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Abstract: Tidal renewable energy is a promising alternative energy resource, and marginal seas
are known as excellent sites for tidal energy exploitation. In-stream and tidal energy devices are
less exposed to extreme weather events than wind energy. Nevertheless, during tropical storms,
the currents may intensify to levels that threaten the integrity of the devices. This paper presents
Hurricane Odile and its impact on the currents in the Gulf of California (GC) as a worst case scenario.
A methodology to analyze the impact and its potential effects on tidal energy converters installed
within the region are presented. The analysis is based on predictions obtained with a 3D shallow
water model forced by tides and the meteorological conditions generated by Odile. A tidal model
with no wind forcing was used for validation of the tidal model predictions. After validation, the two
models were used to analyze the maximum anomaly in surface currents and sea surface height
caused by the passage of Odile, and to analyze at which depth the devices could be deemed safe from
any impact of the hurricane. Some anomalies extended throughout the water column, even in the
deep regions of the GC. This paper highlights the importance of including the meteorological forcing
in evaluations of tidal range or in-stream renewable energy resources and introduces new measures
of device exposure to the current anomalies.
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1. Introduction

Tidal and ocean currents can have a significant contribution to the global renewable energy
production. In the case of tidal currents in particular, their predictability and continuous availability
make them a key component in the renewable energy mix, and while tidal current variability in
a one to four hour time window is large, tidal currents have very low variability over monthly to
yearly timescales [1]. Efforts are underway to exploit both tidal and ocean current energy resources,
ranging from the development of devices operating at different current speed ranges and water
depths [2], increasing performance [3], and reducing costs [4]. At the same time, resources have to
be characterized and optimal sites identified [1,5]. A vital component in the identification of optimal
sites, is the analysis of potential device damage by extreme events. In tropical regions, for example,
tropical cyclones and hurricanes pose a significant threat to offshore infrastructure. Whilst the risk is
severe for offshore wind turbines [6], the high winds and atmospheric pressure fluctuations may still
influence the currents in the surface and sometimes to considerable depth [7].

The Gulf of California (GC) is the only marginal sea in the Pacific Northeast and is expected to be
an excellent site for tidal energy exploitation. The GC has the largest tidal range in Mexico [8],
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and potentially offers plenty of excellent locations for the installation of in-stream devices [9].
One advantage of the GC is that the return period of tropical storms, and particularly of hurricanes,
is lower than in any other marine regions of Mexico [10]. Despite this, some major tropical storms,
such as Hurricane Odile in September 2014, have travelled towards and into the Gulf, causing severe
damage [11]. Hurricane Odile, with a return period of around 25 years in the Baja California Peninsula,
is also known as the third major storm and the most destructive hurricane to make landfall in this
region during the satellite era [11].

In the present work, the impact of Hurricane Odile on the currents within the Gulf of
California—measured in terms of the following indicators: current anomalies, depth of anomaly and
temporal exposure (the period when the hurricane affects the area)—is evaluated using a numerical
model, over the domain shown in Figure 1. The aim is to assess how changes in these indicators affect
the selection of tidal energy converters (TECs). For example, if the current anomaly remains near
the surface, then TECs that can dive into deeper water to evade this anomaly can mitigate the risk of
damage by tropical storms. If, on the other hand, the temporal exposure is short, then towing away
the TECs for a short time may be feasible. If, in contrast, the anomaly penetrates most of the water
column and the temporal exposure is long, then only TECs that can withstand the expected forces,
potentially well beyond the standard operating conditions, will have to be considered. A TEC plant
shutdown will, undoubtedly, harm the local economy and on energy security.

The paper is organized as follows. In Section 2, the shallow-water model and model set-up,
the tidal forcing conditions, and the wind data processing are described. In Section 4, we present
validations of the tidal model, the visualization and evaluation of the change in currents due to the
hurricane, and the spatiotemporal extent of the anomalies. The implications of these results on TEC
survivability issues, particularly for TECs installed within the GC, are discussed.

2. Methodology

The shallow-water model Delft3d [12] was used in this study to analyze three different forcing
scenarios—tidal forcing with no wind, tidal forcing with wind climatology, and tidal forcing with
the wind and atmospheric pressure field conditions during hurricane Odile (10–19 September 2014).
The wind and pressure fields were obtained from a numerical weather forecasting model prediction
for the period. The current anomalies, derived from the currents predicted by these three model runs,
and their temporal-spatial characteristics were then compared and contrasted. The monthly surface
wind climatology for the whole year of 2014 is available as a supplement to this publication, because it
may be useful for a whole range of different studies.

2.1. The Model

The model domain is the marine region between the Colorado River Delta, located around (32◦ N
115◦ W), and the southern boundary of the grid shown in Figure 1, which extends from around
(24◦30’ N 107◦50’ W) to (23◦04’ N 109◦35’ W). This domain may be divided in the Upper Gulf of
California, the Great Island (or Midriff) Region, and the Southern Gulf of California [13]. Taking into
account these regions, the Gulf of California is 1100 km long and around 150–200 km wide. The Upper
Gulf of California is the very shallow (depth < 30 m) region north of 31◦ N. the Great Island Region
consists of a group of islands separated by narrow channels and sills with maximum depths of
300–600 m. In the Southern Gulf of California, the continental shelf is very narrow, and water depth of
the channels and basins can be up to 3000 m. Stratification in the Gulf of California plays a role in the
overall dynamics of the Gulf. In the mouth of the Gulf, the mixed layer depth can vary from 10–40 m.
In the northern Gulf the mixed layer can vary between 100 m in the Delfin basin and 50 m in the
Wagner basin, for example Reference [13]. The energetically dominant signal, however, is barotropic,
in particular in the upper Gulf.

