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Abstract: Formulas are presented for calculating the irradiance field, which is formed in a turbid 

medium with a narrow scattering phase function and homogeneous optical properties when an 

infinitely narrow light beam passes through it. The calculations are based on a new mathematical 

model of the stationary radiation field of an omnidirectional point source and relationships enabling 

one to represent the irradiance distribution in a continuous or modulated light beam through this 

field. The obtained formulas, in contrast to the previously known ones, permit taking into account 

the temporal spreading of a pulsed light beam in the sea without a significant decrease in the 

accuracy of describing its spatial structure. 

Keywords: underwater light fields; beam spread function; small-angle multiple scattering; 

distortions of a laser pulse 

 

1. Introduction 

Analytical models of the beam spread function (BSF), i.e., the light field of an unidirectional 

point source (UPS), are widely used in the theory of instrumental imaging of underwater objects [1–

7], lidar probing of the ocean [8–19], and underwater optical communication. These models are based 

on approximate solutions of the radiative transfer equation (RTE) simplified by taking into account 

the water inherent optical properties (IOP). The theory of underwater imaging is mainly based on the 

RTE solution in the small-angle approximation [20–25], which accurately describes the spatial-

angular radiance distribution in the axial region of a continuous light beam at optical distances from 

the source 8 12   . However, this solution neglects the effects of multipath propagation of light in 

the sea, which manifest themselves in the formation of stationary angular distributions of radiance 

and irradiance in a continuous beam for    and in a distortion of signals transmitted by a 

modulated beam. These effects within the framework of the small-angle approximation allow for a 

more accurate recording of the RTE differential operator [26–29]. But the “refined” small-angle RTE 

(with the collision integral) is not strictly solved, while its approximate solution has a rather 

complicated form. Therefore, the effect of multiple scattering on the characteristics of modulated light 

beams was mainly studied in the small-angle diffusion approximation [30–34] using the equation 

obtained from the refined small-angle RTE by replacing its integral operator with a differential one. 

The small-angle diffusion approximation is applicable when the variance of the angular distribution 

of radiance is large compared to the angle dispersion of the beam deviation in an elementary 

scattering event (the radiance should smoothly vary in the scale of the width of the scattering phase 

function). Therefore, this approximation roughly describes the spatial–angular structure of a narrow 

light beam, although the integral characteristics of the beam are determined in it with accuracy 

acceptable for a number of practical applications. Note that to construct models of images of 
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underwater objects and lidar echo signals arriving from the water depth, one mainly uses not the BSF 

itself but the expression for the irradiance field generated in water by the UPS. In this paper, we 

propose a new model of this field, which, contrary to the available ones, will allow us to take into 

account the influence of the photon path dispersion effects on the characteristics of continuous and 

modulated light beams without significant decrease in the accuracy of describing their spatial 

structures. 

The proposed model is constructed using the optical reciprocity theorem by appropriate 

replacement of variables in the expression for the radiation field of an omnidirectional point source 

(OPS). The radiance distribution from OPS is presented as the sum of the first three terms of 

Neumann series and the term describing the radiance of light scattered more than twice. The first 

three terms were found from the refined small-angle RTE. To calculate the last term, the small-angle 

diffusion equation with distributed sources that depend on the radiance of twice scattered light was 

used. Thus, the OPS field model is a superposition of solutions of two equations, the first of which 

describes the highly anisotropic field component taking into account the peculiarities of the shape of 

the water scattering phase function (SPF), and the second describes the weakly anisotropic field 

component, which depends on the dispersion of the angle of single scattering, and not on the SPF. 

The formulas for calculating the irradiance distribution in a stationary light beam and the irradiance 

distribution from a non-stationary UPS (in spectral representation) do not have a very complicated 

form (the sum of single and double integrals) and therefore are convenient for practical use. 

