1

ψn(P) ≈
4

∑
n=1

∞

∑
l=−∞

An
l Z0(z)H(2)

l (k0rn)e−ilθn (10)

Under an assumption of wide-spacing approximation [20], only progressive waves are considered
in Equation (10), while the evanescent waves are neglected. Here, An

l denotes the complex amplitude
of the scattered progressive waves around the n-th cylinder. An

l can be solved by a higher-order
boundary element method reported in Kashiwagi [21]. The second kind of Hankel function of order l
is denoted by H(2)

l (k0rn).
Rewriting the disturbance potential in the global cylindrical coordinate systems, using the Graf’s

addition theorem for Bessel function, ψ(P) can be given in the following form:

ψ(P) =
∞

∑
m=−∞

AmZ0(z)H(2)
m (k0r)e−imθ (11)

where

Am =
4

∑
n=1

∞

∑
l=−∞

An
l Jl−m(k0Lno)e−i(l−m)κno (12)

Then, the entire velocity potential can be introduced as the sum of the incident-wave potential
and the disturbance-wave potential.

ϕ(P) = ϕI(P) + ψ(P) =
∞

∑
m=−∞

[αm Jm(k0r) + AmH(2)
m (k0r)]Z0(z)e−imθ (13)

Based on the velocity potential expressed in cylindrical coordinate systems, the total wave drift
force acting on the entire cylinders can be obtained using the far-field method initiated by Maruo [22].

Ftotal
x − iFtotal

y

ρgζ2
0a/2

=
i

C0Kr

∞

∑
m=−∞

[2Am A∗m+1 + αm A∗m+1 + α∗m+1 Am] (14)

Performing the same analytical method in the n-th local coordinate system, the velocity potential
around the n-th cylinder can be written as follows:

ϕn(P) = ψn
I (P) + ψn(P) = (ϕn

I (P) +
4

∑
k=1,k 6=n

ψkn(P)) + ψn(P)

=
∞

∑
m=−∞

[(αn
m +

4

∑
k=1,k 6=n

Akn
m )Jm(k0rn) + An

m H(2)
m (k0rn)]

× Z0(z)e−imθn

(15)

where

Akn
m =

∞

∑
l=−∞

Ak
l H(2)

l−m(k0Lkne−i(l−m)κkn) (16)

αn
m = αme−ik0xon (17)
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Then, the wave drift force acting on the n-th (n = 1, 2, 3, 4) individual cylinder can be written as:

Fn
x − iFn

y

ρgζ2
0a/2

=
i

C0Kr

∞

∑
m=−∞

{2An
m An∗

m+1 + (αn∗
m+1 +

4

∑
k=1,k 6=n

Akn∗
m+1)An

m

+ (αn
m +

4

∑
k=1,k 6=n

Akn
m )An∗

m+1}
(18)

where
C0 =

k0

K + (k2
0 − K2)h

(19)

Here, the asterisk ∗ in the superscript denotes the complex conjugate.
The wave elevation can be obtained from the velocity potential. The velocity potential can be

expressed as follows.

Φ = Re[
gη0

2iω
ϕeiωt] (20)

Based on the dynamic boundary condition, the wave elevation ηp can be obtained as

ηp = Re[η0 ϕeiωt] (21)

The velocity potential can be written in the form of ϕ = ϕc + iϕs, and the wave elevation can be
expressed as

ηp

η0
= Re[(ϕc + iϕs)eiωt] =

√
ϕ2

c + ϕ2
s cos(ωt + arctan

ϕs

ϕc
)

=
η

η0
cos(ωt + arctan

ϕs

ϕc
)

(22)

Here, η
η0

denotes the non-dimensional wave elevation.

2.3. Description of GA

A real-coded Genetic Algorithm (RGA) proposed in Zhang et al. [19] is adopted to minimize the
wave drift force acting on the four-column structure by optimizing the dimensions of the structure.
The set-up of this algorithm is as follows:

2.3.1. Initial Population

A series of initial individuals composed of variables are generated randomly in the search space.
An individual denotes a potential solution to the problems. In this study, the number of the initial
individuals is 100.