Delft3d solves the incompressible Navier-Stokes equations under the shallow water and the
Boussinesq approximations, which consist of the following three assumptions:
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• the vertical accelerations are neglected in the momentum equations;
• the momentum conservation equation in the vertical is replaced by a balance equation for the

pressure field, and;
• the vertical velocities are computed from the continuity equation.

Temperature changes and salinity were not included in this model configuration. The default
version of Delft3d uses curvilinear coordinates in the horizontal dimensions and σ-coordinates in the
vertical dimension [14]. The curvilinear coordinates may be in (spherical) WGS84, in (local) UTM,
or some other local coordinates. The σ coordinate is defined as:

σ =
z− ζ

d + ζ
=

z− ζ

H
, (1)

where z, ζ, d, and H denote the vertical coordinate in physical space, the free surface elevation
above the reference plane (at z = 0), the depth below the reference plane, and the total water depth,
respectively. By convention, σ = −1 at the bottom and σ = 0 at the free surface. In this model set-up,
the grid (shown in Figure 1, as mentioned above), has 63 by 183 grid points in the horizontal and
between 25 and 34 grid points in the vertical—this depends on the surface resolution, as will be
explained in Section 4.1.

116.0W 114.0W 112.0W 110.0W 108.0W 106.0W
22.0N
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28.0N

30.0N

32.0N

Figure 1. Computational grid with variable resolution. In the cross-Gulf direction the resolution varies
from 2.55 km to 5.621 km and in the long-Gulf direction from 3.073 km to 6.465 km.

The conservation equations will be expressed here in terms of the spherical coordinates (λ, φ, R),
with λ being the longitude, φ the latitude, and R = 6378.137 km (WGS84) the radius of the Earth [15].
Then, the depth-averaged continuity equation,

∂ζ

∂t
+

1
R2 cos φ

∂ [(d + ζ)UR]
∂λ

+
1

R2 cos φ

∂ [(d + ζ)VR cos φ]

∂φ
= 0, (2)
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is derived by integrating over the vertical coordinate the continuity equation for incompressible flows,

with U =
∫ 0

−1
udσ and V =

∫ 0

−1
vdσ being the depth-averaged velocities. The horizontal momentum

equations are

∂u
∂t

+
u

R cos φ

∂u
∂λ

+
v
R

∂u
∂φ

+
ω

d + ζ

∂u
∂σ
− v2

R2 cos φ

∂R
∂λ

+
uv

R2 cos φ

∂(R cos φ)

∂φ
− f v =

− 1
ρR cos φ

Pλ + Fλ +
1

(d + ζ)2
∂

∂σ

(
νv

∂u
∂σ

)
+ Mλ (3)

and

∂v
∂t

+
u

R cos φ

∂v
∂λ

+
v
R

∂v
∂φ

+
ω

d + ζ

∂v
∂σ
− uv

R2 cos φ

∂R
∂λ

+
u2

R2 cos φ

∂(R cos φ)

∂φ
+ f u =

− 1
ρR

Pφ + Fφ +
1

(d + ζ)2
∂

∂σ

(
νv

∂v
∂σ

)
+ Mφ , (4)

where νv, Pλ,φ, Fλ,φ, and Mλ,φ, denote vertical eddy viscosity, pressure gradients, forces from
unbalanced Reynolds stresses and external forcing (wind), respectively. In a σ coordinate system such
as the one used here, the vertical velocity, ω, is computed from the continuity equation

∂ζ

∂t
+

1
R2 cos φ

∂ [(d + ζ) uR]
∂λ

+
1

R2 cos φ

∂ [(d + ζ) vR cos φ]

∂φ
+

∂ω

∂σ
= 0. (5)

A k-ε turbulence closure model was used with constant horizontal eddy viscosity of 2 m2/s,
and a constant Chézy bottom friction coefficient of 45

√
m/s was applied. The simulation timestep

was 0.5 min.

2.2. The Wind Forcing

At the surface of the sea, the boundary conditions for the momentum equations are

νv

H
∂u
∂σ

∣∣∣∣
σ=0

=
ρa

ρ
CdU2

10 cos θ (6)

νv

H
∂v
∂σ

∣∣∣∣
σ=0

=
ρa

ρ
CdU2

10 sin θ, (7)

where ρa, U10, and Cd = 0.0025 denote the density of air, the 10-meter wind speed and the wind drag
coefficient, respectively. The drag coefficient is still a matter of active research (cf. References [16,17]).
The current drag coefficient value is well in the range of the values reported by References [16–18].
The model does not contain wave interactions, and hence any wave contribution has to be included
through the wind forcing. The drag coefficient may appear high, however, in coastal settings the drag
coefficient can increase relative to its value in the open ocean [18]. For higher resolution modelling
it should indeed be revised, to take the different drag coefficients observed in the different sectors
around the hurricane into account.

