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Abstract: This paper proposes a wave model for the depth inversion of sea bathymetry based on a
new high-order dispersion relation which is more suitable for intermediate water depth. The core of
this model, a high-order dispersion relation is derived in this paper. First of all, new formulations of
wave over generally varying seabed topography are derived using Fredholm’s alternative theorem
(FAT). In the new formulations, the governing equation is coupled with wave number and varying
seabed effects. A new high-order dispersion relation can be obtained from the coupling equation. It
is worth mentioning that both the slope square and curvature terms ((∇h)2,∇2h, (∇k)2,∇2k,∇h · ∇k)
of water wavenumber and seabed bottom are explicitly expressed in high-order dispersion relation.
Therefore, the proposed method of coastal bathymetry reversion using the higher-order dispersion
relation model is more accurate, efficient, and economic.

Keywords: Fredholm’s alternative theorem; wavenumber coupling equation; high-order dispersion
relation; coastal bathymetry

1. Introduction

In coastal engineering, real-time updated and accurate water depth data are critical to solve many
marine problems [1–7]. Traditionally, marine bathymetry data are mainly obtained by using sonar to
carry out field exploration. Usually, the sonar equipment and the positioning system are installed in
the measuring ship. The mesh point is arranged in the sounding water area for measurement, and the
data processing is performed later. This field measurement is not only costly to operate, but also takes
long duration. Due to the limitation of the regional environment, some areas cannot be measured,
resulting in the lack of water depth data in these areas [8]. In addition, the ship survey is greatly
affected by the weather conditions. Since traditional measurement methods have so many limitations,
it is urgent to explore alternative methods.

With the development of aerial photography technology, radar and remote sensing technology,
satellite derived bathymetry (SDB) is being adopted as a cheaper and more spatially extensive method
for bathymetric mapping than traditional acoustic surveys [9–11]. However, the acquisition of depth
information is affected by chlorophytes, suspended sediment, dissolved organic matter in air colour
and other information in water. Therefore, in water areas with large interference from human activities
and muddy water, extremely high requirements are put forward for the spectral analysis of remote
sensing [12]. In other words, when the visibility of water is limited, it will lead to low accuracy in
field measurements.
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Although the method of coastal bathymetry by remote sensing and other technologies has many
limitations, it cannot be abandoned due to its large coverage area and low budget. An interdisciplinary
approach is the analysis of coastal gravity waves observed on high resolution satellite imagery over
ocean which provides us with quantitative methods for estimating depth in shallow parts of the
sea [13]. For instance, based on the dispersion relation and linear wave hypothesis under shallow
water conditions, the bathymetry inversion system cBathy has combined an imaging technique with
remote sensing, UAV (Unmanned Aerial Vehicle) systems, or GIS (Geographic Information System) to
obtain the parameters needed for bathymetry inversion [14–19]. At the beginning, aerial photography,
radar, or remote sensing technology are used to obtain the spatial-time sequence digital image or
video image of the surface wave in the target sea area [14,18]. The acquired digital image of the sea
surface or video image is identified and analyzed to obtain the wave distribution information, which is
substituted into the dispersion relation model to calculate the water depth. This bathymetric technique
can not only overcome the low accuracy caused by the water environment, but also obtain the water
depth of the target sea area with a wide coverage in real time at a low cost. Therefore, the method
mentioned above has obvious advantages compared with traditional measurement technologies.

However, the accuracy of depth inversion is directly dependent on the knowledge of a good
functional dispersion relation [20]. The wave field models used in the above methods are linear
dispersion relation (ω2 = gktanh(kh)), but this type of model has some trouble with the bar crest area,
such as cBathy which is known to have higher error over the inner bar [21,22]. Tang has shown that
the dispersion relation of the wave model should be used for a wide range of water depths and wave
conditions [23]. Ma and Dong have indicated that the slope effect should be considered when the
bottom slope is larger than 1/30 to obtain a better estimation of wave parameters [24,25].

In order to improve the accuracy of the water depth inversion, some water wave models have
introduced the wave height when using the linear dispersion relation in shallow water [11,14,16].
Utilizing the slope parameter can also define the dispersion relation accurately [26]. Ehrenmark
proposed a wave dispersion relation that only considers the slope of seabed topography [27].
Beji introduced an empirical correction function to improve the explicit approximation of the linear
dispersion relationship for gravity waves [28].