2.3.2. Operators

Genetic algorithm (GA) is an intelligent optimization algorithm, which mimics the process of
natural selection. The roulette selection operator, the real-value crossover, the real-value mutation
operator and elitism are employed in this study. Here, elitism means that the best individual
composed of certain variables can always be reserved to avoid being broken by the crossover and the
mutation operators.

2.3.3. Variables and Objective Function

In the present optimized progress, three dimensional parameters d, L and β are selected as the
variables, while the absolute value of the wave drift forces acting on the whole structure is selected as
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the objective function. By optimizing d, L and β, the minimized wave drift force on the four-column
structure can be obtained.

2.3.4. Constraints

The arrangements of the four cylinders are limited to the geometric constraints that the adjacent
cylinders can not overlap. The locations of the four cylinders are decided by L and a. Thus,
the constraints of these two variables can be mathematically described as follows,

√
2L > 2a.

2.3.5. Termination Conditions

The optimization process can be terminated if any following conditions are satisfied: (1) the elite
values of the objective are not improved in more than 30 generations. (2) The number of generations is
larger than 100.

3. Numerical Results and Discussion

As mentioned, a higher-order boundary element method is adopted to obtain the complex
amplitude An

l for the n-th (n = 1, 2, 3, 4) cylinder. The Green function satisfying the free-surface
condition is used, only the surface of the truncated cylinders should be discretized.

3.1. The Near-Trapping on the Four-Column Structure

A four-column structure with the dimensions shown in Table 1, which is the same as that in
Jiang et al. [6], was considered. The resultant wave drift forces Fn =

√
(Fn

x )
2 + (Fn

y )
2 acting on the

n-th (n = 1, 2, 3, 4) cylinder against a range of wavenumbers were calculated, as shown in Figure 3. It
can be noted that the wave drift forces acting on each cylinder, seeing Figure 3, simultaneously become
large at the same wavenumber k0a ≈ 1.68, which is known as the near-trapping frequency.

Table 1. The configuration of the four-column structure.

L β d a

2
√

2 0◦ 3.0 1.0

-1.5
-0.9
-0.3
0.3
0.9
1.5

-0.1
0.6
1.3
2.0
2.7

0.0 0.6 1.2 1.8 2.4 3.0
-0.3
0.3
0.9
1.5
2.1

F/
g

 a No. 1

k0a = 1.68

No. 3

F/
g

 a
F/

g
 a No. 2/No. 4

k0a

Figure 3. The wave drift forces acting on each cylinder.

As is known, associating with this extreme phenomenon, the local resonance of the water free
surface can be excited. The dimensionless wave elevation at k0a = 1.68 was calculated and shown in
Figure 4a. The wave profile of the No. 3 cylinder at the near-trapping mode in the local coordinate
system o3 − x3y3z3 is presented in Figure 4b, and the corresponding wave profile of a single cylinder
is also plotted for comparison.
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(a)

-3.0 -1.5 0.0 1.5 3.0

0

1

2

3

4

X

 Single cylinder
 Near-trapping

No. 3

(b)

Figure 4. The dimensionless free-surface elevation at k0a = 1.68: (a) perspective view; (b) profile of the
No. 3 cylinder.

From Figure 4a, it can be found that the run-up on the cylinders inside the structure is very large.
The maximum wave elevation in the weatherside of the No. 3 cylinder is more than 4.4 times of the
incident waves, which can be obviously seen from Figure 4b; however, the wave elevation is close to
zero in the leeside of the structure, which means nearly no waves scatter to far field. Here, the local
wave resonance of run-up on the cylinder may be easily over-estimated due to ignoring the nonlinear
and viscous effects. To obtain an exact result for the extreme run-up, a nonlinear theory considering
the viscosity of the fluid should be carefully introduced.