The wind and surface pressure data was taken from the North American Mesoscale model (NAM)
with 12 km resolution. Hourly forecasts from the four daily forecast runs at UTC 00:00, 6:00, 12:00,
and 18:00 were used, except for the 13 September and UTC 07:00–11:00 19 August, where the NAM
data is not available. This gap was filled with data from the North American Regional Reanalysis
(NARR) at three hourly temporal resolution. Representative wind fields for four dates are shown
in Figure 2. Also shown is the trajectory of hurricane Odile and its current location. The reversal of
the wind direction, when compared to the climatology—presented next—can be observed. The wind
speeds are also significantly higher, as expected.
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Figure 2. Wind field during Hurricane Odile. The HURDAT trajectory (see https://www.aoml.noaa.
gov/hrd/data_sub/hurdat.html) is shown as a dark blue line, wind vectors as black quivers and
streamlines as light blue lines. All times in UTC. The geographical position of Odile is indicated.

2.3. Surface Wind Climatology

The climatology of the Gulf is strongly seasonal. Focusing on the Monsoon period (July to
September), Reference [19] generated a climatology for the Gulf of California using five years of
QuickSCAT winds. Their climatology resolves the influence of the peninsula of Baja California and the
dominant wind field patterns, together with the strong seasonal signal in the winds over the Gulf of
California, which have also been identified in previous studies [20,21]. In the meantime, the availability
of data sources has improved, and data from high–resolution weather models, reanalysis, and remote
sensing is now available.

A climatology was generated for each month, as the standard September/October/November
climatology would not be representative of the winds in September. The climatology for August,
September, and October are reproduced in Figure 3.

https://www.aoml.noaa.gov/hrd/data_sub/hurdat.html
https://www.aoml.noaa.gov/hrd/data_sub/hurdat.html


J. Mar. Sci. Eng. 2020, 8, 80 6 of 22

116W 114W 112W 110W 108W 106W
22N

24N

26N

28N

30N

32N
Aug

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

wi
nd

 sp
ee

d 
[m

/s
]

(a)August

116W 114W 112W 110W 108W 106W
22N

24N

26N

28N

30N

32N
Sep

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

wi
nd

 sp
ee

d 
[m

/s
]

(b)September

116W 114W 112W 110W 108W 106W
22N

24N

26N

28N

30N

32N
Oct

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

wi
nd

 sp
ee

d 
[m

/s
]

(c)October

Figure 3. Wind field climatologies.

The wind climatology data sources and their temporal coverage are shown in Figure 4. The data
sources comprise five model datasets, UPSCALE, CSFR, CSF2, NARR and NAM, and four satellite
products: CCMP, WIND-GLO, CERSATV4 and CERSATV5. These data sources are introduced in
the following.
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Figure 4. Sources of wind climatology data and temporal coverage.

2.3.1. UK on PRACE—Weather-Resolving Simulations of Climate for globAL Environmental Risk
(UPSCALE) Dataset

The UPSCALE [22,23] dataset is a global dataset with N512 resolution (1024 × 768 grid points
East-West × North-South, 0.23438◦ in latitude and 0.3516◦ degrees in longitude). The Hadley Centre
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Global Environment Model version 3 (HadGEM3)—Global Atmosphere (GA) 3.0, Global Land (GL)
3.0 configuration of the Met Office Unified Model (MetUM) version 8.0 was used to generate the data,
as documented in Walters et al. [24]. The configuration is set to reproduce the actual climate from Feb.
1985 to Dec. 2011. Instantaneous winds were obtained every three hours, are then averaged over the
respective months.

2.3.2. North American Mesoscale Forecast System (NAM)

The NAM is a numerical weather prediction (NWP) model run by the US National Weather
Service– National Centers for Environmental Prediction (NCEP), covering North America. It is using
the MESO ETA Model [25]. The spatial resolution is 12km on the Advanced Weather Interactive
Processing System (AWIPS) Lambert conformal grid over the Contiguous United States (CONUS).
The data was re-gridded with bi-linear interpolation onto a regular lat-lon grid. This regular grid has
a uniform grid spacing of 0.05◦. Instantaneous wind speeds, sampled every six hours, are averaged
over the respective month.

2.3.3. North American Regional Analysis (NARR)

The NCEP NARR dataset [26], is a regional reanalysis. Four hundred fifty monthly mean winds
at 10 m were used. The NCEP Eta Model (32km Lambert Conformal/45 layer) combined with the
Regional Data Assimilation System (RDAS) is employed in the NARR. Compared to its predecessor,
the NCEP-DOE Global Reanalysis 2 [27], the accuracy of temperature, winds and precipitation are
markedly improved. Here the data was re-gridded onto a uniform 0.2◦ lat-lon grid.

2.3.4. Cross-Calibrated Multi-Platform (CCMP)

The CCMP ocean surface wind vector analyses [28,29] provide a time-series from July 1987
through to June 2011. Cross-calibrated satellite winds are combined with model data using a Variational
Analysis Method (VAM) [30], to produce a gridded dataset with 0.25◦ resolution. Remotely sensed
satellite winds from several microwave satellite instruments are used. Also considered are inputs from
the Quik Scatterometer (QuikScat) and its SeaWinds instrument. Radiometer and scatterometer data
are validated against ocean moored buoys. RSS data with in-situ measurements are combined in the
VAM. The European Center for Medium-Range Weather Forecasts (ECMWF) ERA-40 Reanalysis is
used as the first-guess from 1987 to 1998 and the ECMWF Operational analysis from 1999 onward.
10-meter winds are used and the land mask for was generated from the orography of UPSCALE.