Furthermore, as Zhang et al. have indicated that the mild-slope model (the linear dispersion
relation) is not uniform for all frequencies of waves, and especially in the low frequency range, the
errors induced by neglecting the additional curvature terms become large [29]. It is worth mentioning
that the influence of seabed topography on the model is more obvious in the intermediate water depth.
Water wave resonance can be quite varied and complex, depending on the bottom topographies [30,31].
Motivated by Yu and Howard’s research, a new high-order dispersion relation is proposed using the
coupling equation in this paper, which contains the nonlinear relation of wave number caused by the
change of seabed slope and curvature [32].

This paper is structured as follows. In Section 2 wave potential and the wavenumber coupling
equation over general varying seabed topography are derived based on the Fredholm’s alternative
theorem (FAT). A new high-order dispersion relation including (∇h)2,∇2h, (∇k)2,∇2k,∇h · ∇k is obtained
from the real part of the coupling equation. In Section 3, the numerical results of the coupling model
are presented, which show that the simulated results of the single sinusoidal seabed agree with the
experimental values very well. This verification can be used to prove that the high-order dispersion
relation has higher accuracy than the linear dispersion relation. In Section 4, a future research topic is
envisaged, and a set of bathymetry inversion models with high precision are preconceived by using
high-order dispersion relation. Finally, conclusions are drawn in Section 5.

2. Wavenumber Coupling Equation and High-Order Dispersion Relation

For a small-amplitude wave with angular frequencyω, it is assumed that the flow is incompressible
and irrotational and the pressure is constant at the free surface. The rectilinear coordinates (x, y, z) are
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fixed in space and z = 0 is located at the calm water level. The wave potential Φ(x, y, z, t) must satisfy
the following equation and boundary conditions:

∇
2Φ + Φzz = 0, (−h ≤ z ≤ 0), (1)

Φtt + gΦz = 0, at z = 0, (2)

Φz +∇h · ∇Φ = 0, at z = −h. (3)

where ∇ represents the horizontal gradient operator, example:∇ =
(
∂
∂x , ∂

∂y

)
.

2.1. Fredholm’s Alternative Theorem (FAT)

Fredholm’s alternative theorem (FAT) [33] is introduced in this section and briefly described as
follows. Mathematically, a non-homogeneous problem can be solved whenever the corresponding
homogeneous problem has unique trivial solution. However, in the alternate case, when uniqueness
fails, it is solvable if and only if certain orthogonality conditions are satisfied. In other words, if the
homogeneous equation has a non-trivial solution, then the corresponding non-homogeneous equation
has a solution if and only if the orthogonality condition is satisfied. This theory is referred to as FAT
(Fredholm’s alternative theorem).

Introduce a differential operator L̃ and its adjoint Ñ, acting on function φ1 and φ2, respectively.
Rewrite equation of Friedman as defined as∫ z2

z1

(
φ1̃Lφ2 −φ2Ñφ1

)
dz = J(φ1,φ2)

∣∣∣z2

z1
, (4)

where L̃φ2 =
∂2φ2
∂z2 and Ñφ1 =

∂2φ1
∂z2 Friedman indicated that z1 and z2 are arbitrary constants [33].

And J(φ1,φ2) is the conjunct of the functions φ1 and φ2, defined as

J(φ1,φ2) = φ1
∂φ2

∂z
−φ2

∂φ1

∂z
. (5)

If L̃ = Ñ, the differential is said to be formally self-adjoint. If, in addition, boundary conditions for
φ1 and φ2 are such that the conjunct J vanishes identically, the operator is said to be Hermitian.

Considering the Laplace differential operator for water wave problems, let

Ñ =

(
∂2

∂x2 ,
∂2

∂y2

)
, and L̃ =

∂2

∂z2 , (6)

thus, the Laplace Equation (1) can be re-written as:

L̃Φ =
∂2Φ
∂z2 = −ÑΦ = −∇2Φ, (−h ≤ z ≤ 0). (7)

Since the operator Ñ commutes with the operator L̃, we may treat Ñ as a constant in the process of
dealing with operator L̃. In other words, Equation (1) will be first considered as an ordinary differential
equation for function of z, together with boundary conditions.