To further understand the “trapping” of waves, the dimensionless scattered-wave elevation
at k0a = 1.68 is calculated and shown in Figure 5a, while the scattered-wave profile of the No. 3
cylinder in the local coordinate system o3 − x3y3z3 is shown in Figure 5b. A local resonance of the
scattered waves can also be found in Figure 5a,b, while the scattered-wave elevation in the leeside of
the structure is not zero, which means some scattered waves radiate to the far field. It is interesting
that the total wave in Figure 4b almost does not scatter to the far field, while the scattered wave in
Figure 5b radiates.Therefore, this difference between the free-surface elevation and the scattered-wave
elevation in the leeside of the structure needs to be studied.
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(a)

-3.0 -1.5 0.0 1.5 3.0
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4
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 Single cylinder
 Near-trapping

No. 3

(b)

Figure 5. The dimensionless scattered-wave elevation at k0a = 1.68: (a) perspective view; (b) profile of
the No. 3 cylinder.

The superposition principle of the water free surface is adopted to explain the above-mentioned
contradiction. As known, the water free surface can be regarded as the superposition of the incident
waves and the scattered waves. The distribution of free surface elevation ηp

η0
at k0a = 1.68 with

consideration of the initial phase was calculated by Equation (22), as shown in Figure 6.
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(b)
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(c)
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(d)

Figure 6. The wave elevation ηp/η0 considering the initial phase at k0a = 1.68: (a) total waves;
(b) scattered waves; (c) incident waves; (d) scattered waves and incident waves.
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Figure 6a shows the results of the total free surface. The peaks of free surface near No. 2 and
No. 4 cylinders can be found with the troughs of free surface near No. 1 and No. 3 cylinders, which
demonstrates that the peaks and the troughs of this local resonance coexist at the near-trapping
frequency. Moreover, almost zero wave elevation in the leeside of the structure can be observed
in Figure 6a.

Figure 6b shows the results of the scattered waves. The peaks and the troughs inside the structure
have the same trends as that of the total free surface shown in Figure 6b, but the scattered-wave
elevation in the leeside is obviously not zero. This phenomenon was also mentioned and clearly seen
in Figures 4b and 5b.

Figure 6c shows the results of the incident waves. To analyze the superposition between the
scattered waves and the incident waves, the half contents respective in Figure 6b,c are drawn in one
figure, as shown in Figure 6d. In Figure 6d, the upper part is the results of the scattered waves, while the
lower part is the results of the incident waves. From Figure 6d, the phase difference between the scatted
waves and the incident waves is obviously found, and it shows great effects on the near-trapping
phenomenon. The mutual promotion between the scattered waves and the incident waves inside the
structure can be observed, while the cancellation effects between the scattered waves and the incident
waves can be visibly found, which explained the small wave elevation in the leeside of the structure as
shown in Figure 4a.

3.2. Avoid Near-Trapping by Changing Wave-Approach Angle

Based on the idea of breaking the symmetry of the structure about the wave direction to destroy
the near-trapping mode (k0a = 1.68), a means of rotating the structure to change the wave-approach
angle, β, was adopted. In this simulation, the other two parameters (L, d) of the four-column structure,
shown in Table 1, are fixed. The wave elevations and the wave drift forces of the four-column structure
at three conditions β = 15◦, β = 30◦, β = 45◦ were analyzed in these studies. For the convenience
of the following comparisons, the free-surface elevation and the scattered-wave elevation of a single
cylinder (a = 1.0, d = 3.0) at k0a = 1.68 are, respectively, shown in Figures 7 and 8.

Figure 7. The free-surface elevation η/η0 of single cylinder at k0a = 1.68.

Figure 8. The scattered-wave elevation of single cylinder at k0a = 1.68.
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The free-surface elevation and the scattered-wave elevation of the four-column structure at
k0a = 1.68 against three wave-approach angles were calculated and shown in Figure 9. In Figure 9,
the upper three subgraphs are, respectively, the dimensionless free-surface elevations of β = 15◦,
β = 30◦, β = 45◦, while the lower three subgraphs are the scattered-wave elevations. From Figure 9,
it can be seen that the local resonances inside the structure disappear while those are clearly seen in
Figures 4 and 5. Especially for β = 15◦, the behavior of the free surface and the scattered waves are
more like that of the single cylinder shown in Figures 7 and 8.