2.3.5. Climate Forecast System Reanalysis (CFSR)

The CFSR [31], couples the atmosphere and ocean fields during the generation of the 6-hour guess.
An interactive sea-ice model is used, and satellite radiance fields are assimilated. The atmosphere
resolution is ≈38 km and contains 64 vertical levels. The ocean has a grid spacing of 0.25◦ at the
equator, extending to 0.5◦ beyond the tropics. Ocean-atmosphere interactions are not directly used,
and the actual reanalysis is uncoupled. One hundred seventeen monthly averages of the six-hourly
analyses were included in this study.

2.3.6. Centre ERS d’Archivage et de Traitement (CERSAT)

The CERSAT Global Blended Mean Wind Fields V5 are estimated from scatterometers ASCAT
and Oceansat-2 scatterometer (OSCAT), combined with ECMWF operational wind analysis with
a horizontal grid spacing of 0.25◦ and 6 h in time. ASCAT, OSCAT winds, ECMWF wind analysis,
and buoy data were used during the calibration. The V3 dataset covers the period from 2012 to 2015.
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2.3.7. Global Ocean (GLO)

The GLO CERSAT surface wind climatology, covering the years 2007–2012, is estimated from
ASCAT retrievals [32], with a spatial resolution of 0.25◦ in latitude and longitude.

2.4. Wind Data Processing

Not all data sources cover the same area, and some data sources have specific limitations.
The satellite products, for example, are expected to have difficulties near the coastline.
Also, some reanalysis products may not reproduce the specific local climate well, such as the low–level
jets and the presence of the Peninsula, which may not be well resolved at their relatively coarse
resolution. In order to eliminate severe outliers, a four-step processing protocol was implemented:

• interpolate the data to a common latitude-longitude grid with 0.01◦ grid-spacing, using linear
interpolation;

• evaluate the angle of the wind, α, for each gridpoint, relative to the mean α and its standard
deviation σα, and select the data satisfying the condition:

α− σα < α < α + σα; (8)

• from this subset of datasets, select the data with wind speeds, v, satisfying the condition:

v− 1.5σv < v < v + 1.5σv, (9)

where, as before, σv and v are the standard deviation and mean of the wind speed across all
datasets selected by criteria one, respectively; and

• average the remaining sources.

The resulting wind field data is used as sea surface forcing in the Delft3d hydrodynamic model.
The model starts at 9 August and runs for 71 days, covering the period in which Odile travelled
through the Gulf, 14–18 September.

2.5. Tidal Forcing

The tidal forcing is the primary driver of the circulation in the Gulf of California.
Therefore, the wind-driven circulation is best analyzed in relation to the circulation driven by the
tides. In this paper the tidal force is prescribed at the open boundary, located at the mouth of the Gulf
of California, using 13 tidal components: M2, S2, N2, K2, K1, O1, P1, Q1, MF, MM, M4, MS4, and MN4,
extracted from TPXO [33], version 7.2. These harmonic components are then superimposed to obtain
the boundary signal F(t):

F(t) =
13

∑
i=1

Ai cos(ωit + φi), (10)

where Ai and φi denote the amplitude in meters and phase of the i-th component,
respectively. All remaining boundary points are closed boundaries. No special sponge or non-reflective
boundary was required, partly due to the drying/flooding capability of Delft3d. Initial transients
from the cold start were damped using a smoothing period, over which the boundary condition is
ramped up.

Delft3d can include the contribution of the gravitational forces on the water motion, however here
this has not been included, because the effect of these forces on the dynamics is assumed to be negligible
in comparison to the tidal co-oscillation forced by the Pacific Ocean at the mouth of the Gulf, and to
the meteorological forcing at the sea surface caused by hurricane Odile over the simulation period.
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3. Verification

No observational data could be obtained for the simulation period. Therefore, the model
prediction of sea surface height was verified using AVISO (Archiving, Validation and Interpretation
of Satellite Oceanographic data, a service provided by the French National Centre for Space Studies
(CNES)) Satellite Altimetry combined with a tidal barotropic model, and GulfCal [34]. The currents
were verified against TPXO8. The obtained comparisons, errors and correlations are presented next.

3.1. Sea Surface Height

The model was verified against the FES (Finite Element Solution) 14 [35] in the lower Gulf.
The FES14 tide model was developed during 2014–2016. The foundation of FES14 is a spectral tidal
barotropic equation (T-UGO model). The global finite element grid contains 2.9 million nodes.
The accuracy of the solution from the tidal model is improved through the assimilation of altimetry
data provided by Topex/Poseidon, Jason-1, Jason-2, TPN-J1N, and ERS-1, ERS-2, ENVISAT, as well
as tidal gauges. In the upper Gulf, where the FES14 solution is not reliable, the model was validated
against GulfCal. The tide only Delft3d simulation with the highest vertical resolution was used for the
verification. The RMS and Person-r values obtained are presented in Table 1.

Table 1. Root mean square error (RMS) of sea surface height from GulfCal versus Delft3d, FES14 versus
Delft3d, and the respective Pearson correlation coefficients, over the simulation period. The Pearson p
are effectively zero for all cases. The first 250 h of the simulation were discarded to remove the spin-up.