For the water wave problem, the operator L̃ is only formally self-adjoint, i.e., Ñ = L̃, but not
Hermitian due to the non-homogeneous boundary conditions at free surface and bottom. z1 and
z2 are defined as water surface and seabed, respectively. Applying the FAT to the homogeneous
and non-homogeneous solutions of the wave problem, i.e., substituting φ1 and φ2 to be solved, the
orthogonality condition for waves over a varying bottom can be obtained
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∫ 0

−h

[
φ1
∂2φ2

∂z2 −φ2
∂2φ1

∂z2

]
dZ = J(φ1,φ2)

∣∣∣Z=0
Z=−h. (8)

Assuming that both φ1 and φ2 are Lebesgue square integrable, this theorem is valid for arbitrary
boundary conditions. For water wave problems, both non-homogeneous boundary conditions on the
free surface and bottom will be applicable. However, if the functions are not square integrable, the
Fredholm alternative theorem can be extended to such cases as Garabedian indicated [34].

2.2. Wavenumber and Velocity Potential Coupling Equation

Assume that the velocity potential has the following form of variable separation:

Φ(x, y, z, t) = f (q, Q)φ(x, y, t) + non− propagating modes, (9)

where Q = k(z + h), q = kh, σ = tanh(q), f = cosh Q/ cosh q is the eigen-function of homogeneous
solution, φ(x, y, t) is the 2-D wave velocity potential and Φ(x, y, z, t) is the 3-D wave potential.
Substituting φ1 = f and φ2 = Φ, using equation (8), we have:

J( f , Φ)z=0 − J( f , Φ)z=−h +

∫ 0

−h

(
f∇2Φ + Φ

∂2 f
∂z2

)
dz = 0. (10)

Substituting the linearized free surface boundary condition and the bottom boundary condition,
and paying attention to f = 1 or 1/ cosh q, and fz = ktanh(q) and 0 when z = 0 and z = −h,
respectively, the new coupling equation for surface waves propagating over generally varying
seabed may be formulated by utilizing equations above based on FAT governing the velocity potential
φ (x, y, t) and the wavenumber k (x, y):

(Φtt + gkσΦz)z=0 − g
∫ 0

−h

[
f∇2Φ + k2 f Φ

]
dz−

g
cosh q

∇h · ∇Φ
∣∣∣∣∣
z=−h

= 0. (11)

After a long derivation of integration along the vertical direction in the above equation which is
shown in the Appendix A, the time-dependent equation governing the velocity potential φ(x, y, t) and
the wave number k (x; y) is obtained:

φtt −∇ · (P∇φ) +
[
ω2
− k2P− gF

]
φ = 0, (12)

where

F = g
{(

1− σ2
)(

qσ2
− σ

)
k(∇h)2

−
1
2 qσ

(
1− σ2

)
∇

2h−
(
1− σ2

)(
2qσ2

−
5σ
2 −

q
2

)
h∇h · ∇k+

1
4k3

[
q
(
1− σ2

)(
4q2σ2

−
4
3 q2
− 2qσ− 1

)
+ σ

]
(∇k)2 + 1

4k2

[
q
(
1− σ2

)
(1− 2qσ) − σ

]
∇

2k
}
,

(13)

P =
g
[
σ+

(
1− σ2

)
q
]

2k
. (14)

The water depth variable h is the local water depth and is expressed as the function of x and y,
i.e., h(x, y); ω is the wave frequency, g is the gravitational acceleration and k(x, y) is the wave number.
For simplification of derivation, σ = tanh(q) is used, where q = kh is the product of wave number and
water depth. (∇h)2 represents the square term of the slope of the seabed, ∇2h represents the seabed
topography curvature term, (∇k)2 represents the square term of the slope of the water wave number,
and ∇2k represents the water wave number curvature term.
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2.3. New High-Order Dispersion Relation Formulation

A new high-order dispersion relation can be obtained from the derived seabed wave coupling
equation, and the water depth can be directly calculated under medium and small wave conditions.
Let the wave velocity potential function be:

φ(x, y, t) =
1
2

A(x, y, t)eiθ̃ + c.c, (15)

where A(x, y, t) is the amplitude of φ(x, y, t), while θ is the phase of φ(x, y, t), which are defined

by k̃ = ∇θ̃, ω̃= −∂θ̃∂t . Further, c.c is complex conjugate. The coupling equation can be decomposed
into real and imaginary parts of corresponding dispersion relation and wave action conservation,
respectively [35]. Thus, the real part is

ω̃2 = ω2 + P
(̃
k2
− k2

)
+

Att

A
− P
∇

2A
A
−
∇(P) · ∇A

A
− gF, (16)

which leads to a new high-order dispersion relation:

ω2 = gkσ+ Att/A + gk
(
1− σ2

)[
β1
∇

2A
Ak2 + β2

∇
2h
k + β3

∇
2k

k3 + β4
∇A
Ak · ∇h + β5

∇A
Ak3 · ∇k + β6(∇h)2 + β7

(∇k)2

k4 + β8
∇k·∇h

k2

] , (17)

where
β1 = −

[
σ+ q

(
1− σ2

)]
/2

(
1− σ2

)
, (18)

β2 = qσ/2, (19)

β3 = −
[
σ− q

(
1− σ2

)
(1− 2qσ)

]
/4

(
1− σ2

)2
, (20)

β4 = −(1− qσ), (21)

β5 = [σ− q(1− 2qσ)]/2, (22)

β6 = σ(1− qσ), (23)

β7 =
[
q
(
3 + 6qσ− 12q2σ2 + 4q2

)
− 3σ

]
/12, (24)

β8 = q
(
5σ+ q− 4qσ2

)
/2. (25)

In this paper, the change of wave number comes from the change of water depth under the ideal
condition of single sinusoidal topography. The equation can be recovered from the coupling equation
by using the relation of the wave-number slope and curvature with those of the bottom [29], which are
obtained from:

∇k
k

= τ1
∇h
h

, (26)

∇
2k
k

= τ1
∇

2h
h

+ τ2
(∇h)2

h2 , (27)

∇A
A

= τ3
∇h
h

, (28)

∇
2A
A

= τ3
∇

2h
h

+ τ4
(∇h)2

h2 , (29)

τ1 =
[
−q

(
1− σ2

)]
/γ, (30)

τ2 =
[
2q2

(
1− σ2

)
(γ− α)

]
/γ2, (31)
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τ3 = qα/γ2, (32)

τ4 =
[
q2

(
5α− 2γσ2α+

(
1− σ2

)
σ2γ2

)]
/γ4, (33)

α = −σq
(
1− σ2

)
/2, (34)

γ = σ+ q
(
1− σ2

)
. (35)

According to Equations (26)–(35), the change of wave number and the change of velocity potential
function are proportional to the square of slope and curvature of seabed. By substituting β1−8 and
Equations (26)–(35) into Equation (17), the specific formula of the expression of the high-order dispersion
relation of the seabed with varying depth is obtained as follows:

ω2 = gktanh(kh) −
gξ
4
∇

2h +
gkξ2

[
9σ2
− µ1q + µ2q2 + µ3q3 + µ4q4

]
12η3

[
(∇h)2

]
, (36)

ξ = 1− σ2, (37)

η = σ+ qξ, (38)

µ1 = 12σ+ 9σ3, (39)

µ2 = 9 + 45σ2
− 18σ4, (40)

µ3 = 28σ− 78σ3 + 30σ5, (41)

µ4 = 10− 40σ2 + 42σ4
− 12σ6, (42)

where water depth variable h is the local water depth and is expressed as the function of x and y,
i.e.,h(x, y), ω is the wave frequency, g is the gravitational acceleration, and k(x, y) is the wave number.
For simplification of the derivation, σ = tanh(q) is used, where q = kh is the product of wave number
and water depth.

Finally, a new high-order dispersion relation is obtained, which contains the square of the slope
terms and the curvature terms of the seabed.

3. Verification of High-Order Dispersion Relation Model

3.1. Numerical Solution Procedure

For simplicity, the two-dimensional wave problem is studied in this section. For 2-D waves in steady
state φ(x, y, t) = Re

{
φ̃(x, y)e−iωt

}
, and the reflection coefficient Cr is calculated by Cr = Re

{
φ̃(i) − 1

}
,

where the symbol Re represents the real part of a complex value [36]. The coupling equation becomes(
Pφ̃x

)
x
+ pφ̃ = 0, (43)

where
p = k2P + gF. (44)

The boundary conditions for a patch of rippled beds are

φ̃x = −ik
(
φ̃− 2φ̃I

)
(x1 ≤ 0), (45)

φ̃x = ikφ̃ (x2 ≥ L), (46)

where φ̃I = eikx is the incident wave of unit amplitude, x1 and x2 represent the up-wave and down-wave
limits of the computational grid, and L is the length of computation domain. These boundary conditions
have been given previously by Kirby [37].
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Considering potential applications in the three-dimensional wave, a FEM model is developed for
general topography. The FEM model has advantages in the three-dimensional problems with complex
geometries, where it is desirable to use irregular meshes.