(a) free-surface elevations

(b) scattered-wave elevations

Figure 9. The free-surface and scattered-wave elevations of the four-column structure at k0a = 1.68
against three different wave-approach angles.

Next, the resultant wave drift forces on each cylinder at different wave-approach angles were
calculated and analyzed. Figure 10a shows the results of the original structure (β = 0◦), in which
very large wave drift forces are found due to the near-trapping that occurred at k0a = 1.68.
From Figure 10b–d, it can be found that the extreme wave drift forces on each cylinder disappear
at k0a = 1.68 for β = 15◦, β = 30◦, β = 45◦. Moreover, the maximal wave drift forces do not even
occur on each column at the range of 0 < k0a < 3.0, not just at k0a = 1.68, as shown in Figure 10b–d,
which means the way of changing the wave-approach angle can play a significant role in destroying
near-trapping modes.
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Figure 10. The wave drift forces on each cylinder against four different wave-approach angles:
(a) β = 0◦, (b) β = 15◦, (c) β = 30◦, (d) β = 45◦.

Focusing on the wave drift forces at k0a = 1.68 shown in Figure 10, Figure 11 is drawn. Figure 11
presents the values of wave drift forces acting on each column against different wave-approach angles
at k0a = 1.68, while the percentage in the bracket means the ratios between the decrement of wave
drift force on each cylinder due to the change of wave-approach angle and the wave drift forces on
the corresponding cylinder at β = 0◦. The maximum wave drift forces can be found at β = 0◦ for
each cylinder. Due to the change of wave-approach angle, the wave drift forces on each cylinder
are significantly reduced. For example, the wave drift force acting on the No.1 cylinder at β = 0◦

(F1 = 1.2562) is reduced by 83% to 0.2174 if the wave-approach angle changes to β = 15◦.
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Figure 11. The wave drift forces on each cylinder against four different wave-approach angles and the
corresponding decrement percentage at k0a = 1.68.
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Then, the total wave drift forces Ftotal =
√
(Ftotal

x )2 + (Ftotal
y )2 acting on the whole structure over

a wide range of wavenumbers were calculated, as shown in Figure 12. It can be found that the wave
drift forces on the whole structure can not be significantly reduced at k0a = 1.68 like that of the wave
drift force on each cylinder just by changing the wave-approach angle. Moreover, the wave drift forces
become larger for long waves (0.5 < k0a < 0.9) when the wave-approach angle changes from β = 0◦,
which implies that the way of just changing the wave-approach angle to reduce the wave drift forces
on the whole structure needs to be carefully employed.
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0

1

2

3

4
k0a = 1.68
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Figure 12. The total wave drift forces on the whole structure with different wave-approach angles.

Figure 13 shows the comparison of the wave drift forces on the whole structure between different
wave-approach angles at k0a = 1.68. The minimum value can be found at β = 15◦. It should be noted
that the way of changing wave-approach angles to reduce the wave drift forces at k0a = 1.68 is limited;
even for the best case, β = 15◦, the reduction of the wave drift forces on the whole structure is limited
at 20%. Thus, an optimization method seems needed to significantly reduce the wave drift forces on
the whole structure, which will be treated in the following subsections.
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Figure 13. The total wave drift forces on the whole structure with different wave-approach angles and
the corresponding decrement percentage at k0a = 1.68.

3.3. Optimization of Wave Drift Force on the Whole Structure

To reduce the wave drift force both on the whole structure and on each cylinder, a real-coded
optimization algorithm developed by Zhang et al. [19] is adopted. The optimal variables chosen
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to minimize the wave drift force Ftotal are the wave-approach angle β, the length parameter L and
the draft d of cylinders, which are defined in Figure 1. The optimization for k0a = 1.68 was firstly
conducted, and the initial ranges of three variables are 0◦ ≤ β ≤ 45◦, 2.0 ≤ L ≤ 4.5, 2.0 ≤ d ≤ 3.5.
The final optimized variables and the corresponding wave drift force on the whole structure are shown
in Table 2. In this study, using Intel Core I7-4790 (3.60 GHz), the running time of an objective function
evaluation is about 15 s, and the average time in obtaining the optimized results for one wavenumber
is about 19 h.