Latitude Longitude RMS RMS r r
GulfCal-d3d [m] FES-d3d [m] GulfCal-d3d FES-d3d

30.73 −114.07 0.23 1.14 0.986 0.309
28.10 −112.04 0.14 0.06 0.919 0.959
26.36 −110.67 0.13 0.04 0.977 0.988
24.65 −109.42 0.13 0.04 0.990 0.996

Apart from the Upper Gulf, the correlation with FES14 is higher than the correlation with
GulfCal. The RMS errors are small, 0.2m in the Upper Gulf, and 0.13 in the lower Gulf. In general,
Delft3d is verifying better against FES14. In the Upper Gulf, GulfCal is validated against buoy
observations and direct measurements, and, hence, is more reliable than the altimetry based model,
FES. Therefore, the better validation of the presented model in the Upper Gulf against GulfCal is
satisfying. In the lower Gulf, the coastline is sufficiently far away, allowing for accurate satellite
observations. Here the results of the FES are good and understood to be more reliable than the GulfCal
results. The time-series of sea surface height (SSH) are plotted in Figure 5.
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Figure 5. Model verification against sea surface height (SSH) from GulfCal and FES14. Difference plots
are indicated in the legend as “diff”. All dates in UTC.

3.2. Currents

Here, Delft3d is run as a barotropic model. Therefore, the currents have to be compared to the
barotropic component of the observed currents. These have been obtained from the TPXO 8 atlas
version 1 [33], using local solution SoC. All available constituents have been included, namely: m2,
s2, n2, k2, k1, o1, p1, q1, m4, ms4, mn4, mm, and mf. The Delft3d solution has been depth-averaged
for comparison with the TPXO currents, assuming piece-wise constant profiles over the sigma layers.
West to East (U), and South to North (V) component time-series are compared in Figures 6–10 for
five points distributed along the Gulf, North to South. The tidal ellipses have been constructed from
a scatter plot of the components and are shown in Figure 11 for the same five points.
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Figure 6. Time-series of components of the barotropic current at latitude 30.75 N, longitude—114.07 E.
The delf3D (d3d) components have been depth averaged for comparison. All dates in UTC.
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Figure 7. Time-series of components of the barotropic current at latitude 29.75 N, longitude—113.07 E.
The delf3D (d3d) components have been depth-averaged for comparison. All dates in UTC.
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Figure 8. Time-series of components of the barotropic current at latitude 28.1 N, longitude—112.05 E.
The delf3D (d3d) components have been depth-averaged for comparison. All dates in UTC.
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Figure 9. Time-series of components of the barotropic current at latitude 27.1 N, longitude—111.05 E.
The delf3D (d3d) components have been depth-averaged for comparison. All dates in UTC.
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Figure 10. Time-series of components of the barotropic current at latitude 26.78 N, longitude—110.97 E.
The delf3D (d3d) components have been depth-averaged for comparison. All dates in UTC.

The solutions, TPXO versus Delft3d, are generally in good agreement. The Pearson correlation in
the Upper Gulf exceeds 0.9 for both components and the root mean square (RMS) errors are acceptable.
Not surprisingly, the correlation drops towards the south of the Gulf, to 0.88. Here the deep sections,
around 2000 to 3000 m, pose a challenge to the barotropic formulation.
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Figure 11. Scatter plot of U versus V components of the barotropic currents.
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The scatter plots of the velocity components of Delft3d and TPXO also agree, very well in
orientation and well in magnitude, as was also apparent from the time-series plots.

4. Results

Resolving the surface forcing is vital in this study because, otherwise, the effects of the wind-driven
shear stress on the rest of the water column will not be accurately reproduced. Therefore, ten separate
experiments were conducted with increasing resolution of the surface layer. These tests will be
described in more detail in the next section. With confidence in the vertical resolution, the data can
then be analyzed for the anomaly and its spatial-temporal characteristics.

4.1. Convergence of the Wind Forcing with Vertical Resolution

The wind forcing is a surface-driven process. If the vertical resolution is not sufficient, then the
velocities will not be accurately captured, that is, the mean across the sigma level is very different
to the velocity at the top and bottom boundaries of the respective sigma level. The risk here is that
only their mean effect on the top layer is resolved. In order to avoid this, the vertical resolution of
the model was increased continuously until the surface velocities converged. First, a model with
a grid of 25 layers with a uniform vertical resolution, resulting in a constant dimensionless layer
thickness of 0.04, was run. Then, the first layer, with a thickness of 0.04, was replaced by two layers
with a thickness of 0.02. Then, the top layer of 0.02 was replaced by two layers with thickness 0.01,
down to the highest possible vertical resolution allowed by the model, corresponding to a layer with a
thickness of ∆σ = 0.0001. This procedure yielded ten different vertical discretizations, listed in Table 2.
Note that the last column of that table does not follow this scheme precisely due to the minimum
thickness of 0.01% allowed by the model.

Table 2. Vertical discretization for the ten convergence test runs. The thickness of each level is given in
percent σ. In run 1, all 25 levels have 4% σ. In run 2, the first 24 levels have a thickness of 4% σ, the last
two, level 25 and 26 2% σ thick. Similar for the remaining runs. All values are rounded to three decimal
places for presentation.