Multiplying the entire left-hand side of Equation (43) with a weight function w, and integrating
over the domain (0, L) gives the weighted-residual statement:∫ L

0

{(
Pφ̃x

)
x
+ pφ̃

}
wdx = 0. (47)

Mathematically, the above equation is a statement that the numerical error needs to be zero in the
weighted-integral sense. The trading of differentiability from φ̃ to w provides the weak form∫ L

0

(
Pφ̃xwx − pφ̃w

)
dx−

[
Pwφ̃x

]∣∣∣∣L
0
= 0. (48)

The trading of differentiability from φ̃ to w can only be performed if it leads to boundary terms that
are physically meaningful. The choice of the approximation for weight function gives the boundary
term P

(
φ̃
)
x
φ̃, which has physical meaning of energy flux through a section. It is easy to find that the

primary variable and the secondary variable are φ̃ and
(
φ̃
)
x

respectively. Thus
[
φ̃x

]∣∣∣∣L
0

is the natural
boundary condition. Using the notation of Reddy [38], we have

B(w, φ̃) − l(w) = 0, (49)

where

B(w, φ̃) =
∫ L

0

(
Pφ̃xwx − pφ̃w

)
dx− [ikPwφ̃]

∣∣∣∣L
0
, (50)

and
l(w) = −

[
2ikPwφ̃I

]∣∣∣∣
x=0

(51)

are bilinear and linear forms, respectively. Here, the bilinear form is asymmetric. For a typical element,
φ̃ is approximated by

φ̃ =
4∑

j=1

φ̃ jN j, (52)

where N j are cubic shape functions and φ̃ j are unknowns at the nodes. The water depth h(x), slope and
curvature of both h and k at each element in the FEM scheme can readily be evaluated as

h =
4∑

j=1
h jN j, k =

4∑
j=1

k jN j

hx =
4∑

j=1
h j
∂N j
∂x , kx =

4∑
j=1

k j
∂N j
∂x

hxx =
4∑

j=1
h j
∂2N j

∂2x , kxx =
4∑

j=1
k j
∂2N j

∂2x

(53)

In the FEM schemes, Bubnov–Galerkin method is adopted, thus, the solution shape functions are
used as weighting functions.

As noted by Reddy, not all differential equations admit the functional formulation, and in order
for the functional to exist, the bilinear form must be symmetric in its arguments [38]. Since the weak
form statement is equivalent to the differential equation and the specified natural boundary condition
of the problem, the weak form FEM is used in this study.
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3.2. Numerical Results vs. Experiment Data

This new method of nearshore bathymetry is characterized by the nonlinear relation of wave
number caused by the change in seabed slope and curvature, which is embodied in the square term
of the slope and the curvature term of the seabed. In order to ensure the accuracy of the model,
the numerical results are compared with the experimental values. In this paper, a type of seabed
topography is selected for verification: single sinusoidal ripples.

The single sinusoidal seabed topography is expressed as follows:

h =


h0 x ≤ 0

h0 − B sin Kx 0 < x < 2πn/K

h0 x ≥ 2πn/K

. (54)

In the two-dimensional coordinate system, the high-order dispersion relation (36) becomes:

ω2 = gktanh(kh) + P1
[
(hx)

2
]
+ P2hxx, (55)

where

P1 =
gkξ2

[
9σ2
− µ1q + µ2q2 + µ3q3 + µ4q4

]
12η3 , (56)

P2 = −
gξ
4

. (57)

The new high-order dispersion relation can be applied to surface waves propagating over single
sinusoidal ripples. The dispersion relation is the real part of the water wave governing equation.
we consider several examples pertaining to the interaction of small-amplitude monochromatic water
waves with steep bottom undulations consisting of single sinusoids. Computations of wave reflection
by sinusoidal beds are suitable examples to test the accuracy of the MSE and the coupling equation by
comparing with experimental data from Davies and Heathershaw [39], which is equivalent in that the
high-order dispersion relation is compared with the linear dispersion relation. Considering the same
cases of their papers, the single sinusoidal seabed parameters are listed in Table 1.

Table 1. Parameters in the experiments.