Table 2. The optimized results of the variables and the corresponding wave drift force.

k0a L β d Ftotal

1.68 3.2694 25.9169◦ 2.0021 1.0945

Figure 14 shows comparisons of the total wave drift forces on the whole structure between the
optimized configuration shown in Table 2 and the original one shown in Table 1. Figure 14 also presents
four times of the wave drift force acting on the single cylinder (a = 1.0, d = 3.0). The reduction of
wave drift forces at k0a = 1.68 by the optimized method can be apparently found.
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1
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3

4

Ft
ot

al
/
g
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 Original
 Optimized
 Four times of

         single cylinder

k0a = 1.68

Original

Optimized

 Four times of 
single cylinder

Figure 14. The total wave drift forces on the original structure, optimized structure and four times of
single cylinder.

Figure 15 shows the corresponding comparison of the total wave drift forces at k0a = 1.68 between
the original structure, optimized structure, four times of single cylinder. The optimized wave drift
force can be significantly decreased by 52% of the original wave drift force and 55% of the four times
of the single cylinder.
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Figure 15. The total wave drift forces on the original structure, optimized structure and four times of
single cylinder at k0a = 1.68.

Then, the free-surface elevation and the scattered-wave elevation at k0a = 1.68 were calculated
for the optimized structure, as shown in Figures 16 and 17. From Figures 16 and 17, it can be found
that the local resonance of the free-surface and the scattered waves disappears, and the wave patterns
near each cylinder are like that of the single cylinder shown in Figures 7 and 8.

Figure 16. The free-surface elevation of optimized structure at k0a = 1.68.

Figure 17. The scattered-wave elevation of optimized structure at k0a = 1.68.

Next, the wave drift forces on each cylinder of the optimized structure were calculated and
shown in Figure 18. Compared with Figure 10a, the resonance of wave drift forces at k0a = 1.68 also
disappears, which means this optimized configuration for minimizing the wave drift force on the
whole structure can also reduce the wave drift forces acting on each cylinder. Moreover, the resonance
of the wave drift forces can not be found in the range of 0 < k0a < 3.0.
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Figure 18. The wave drift forces on each cylinder with optimized structure.

To quantitatively show the reduction of the wave drift force on each cylinder, the values of the
wave drift force on each cylinder for the original and optimized structures at k0a = 1.68 were compared
and shown in Figure 19. From Figure 19, it can be found that the wave drift forces on each cylinder are
also being significantly reduced by this optimization.

1.2562

0.2063

1.8401

0.5131

2.3962

0.3309

1.8401

0.1298
0.0

0.7

1.4

2.1

2.8

No. 4No. 3No. 2

 Original
 Optimized

F/
g

a

No. 1

84%
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Figure 19. The wave drift forces on each cylinder for the original structure and the optimized structure
at k0a = 1.68.

To understand the reduction of wave drift force on each cylinder by the optimized method, wave
profiles around each cylinder surface for the original structure and the optimized structure were
calculated and analyzed at k0a = 1.68 in local coordinate systems. The upper four subgraphs shown
in Figure 20a are the wave profiles of each cylinder in the original structure at k0a = 1.68, which
corresponds to the near-trapping phenomenon, while the four subgraphs in Figure 20b show the wave
profiles of each cylinder in the optimized structure. In each subgraph, the projections of the data
onto the three coordinate planes are also presented. From these subgraphs, it can be found that the
wave difference between two sides of each cylinder with optimized arrangement is very small, which
contributes to the reduction of wave drift force shown in Figure 19. Therefore, the wave drift forces on
each cylinder have a strong connection with the local waves near each cylinder.
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(a) the original structure

(b) the optimized structure

Figure 20. The free-surface and scattered-wave elevations of the four-column structure at k0a = 1.68
against three different wave-approach angles.