Vertical Level run 1 run 2 ... run 7 run 8 run 9 run 10

34 ... 0.010
33 ... 0.016 0.010
32 ... 0.031 0.016 0.020
31 ... 0.063 0.031 0.031 0.040
30 ... 0.063 0.063 0.062 0.080
29 ... 0.125 0.125 0.125 0.160
28 ... 0.250 0.250 0.250 0.320
27 ... 0.500 0.500 0.500 0.640
26 2.0 ... 1.000 1.000 1.000 1.280
25 4.0 2.0 ... 2.000 2.000 2.000 1.440
24 4.0 4.0 ... 4.000 4.000 4.000 4.000
... ... ... ... ... ... ... ...
1 4.0 4.0 ... 4.000 4.000 4.000 4.000

The velocity field of the surface (or first) sigma layer of run 10, that is, the experiment with
∆σ = 0.0001 was used as the reference value, or true value, and is denoted vδσ0=0.0001 in the following.
With this reference value, a numerical convergence study was performed to demonstrate satisfactory
convergence of the model result. Figure 12, shows a convergence of the Pearson r and RMS error below
0.05 ms−1 for δσ < 2× 10−3, which is acceptable.
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Figure 12. Convergence analysis over the whole domain for the period of hurricane Odile,
14 September 2014–18 September 2014. (a) Maximum absolute velocity error, err = |v− vδσ0=0.0001|,
(b) root mean square error, RMS =

√
1/N ∑ err2, with N denoting the grid points with an initial depth

of more than 3m, and (c) Pearson correlation coefficient, r.

Subsequently, once it was ensured that the surface force was well resolved within the model
(in terms of numerical convergence), the current anomaly due to the effect of the wind on the circulation
could be assessed with confidence. The convergence with vertical resolution is presented in Figure 13.
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Figure 13. Maps of absolute error, err = |vδσ0=n − vδσ0=0.0001|, with n denoting the vertical layer
thickness in the surface layer at plot time step 912, 38 days after simulation start, 2014-09-16T00:00 UTC.

Large errors are present in the models with coarse vertical grids near the surface. Only at
δσ0 = 0.0025 are most of the errors below 0.16 ms−1.
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4.2. Maximum Anomaly in Surface Currents

4.2.1. Comparison Odile—No Wind

The maximum surface current speed anomaly reaches 6 m/s. Figure 14 shows the time series of
the maximum anomaly over the whole domain. The temporal evolution per grid row (West to East) is
shown in Figure 15.

2014-08-11 2014-08-25 2014-09-08 2014-09-22 2014-10-06 2014-10-20

0

1

2

3

4

5

6

7

m
ax

 a
no

m
al

y 
[m

/s
]

max anomaly in  level 0 (surface)
max anomaly in  level 1
max anomaly in  level 2

Figure 14. Maximum surface current anomaly time series for the three topmost model layers. All dates
in UTC.
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Figure 15. Maximum anomaly per grid row versus time. All dates in UTC.

In that Figure, it can be seen that the 6 m/s values are isolated peaks, and for the largest part,
the anomaly is between one and two meters per second. Plotting the maximum anomaly per grid point
on a map of the Gulf, shown in Figure 16, shows that the most considerable impacts of the hurricane
on the current speeds occur at the coast or close to islands. Due to techno-economic constraints,
tidal energy converters (TECs) would also be installed near the coast (in shallow water) or close to
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islands, at least at the early stages of development [2]. Therefore, the probability of TEC damage due
to the passage of the hurricane is great.
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Figure 16. Current anomalies due to Odile. All times in UTC. (a) Map of maximum anomaly during
simulation period for each grid point. (b) Map of the anomaly at the time of the maximum anomaly in
the time series (c.f. Figure 14).

4.2.2. Wind Climatology Induced Surface Current Anomaly

In contrast to the results presented for Odile above, the wind climate for September induces only
moderate current anomalies of approximately 0.04 to 0.16 m/s, mainly at the East Coast and in shallow
waters. A map of the anomaly is provided in Figure 17.

The recorded extremes of up to 1.4 m/s are only observed in isolated grid points or in extremely
shallow areas, where the wind has an impact on the flooding and drying pattern. From this, it is
clear that the strong winds during Odile have an impact several orders of magnitude larger than
the climatology.
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20
14

-0
8-

15

20
14

-0
8-

22

20
14

-0
8-

29

20
14

-0
9-

05

20
14

-0
9-

12

20
14

-0
9-

19

20
14

-0
9-

26

20
14

-1
0-

03

20
14

-1
0-

10

20
14

-1
0-

17

25

26

27

28

29

30

31

m
ea

n 
la

tit
ud

e 
[d

eg
 N

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ax

im
um

 su
rfa

ce
 c

ur
re

nt
an

om
al

y 
pe

r g
rid

 ro
w 

[m
/s

]

(b)Time evolution of maximum anomaly per grid row.

Figure 17. Cont.
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Figure 17. Surface current anomalies due to climatological winds. All dates in UTC.

4.3. Safe Depth

The hurricane impact on renewable energy conversion can also be assessed in terms of “safe
depth”. The safe depth is here introduced as the depth beyond which the currents observed during
hurricane conditions are slower than an “assumed safe” current. “Safe depth” is a significant indicator
of TEC survivability, in analogy to the cut-out speed of 25 m s−1 for commercial wind turbines [36].
Here, the assumed safe current is taken as 115% of the maximum current for the specific depth
and location in the no-wind case. Hence, this formulation is depth-dependent. It assumes that
the device installed at a certain depth is designed for the currents prevailing at this depth. Note
that, nevertheless, this is a device–dependent value, and for a specific device, one may want to run
a separate analysis.