Items (a) (b) (c)

number of ripples n 2 4 10
mean water depth h0 (cm) 15.6 15.6 31.3

amplitude of ripples B (cm) 5 5 5
wavelength of ripples L (cm) 100 100 100

Figure 1a–c show the comparisons between the numerical solution and experimental value of
the high-order dispersion model under three single sinusoidal bottom forms. The x-coordinate in
both figures is double ratio of the wavenumber of surface to the topographic wavenumber, and the
y-coordinate is the reflection coefficient of wave. The experimental data are shown as black dots which
come from the classical model experiment of Davies, the dash line represents the numerical result of
mild-slope equation, and the red dash line represents the numerical result of the modified mild-slope
equation [40] and the solid line is the numerical result of this theory.

It can be seen that the present model and Miles and Chamberlain’s model perform exceptionally
well in predicting experimental data in Figure 1a–c [40]. However, there are still differences, especially
at the subpeak position. In case (a,b), Miles and Chamberlain’s model is the same as the MSE, which is
closer to the experimental data. However, the two models cannot predict the trend from high to low to
high of the experimental data around 2k/K = 2. In case (c), the present model shows better results
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when predicting the subpeak trend compared to the other two models despite a slight phase shift. In
future research, we should explain the reasons for those situations, so that the present model will be
closer to the experimental data.

The numerical results of the present model are presented in Figure 1a–c, which show that the
simulated results of the single sinusoidal seabed agree with the experimental values very well in
general. The fitting effect between the present model and laboratory is much better than that of the
original mild-slope equation (MSE), which can be considered that the high-order dispersion relation is
improved compared with the linear dispersion relation. It is more noteworthy that practical verification
should be illustrated in future research, including comparisons with more complete models for water
wave propagation over variable bathymetry, as the consistent coupled-model theory presented by
Athanassoulis and Belibassakis [41].

Correlation coefficients are calculated between the numerical solutions of the high-order dispersion
relation model and the experimental values in the three cases, which are shown in Table 2. The correlation

coefficient R =
∑M

i=1 [(Si − S)(Oi −O)]/[
∑M

i=1 (Si − S)
2∑M

i=1 (Oi −O)
2
]
1/2

, where Si and Oi denote
predicted and theoretical or observed data, respectively, S and O are mean values of Si and Oi, and
M is the number of evaluation point [42]. It can be observed that the correlation coefficients increase
with the number of ripples. In other words, the high-order dispersion model is more adaptable to real
undulating ocean bed forms.

In other models, it is about 0.75 of the maximum correlation coefficients between the solution
generated by surface wave and seabed [42]. When considering the influence of bottom shape changes
and the wave number changes caused by the topographic change, the high-order dispersion relation
model shows a higher fitting degree and accuracy than the linear dispersion relation.

Table 3 shows the wave number and wave wavelength (m) when the water depth (cm) is different
under single sinusoidal seabed profile (the shape is consistent with case a–c) with a 1s wave period in
the lab wave scale.
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y-coordinate is the reflection coefficient of wave. The experimental data are shown as black dots 

which come from the classical model experiment of Davies, the dash line represents the numerical 

result of mild-slope equation, and the red dash line represents the numerical result of the modified 

mild-slope equation [40] and the solid line is the numerical result of this theory. 

It can be seen that the present model and Miles and Chamberlain's model perform exceptionally 

well in predicting experimental data in Figure 1a–c [40]. However, there are still differences, 

especially at the subpeak position. In case (a,b), Miles and Chamberlain’s model is the same as the 

MSE, which is closer to the experimental data. However, the two models cannot predict the trend 

from high to low to high of the experimental data around 2k/K = 2. In case (c), the present model 

shows better results when predicting the subpeak trend compared to the other two models despite a 

slight phase shift. In future research, we should explain the reasons for those situations, so that the 

present model will be closer to the experimental data. 

The numerical results of the present model are presented in Figure 1a–c, which show that the 

simulated results of the single sinusoidal seabed agree with the experimental values very well in 

general. The fitting effect between the present model and laboratory is much better than that of the 

original mild-slope equation (MSE), which can be considered that the high-order dispersion relation 

is improved compared with the linear dispersion relation. It is more noteworthy that practical 

verification should be illustrated in future research, including comparisons with more complete 

models for water wave propagation over variable bathymetry, as the consistent coupled-model 

theory presented by Athanassoulis and Belibassakis [41]. 
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Figure 1. (a) n = 2, (b) n = 4, (c) n = 10; Reflection coefficients versus 2k/K.

Table 2. Correlation coefficients of each case.