Finally, the optimization method was applied to minimize the total wave drift force on the whole
structure for four other different wavenumbers: k0a = 1.0, 1.2, 1.4, 1.8. The final optimized values of
three variables (β, L, d) obtained by the genetic algorithm (GA) and the corresponding wave drift forces
Ftotal are shown in Table 3. In Table 3, the minimum gap ratio (

√
2L/2a = 1.86) of adjacent cylinders

can be obtained at the case of k0a = 1.2, which still satisfies the wide-spacing approximation [20].
Therefore, the wave drift forces presented in Table 3 calculated based on this approximation are valid.

Table 3. The optimized results of the variables and the corresponding wave drift forces at
k0a = 1.0, 1.2, 1.4, 1.8.

k0a L β d Ftotal
c

Original Optimized

1.0 3.2188 44.8545◦ 2.5258 2.0594 0.9314 55%
1.2 2.6235 44.9831◦ 2.5089 1.6851 1.1728 30%
1.4 4.0762 26.3420◦ 2.7528 1.9467 1.1417 41%
1.8 3.0712 25.7292◦ 2.6103 2.0350 1.0945 46%

In Table 3, c = (Ftotal(original)− Ftotal(optimized))/Ftotal(original) is used to define the reduction
of the wave drift force by the optimized method. From Table 3, it can be found that the wave drift force
Ftotal at each wavenumber is significantly reduced by the optimized method. For the case of k0a = 1.0,
the wave drift force on the whole structure can be decreased by 52%.

Figure 21 shows comparisons of the wave drift forces on the whole structure between the original
structure and the optimized arrangements at four different wavenumbers. In Figure 21, the solid
line denotes the wave drift forces on the original structure. It can be found that the wave drift force
with optimized arrangements can be significantly reduced at each target wavenumber. It should be
noted that the optimized arrangement obtained for a certain wavenumber can work not only at this
target wavenumber but also at a range of wavenumbers close to this wavenumber. For example,
the optimized arrangement obtained for k0a = 1.0 can also work at 0.84 ≤ k0a ≤ 1.18, which means the
optimization structure can be applied to wide frequencies close to the target frequency in the real sea.
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Figure 21. The total wave drift force for the original structure and the optimized structure.

4. Conclusions

With a combination of the higher-order boundary element method and the wave interaction theory,
the near-trapping phenomenon on a four-column structure was studied by analyzing the behavior of
scattered waves and the superposition principle of the free surface at the near-trapping mode. Then,
to avoid this extreme phenomenon, the sensitivity of the wave-approach angle was investigated. Next,
to reduce the wave drift forces on the whole structure, a real-coded genetic optimized algorithm was
adopted to optimize three variables (β, L, d). The comparison of the performance of the wave drift
force and the wave elevation between the original and optimized structures was conducted. Based on
the present study, it can be concluded that:

1) The way of changing the wave-approach angle to avoid the near-trapping phenomenon is effective
due to the fact that the symmetry of the structure is destroyed. The wave elevation, the wave
drift forces on each cylinder can be improved at the near-trapping frequency by changing the
wave-approach angle, while the decrease of the wave drift force on the whole structure is limited.

2) The reduction of the wave drift force not only on the whole structure at the k0a = 1.68 but also on
each cylinder by the optimized method was validated. The improvement of the wave elevation
near the cylinder contributes to the reduction of the wave drift force acting on each cylinder.

3) The optimization method was applied to minimize the total wave drift force on the whole structure
for four other different wavenumbers. It should be noted that the optimized arrangement obtained
from a certain wavenumber can work not only at this target wavenumber but also at a range of
wavenumbers, which means the optimization of structure can be applied to wide frequencies
in practice.
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Nomenclature

β Wave approach angle
a Radius of the cylinder
d Draft of the cylinder
ω Circular frequency of incident waves
h Water depth
ρ Water density
g Gravitational acceleration
L Distance between the cylinder and the coordinate origin
ζ0 Amplitude of incident waves
η0 Elevation of incident waves
ηp Wave elevation considering phase
η Wave elevation
Fn Wave drift force on the n-th cylinder
k0 Wave number
Ftotal Wave drift force on the four cylinders
c Reduction coefficient of Ftotal by optimized method
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