2. Statement of the Problem and Initial Equations 

The IOP are characterized by the coefficients of absorption a , scattering b , backscattering bb

, forward scattering 1 2 bb b b  , and attenuation c a b  , by the single scattering albedo /b c  , 

and scattering phase function ( )   that is approximately represented as the sum of the narrow 

1( )   and isotropic 0 ( ) 1    scattering phase functions 

  1 0( ) 1 2 ( ) 2 ( )b bp p         (1) 

with weight factors depending on the backscattering probability 

/2

/ (1/ 2) ( )sinb bp b b d





       (2) 

We assume that the scattering phase function 1  satisfies the conditions 

1

/2

(1/ 2) ( )sin 1bd p





      , 
1 1

0 0

(1/ 2) ( )sin (1/ 2) ( ) 1d d



       


    (3) 

and characterize its width by the parameter 

/2

2

1

0

(1/ 2) ( )d d



        (4) 

We also assume that the UPS with the power ( )P t  is located at the point 0r  in water and 

acts in the direction of the unit vector 0z  (see Figure 1a). The light radiance at the point r  in the 

direction of the unit vector Ω  at the time t  is denoted by ( ) ( , , )UPSL tr Ω . The problem is to obtain 

formulas for calculating the scalar irradiance 

( ) ( )

4

( , , ) ( , , )UPS UPSE r t L t d


   r Ω  (5) 

as a function of the distance ( r ) from the source to the point r , polar angle ( ) of this point, and 

time t . 
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Figure 1. Schematic representation for the unidirectional (a) and omnidirectional (b) light point 

sources. 

One of the known methods for solving this problem is based on the use of spectral expansions 

( ) ( )exp( )sP t P i t d  




   (6) 

( ) ( )( , , ) ( , , )exp( )UPS UPS

sE r t E r i t d    




   (7) 

and relation 

( ) ( )( , , ) ( ) ( , , / )UPS UPS

s s wE r P E r a i c       (8) 

where wc  is the light speed in water and  ( ) , ,UPSE r a  is the expression for the stationary 

irradiance field generated by the UPS of the power 1P   in water with the absorption coefficient a

. As Equation (8) shows, to find the harmonic component of the nonstationary irradiance field with 

the frequency  , it is necessary to replace the parameter a  with / wa i c  in the expression for 

the stationary field, after which the calculation of the nonstationary field is reduced to the calculation 

of integral (7) if we know the stationary field (below we will not indicate the absorption coefficient 

a  as an argument of the field ( )UPSE  to simplify the formulas). 

The integral parameters of the pulsed irradiance field 

 1 / wt r c   ,    ( ) ( ), , / , ,UPS UPSt t E r t dt E r t dt 
 

 

    (9) 

     
22 ( ) ( )

2 , , / , ,UPS UPSt t E r t dt E r t dt 
 

 

     (10) 

which characterize the time of the pulse propagation from the source to the point of its reception and 

the duration of the received pulse, are found by differentiating the stationary field with respect to the 

parameter a  [33] 

 ( )1
ln ,UPS

w

d
t E r

c da
  ,  

2
2 2 ( )

2 0 2 2

1
( ) ln ,UPS

w

d
t E r

c da
     (11) 

( 0t  is the radiated pulse duration). 

Thus using Equations (6)(11), the nonstationary irradiance field ( )UPSE  and its integral 

characteristics are expressed through the irradiance field ( )UPSE  that is stationary in time. To develop 

an analytical model of this field, it is expedient to use the optical reciprocity theorem [35], according 

to which the irradiance from the UPS can be represented as 

( ) ( )( , ) 4 ( , )UPS OPSE r L r    (12) 
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through the light radiance ( ) ( , )OPSL r   from an omnidirectional point source (OPS), which is a 

function of the distance to the source ( r ) and angle of deviation of the beam from the direction to the 

source  0arccos  Ωr , 0 / rr r  (see Figure 1b). The RTE for this field is strictly written as 

   ( )sin ( )
cos , ,

4

OPSc L r S r
r r

 
  

 

  
    

  

r
 (13) 

     
2

( )

0 0

, , sin
4

OPSb
S r L r d d

 

      


 
     
 

   (14) 

 arccos cos cos sin sin cos             (15) 

In this paper, we also use the equations of the “refined small-angle approximation”, which are 

obtained from (13)(15) after replacing 2cos (1 / 2)   , sin   on the left-hand side of 

Equation (13) and writing Equation (14) in the form 

     ( )1

0

, , ,
4

OPSb
S r L r p d     





      (16) 

   
2

2 2

1

0

, 2 cosp d



             (17) 

The indicated RTE simplifications become possible because of the strong anisotropy of the field 
( )OPSL , which is explained by the narrow scattering phase function in water and significant difference 

of the parameter   from 1. The substitutions 1b b , 1   into Equation (14) mean that we 

neglect the contribution of isotropically scattered light to the field ( )OPSL  and assume that water acts 

on this field as a medium with the scattering coefficient 1 2 bb b b   and absorption coefficient 

1 2 ba a b  . 