Items (a) (b) (c)

Correlation Coefficient 0.857 0.924 0.965

When the seabed profile is the same, the wavelength and wave number of the high-order dispersion
relation model and linear dispersion model under different water depths are given in Table 3. When the
water depth is shallow or deep, that is, the water depth is 10.0, 15.6, and 30.0 cm, the results calculated
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by the present dispersion relation are not much different from the wave number and wavelength.
However, when the water depth is 20.0 cm, that is, at the intermediate water depth range, the accuracy
difference of the high-order dispersion relation and linear dispersion relation is five times that of other
water depths as mentioned above. This indicates that the high-order dispersion relation has better
adaptability in the intermediate water depth. Therefore, the new high-order dispersion relation is used
to calculate the intermediate water depth with higher accuracy.

Table 3. Wavenumber k and wavelength L (m) calculated by linear and high-order dispersion.

Water Depth (cm) 10.0 15.6 20.0 30.0

Linear dispersion relation wavenumber (k) 6.802 5.675 5.183 4.576
wavelength (L) 0.923 1.107 1.212 1.372

High-order dispersion relation wavenumber (k) 6.697 5.679 5.424 4.639
wavelength (L) 0.932 1.106 1.198 1.375

Considering Equation (55), we can see that the coefficient in front of the curvature term and slope
square term is a function of q. Therefore, the high-order dispersion relation mentioned above has
higher accuracy in the intermediate water depth, which can be observed from Figure 2. As shown in
Figure 2, the solid line represents the coefficient in front of the curvature term of seabed topography,
while the dotted line represents the coefficient in front of the square of slope term of seabed topography.
The bottom form is the same shape as case a–c.
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Figure 2. Coefficient of curvature term (solid line) and slope square term (dash line) of
seabed topography.

It can be observed that the value of P1 and P2 fluctuate greatly when the value of q is in the interval
(1,5). That is to say, the depth inversion has to consider the bottom topography in the intermediate
because the nonlinear effect caused by terrain change on wave propagation is difficult to ignore. At the
same time, it can be seen that the influence of the terrain curvature and slope square terms on the
wave propagation cannot be ignore when the curvature or slope of seabed is very large. This can also
explain why the error increases significantly when linear dispersion relation is used in the intermediate
water depth.

4. Discussion

In this section, the future research topic will be envisaged, and a set of bathymetry inversion
models with high precision is preconceived by using a high-order dispersion relation. The following is
the design of the implementation steps of the water depth inversion:
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Firstly, a digital image or video image of the surface-temporal sequence of waves in the target
sea area can be collected from UAVs (unmanned aerial vehicle) among other ways such as radar and
remote sensing.

Then, the acquired image is processed with the maximum total coherence frequency band, and the
corresponding frequency and wave number pairs are generated at each calculation point [43]. For the
obtained digital image or video image, the Fourier transform is used to decompose time-varying
pixels and the Fourier coefficients of the time-varying pixels are further normalized. Then, select the
subset of normalized Fourier coefficients around the depth location to be determined, and calculate the
intersection of all pixels in the subset density spectrum. Matching wave phases are determined for
each selected frequency, and generate a set of frequencies and corresponding wave numbers at each
calculation point.

Finally, the obtained wave numbers and frequencies are substituted into the high-order dispersion
relation model for iterative calculation to obtain the target sea depth. The final obtained depth value
of the target sea area is a continuous time process. The specific implementation process is shown in
Figure 3.
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5. Conclusions

The resulting reflection coefficient for a single sinusoidal bottom is compared with the results of
numerical solutions of the mild-slope equation and modified mild-slope equation. The present model
which includes five terms ((∇h)2,∇2h, (∇k)2,∇2k,∇h · ∇k) can perform exceptionally well in predicting
experimental data, especially predicting the trend from high to low to high of the experimental data
around the subpeak (2k/K = 2). Although the capability of this model in the weak reflection area is not
good enough, in future research, more attention will be paid to this aspect to improve the accuracy of
the model. A new high-order dispersion relation emerges that offers significantly increased accuracy
over a single sinusoidal bottom, which is derived from the real part of the coupling equation.

We have presented a model frame that space-time sequence digital images or videos combine with
high-order dispersion relation for bathymetry mapping. The high-order dispersion relation model has
higher adaptability in the intermediate water depth with complex seabed, such as bed with sand bar
formation etc.

The reasons why selecting a single sinusoidal seabed form for model verification can be
summarized as follows:
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(1) There are internationally recognized model experiments and valuable data from Davies, which
are the basis of model validation.