Figure 18 shows the time series of currents without and with wind, in the top panel and the
second from the top panel, respectively. The period over which Odile traveled along the Baja California
Peninsula is highlighted in the bottom panel in red. A peak in the currents can be identified in the
time-series. Peaks are also present from the minor storms and high wind episodes leading up to Odile.
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Figure 18. Cont.
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Figure 18. Safe depth at lat = 28.260 N lon = −111.772 W. Safe depth is here defined as the depth where
the velocity never exceeds 1.15vmax(z), the maximum velocity in the no-wind simulation, during the
period starting at day five and finishing at the end of the simulation. The red rectangle indicates the
period of Odile. The top two panels show the velocity profiles without and with Odile winds. The third
panel from the top shows the velocity profile with Odile winds, normalised by the maximum velocity
observed for the no wind case at the respective depth, therefore, showing a representation of safe depth
before the restriction to a certain assumed safe current. The bottom panel shows the iso-line of the
assumed safe current of 115%, as per the definition of the safe depth. All dates in UTC.

5. Discussion

A clear signature of hurricane Odile and the storms before and after has been found in the analysis
of the anomalies of the currents in the GC. Clear peaks in current anomaly are present in the time
series, with anomalies of several meters per second, reaching anomaly maxima of up to 7.1 m/s.
Most of these extreme values are to be found at coastal locations, and therefore damage to TEC devices
caused by the passage of hurricanes has a high probability of occurrence. However, anomalies of 0.5 to
1.5 m/s can be found in large parts of the Gulf, as shown in Figure 16. The anomalies introduced by
the wind climatology, Figure 17, are at least one order of magnitude lower, around 0.05 to 0.08 m/s,
than the anomalies caused by Odile. Moreover, in coastal areas, the anomaly can penetrate to the
seafloor, see Figure 19, therefore even bottom-mounted TEC devices may be affected by the passage of
hurricanes, contrary to what has been previously assumed [37]. However, in large parts of the Gulf,
the impact of the hurricane winds only penetrates around 5–30%. The temporal pattern of the anomaly
shows a clear north-south divide: below 28◦ N the anomaly exists for more than two days over the
simulation period, but at latitudes above 28◦ N the anomalies exists for substantially shorter periods.
Therefore, one would expect that TEC devices operating at latitudes above 28◦ N would suffer less
damage than those operating below it. The probability of occurrence of category four hurricanes in
the Gulf of California is larger below 28◦ N than above it. Thus, in the first stages of development,
the results indicated that one should install bottom-mounted devices above 28◦ N and near the shore
as per current devices specifications. However, taking seabed scour remedial actions and building
TEC blades with materials that can withstand fatigue loads, as suggested by Reference [37], may still
be necessary for TECs operating at such locations.
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Figure 19. Safe depth analysis over the course of Hurricane Odile. (a) Safe depth in meters. (b) Percent
of total depth, indicating locations where the anomaly extends through the whole water column.
(c) Accumulated hours of occurrence of safe depth < 0, that is, duration of potential exposure of devices.

6. Conclusions

In this study, the impact of the extreme winds of hurricane Odile on the tidal currents in the Gulf of
California has been evaluated. These results can inform site selection, and imply that device developers
need to consider mitigation strategies to reduce the risk of damage to the device. This evaluation
will help exploit the resource economically, safely and efficiently. From an academic perspective,
the importance of wind-driven currents under hurricane conditions is a driver for further model
developments, in aspects such as resolution and coverage of other hurricanes or high wind events.
The analysis of the effect of the wind climatology on the coastal circulation may also be interesting
from the diurnal cycle perspective. In particular, as the diurnal wind forcing cycle is in phase with the
Coriolis frequency at these latitudes, interesting local effects can be expected.
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Roberts, M. Mizielinski, J. Strachan, M.E. Demory and R. Schiemann using the HadGEM3 model with support
from NERC and the Met Office and the PRACE Research Infrastructure resource HERMIT based in Germany
at HLRS.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Sinden, G.E. Renewable Electricity Generation: Resource Characteristics and Implications of Wind, Wave and Tidal
Stream Power in the UK; Technical Report; UK Department of Energy and Climate Change: London, UK, 2007.

2. Roberts, A.; Thomas, B.; Sewell, P.; Khan, Z.; Balmain, S.; Gillman, J. Current tidal power technologies and
their suitability for applications in coastal and marine areas. J. Ocean Eng. Mar. Energy 2016, 2, 227–245.
[CrossRef]

3. Cresswell, N.; Ingram, G.; Dominy, R. The impact of diffuser augmentation on a tidal stream turbine.
Ocean Eng. 2015, 108, 155–163. [CrossRef]

4. Segura, E.; Morales, R.; Somolinos, J. Cost Assessment Methodology and Economic Viability of Tidal Energy
Projects. Energies 2017, 10, 1806. [CrossRef]

5. Haas, K.A.; Fritz, H.M.; French, S.P.; Smith, B.T.; Neary, V. Assessment of Energy Production Potential from Tidal
Streams in the United States; Technical Report; Georgia Tech Research Corporation: Atlanta, GA, USA, 2011.