(2) It can be widely used in practical engineering. For example, the profiles of the most artificial sand
dam and submerged dike are sinusoidal.

(3) Mathematically, any seabed shape can be decomposed into sinusoidal form by the
Fourier transform.

The acquisition of the space-time sequence digital images or video images of the surface wave in
the target sea area is fast in time, low in cost, easy and secret to operate, eliminating the drawbacks
and risks of conventional bathymetric inversion. Using the new high-order dispersion relation,
the calculated water depth is a continuous time process with high precision. Combining the advantages
mentioned above, the new method using high-order dispersion greatly makes the acquisition of water
depth efficient and accurate.

Furthermore, this method not only achieves the real-time monitoring of the water depth of the
target sea area, but also provides real-time water depth data for the construction of most marine
engineering and waterway transportation projects. Therefore, the above method takes advantages of
the remote sensing technology to obtain the synoptic bathymetry of coastal waters safely, economically
and quickly. It is of great significance to bathymetric data related to coastal engineering.

Due to a lack of data right above the sinusoidal patches in the experiment of Davies, the present
model is largely comparable to experiment data between wave gauge 1 and wave gauge 2 for wave
propagation through the ripples [39]. While this is not the direct verification for the high-order
dispersion relation, which considers the combined refraction diffraction and reflection that is induced
by bathymetry, including slope square and curvature terms ((∇h)2,∇2h, (∇k)2,∇2k,∇h · ∇k) of water
wavenumber and seabed bottom, its application to simulate practical field experiments on coastal
wave transformation that is induced by bathymetry will also improve the model. Future research of the
present model will facilitate its extension to various directions such as, e.g., to free-surface elevation, to
water wave potential, and to three-dimensional problems.
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Appendix A

As shown in Equations (12), assume that the velocity potential has the following form of
variable separation:

Φ(x, y, z, t) = f (q, Q)φ(x, y, t) + non− propagating modes , (A1)

where Q = k(z + h), q = kh, σ = tanh(q), and

f = cosh Q/ cosh q, (A2)

the depth-integrated wave equation may be formulated by applying the FAT to f and Φ,∫ 0

−h

(
f∇2Φ + Φ fzz

)
dz = −[ f Φz −Φ fz]

0
−h, (A3)
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Using Equations (A1) and (A2):

fzz = k2 f
∇Φ = f∇φ+ φ∇ f
∇

2Φ = f∇2φ+ 2∇φ · ∇ f + φ∇2 f
Φz|z=−h = −∇h · ( f∇φ+ φ∇ f )

(A4)

Inserting Equation (A4) into Equation (A3)∫ 0

−h

(
φk2 f 2 +∇2φ f 2 + 2 f∇φ · ∇ f + φ f∇2 f

)
dz =

(
φtt +ω2φ

)
/ g

∣∣∣
z=0 + Φz f

∣∣∣
z=−h, (A5)

Based on Equation (A2), every term in Equation (A5) is evaluated using the following:

∇ f = fh∇h + fk∇k
∇

2 f = fhh(∇h · ∇k) + fh∇2h + 2 fhk∇h · ∇k + fk∇2k + fkk(∇k · ∇k)
, (A6)

where
fh =

∂ f
∂h , fk =

∂ f
∂k , fhh =

∂2 f
∂h2 , fhk =

∂2 f
∂h∂k , fkk =

∂2 f
∂k2

fh = k(sinhQ− σ cosh Q)/ cosh q
fk = (QsinhQ− qσ cosh Q)/(k cosh q)
fhh = 2σk2(σ cosh Q− sinhQ)/ cosh q
fkk =

{
Q2 cosh Q− 2σqQsinhQ− q2

(
1− 2σ2

)
cosh Q

}
/
(
k2 cosh q

)
fhk =

{(
2qσ2

− σ− q
)

cosh Q + (1− qσ)sinhQ + Q cosh Q−QσsinhQ
}
/ cosh q

(A7)

Using the following integrations∫ 0
−h

(
∇

2φ f 2 + 2 f∇φ · ∇ f
)
dz + f 2

∇h · ∇φ
∣∣∣
z=−h =

∇·(P∇φ)
g

g
∫ 0
−h k2φ f 2dz = k2Pφ

(A8)

and substituting Equations (A6)–(A8) into Equation (A5), finally, the time-dependent general equation
is obtained.
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