6. Rose, S.; Jaramillo, P.; Small, M.J.; Grossmann, I.; Apt, J. Quantifying the hurricane risk to offshore wind
turbines. Proc. Natl. Acad. Sci. USA 2012, 109, 3247–3252. [CrossRef] [PubMed]

7. Black, W.J.; Dickey, T.D. Observations and analyses of upper ocean responses to tropical storms and
hurricanes in the vicinity of Bermuda. J. Geophys. Res. 2008, 113, C08009. [CrossRef]

8. Hiriart Le Bert, G. Potencial energético del Alto Golfo de California. Boletín de la Sociedad Geológica Mexicana
2009, 61, 143–146. [CrossRef]

9. Carbajal, N.; Backhaus, J.O. Simulation of tides, residual flow and energy budget in the Gulf of California.
Oceanol. Acta 1998, 21, 429–446. [CrossRef]

10. Romero-Vadillo, E.; Zaytsev, O.; Morales-Pérez, R. Tropical cyclone statistics in the Northeastern Pacific.
Atmósfera 2007, 20, 197–213.

11. Cangialosi, J.P.; Kimberlain, T.B. Hurricane Odile (EP152014); Technical Report; National Hurricane Center:
Miami, FL, USA, 2015.

12. Stelling, G.S. On the Construction of Computational Methods for Shallow Water Flow Problems.
Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1983.

13. Lavín, M.F.; Marinone, S.G. An Overview of the Physical Oceanography of the Gulf of California. In Nonlinear
Processes in Geophysical Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 173–204. [CrossRef]

14. Phillips, N.A. A Coordinate System having some special advantages for numerical forecasting. J. Meteorol.
1957, 14, 184–185. [CrossRef]

15. Deltares. Delft3D-FLOW User Manual Version 3.15: Simulation of Multi-Dimensional Hydrodynamic Flows and
Transport Phenomena, Including Sediments; Technical Report; Deltares: Delft, The Netherlands, 2018.

16. Bryant, K.; Akbar, M. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge
Modeling. J. Mar. Sci. Eng. 2016, 4, 58. [CrossRef]

17. Akbar, M.; Kanjanda, S.; Musinguzi, A. Effect of Bottom Friction, Wind Drag Coefficient, and Meteorological
Forcing in Hindcast of Hurricane Rita Storm Surge Using SWAN +ADCIRC Model. J. Mar. Sci. Eng. 2017,
5, 38. [CrossRef]

18. Zhao, Z.K.; Liu, C.X.; Li, Q.; Dai, G.F.; Song, Q.T.; Lv, W.H. Typhoon air-sea drag coefficient in coastal regions.
J. Geophys. Res. Oceans 2015, 120, 716–727. [CrossRef]

19. Bordoni, S.; Ciesielski, P.E.; Johnson, R.H.; McNoldy, B.D.; Stevens, B. The low-level circulation of the North
American Monsoon as revealed by QuikSCAT. Geophys. Res. Lett. 2004, 31, L10109. [CrossRef]

20. Badan-Dangon, A.; Dorman, C.E.; Merrifield, M.A.; Winant, C.D. The lower atmosphere over the Gulf of
California. J. Geophys. Res. 1991, 96, 16877. [CrossRef]

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/
http://dx.doi.org/10.1007/s40722-016-0044-8
http://dx.doi.org/10.1016/j.oceaneng.2015.07.033
http://dx.doi.org/10.3390/en10111806
http://dx.doi.org/10.1073/pnas.1111769109
http://www.ncbi.nlm.nih.gov/pubmed/22331894
http://dx.doi.org/10.1029/2007JC004358
http://dx.doi.org/10.18268/BSGM2009v61n1a13
http://dx.doi.org/10.1016/S0399-1784(98)80028-5
http://dx.doi.org/10.1007/978-94-010-0074-1_11
http://dx.doi.org/10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2
http://dx.doi.org/10.3390/jmse4030058
http://dx.doi.org/10.3390/jmse5030038
http://dx.doi.org/10.1002/2014JC010283
http://dx.doi.org/10.1029/2004GL020009
http://dx.doi.org/10.1029/91JC01433


J. Mar. Sci. Eng. 2020, 8, 80 22 of 22

21. Douglas, M.W. The Summertime Low-Level Jet over the Gulf of California. Mon. Weather Rev. 1995,
123, 2334–2347. [CrossRef]

22. Mizielinski, M.S.; Roberts, M.J.; Vidale, P.L.; Schiemann, R.; Demory, M.E.; Strachan, J.; Edwards, T.;
Stephens, A.; Lawrence, B.N.; Pritchard, M.; et al. High-resolution global climate modelling: The UPSCALE
project, a large-simulation campaign. Geosci. Mod. Dev. 2014, 7, 1629–1640. [CrossRef]

23. Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [CrossRef]

24. Walters, D.N.; Best, M.J.; Bushell, A.C.; Copsey, D.; Edwards, J.M.; Falloon, P.D.; Harris, C.M.; Lock, A.P.;
Manners, J.C.; Morcrette, C.J.; et al. The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES
Global Land 3.0/3.1 configurations. Geosci. Mod. Dev. 2011, 4, 919–941. [CrossRef]

25. Black, T.L. The New NMC Mesoscale Eta Model: Description and Forecast Examples. Weather Forecast. 1994,
9, 265–278. [CrossRef]

26. Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.;
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