3. Model of the OPS Light Field 

The field ( )OPSL  is given as 

2
( ) ( ) ( )

0

OPS OPS OPS

n ms

n

L L L


   (18) 

where ( )OPS

nL  is the radiance of n -multiple scattered light and ( )OPS

msL  is the radiance of light 

scattered more than twice (we call it multiple scattered). Similar expressions for the field were used 

earlier in solving other problems of the optics of turbid media [32–34,36]. 

3.1. Formulas for Calculating the Radiances of Single and Double Scattered Light 

It follows from exact Equations (13)(15) that the radiance of nonscattered light is determined 

by the formula 

( )

0 2 2

exp( )
( , ) ( )

4

OPS cr
L r

r
  

 


  (19) 

while series terms (18) with the index 0n   are found from the recurrence relations 

     
2

( )

1

0 0

, , sin
4

OPS

n n

b
Q r L r d d

 

      




 
     
 

   (20) 

 ( )

1 1

0

( , ) ( , )expOPS

n nL r Q r cs ds 


   (21) 



J. Mar. Sci. Eng. 2020, 8, 79 5 of 12 

 

2 2

1 2 cosr r rs s   , 
1

sin

cos

r
arctg

r s








 (22) 

Expressions for the functions ( )OPS

nL  in the refined small-angle approximation can be found 

from (20) to (21) by the replacements 1b b , 1   and replacement of Equation (22) with 

approximate equations 

2

1
2( )

rs
r r s

r s


  


, 

1

r

r s


 


 (23) 

Equation (23) for 1r  should be used only when substituting it into the exponential factor of the 

function nQ  containing a water attenuation coefficient. When substituting 1r  into the factors that 

do not contain an attenuation coefficient, we can assume that 1r r s  . The functions 1Q , ( )

1

OPSL  and 

2Q , ( )

2

OPSL  found in this way have the form 

 
1

1 12

exp( )
( , ) ( )

4

b cr
Q r

r
  




  (24) 

 

 
1( )

1 2

exp
( , ) ( , )

4

OPS
b cr

L r q r
r

 
 


  (25) 

   1

0

, ( )exp / 2q r cr d     


    (26) 

 

 
 

2

1

2 3

0

exp
( , ) ( , ) ,

4

b cr
Q r p q r d

r
    




     (27) 

 
   

2

( ) 1

2 23

0 0

( , ) exp 1 / 2 ( , ) ,
4

OPS b d
L r cr p q r d


      

 

  
           

   (28) 

   
1

2 / 2r r   
   

 
 (29) 

3.2. Equation for the Radiance of Multiple Scattered Light 

To obtain the field ( )OPS

msL  we use the differential equation 

( )

3
ˆ ( , ) ( , )OPS

msDL r Q r   (30) 

 
2

2

1 2

1ˆ 1 / 2D a D
r r




  

     
       

    
, 1

1

4
D d b   

yielded by (13)(15) when the variance of the angular distribution of radiance 

2 ( ) ( )

0 0
( ) ( , )sin / ( , )sinOPS OPS

L ms msd r L r d L r d
 

          (31) 

satisfies the conditions 1Ld d   . Equation (30) with the OPS has a self-similar solution in the 

form of a Gaussian function of the angle   with parameters depending on r  [32]. To obtain a 

similar expression for the field ( )OPS

msL , we replace its source 

     ( )1

3 2

0

, , ,
4

OPSb
Q r L r p d     





      (32) 
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with the source 

 
(0)

2 2

3 02

0

, exp /
M

Q r   


    , 2 (2) (0)

0 /M M   (33) 

whose angular moments coincide with those of source (32): 

   ( )

3

0

2 , ( 0,2)m mM r Q r d m    


   (34) 

The function ( )mM  is given as 

(0) (0)

1 2( ) ( )M r b L r , (2) (0) (2)

1 2 2( ) ( ) ( )M r b d L r L r
     (35) 

through the angular moments of the fields ( )OPS

nL  

 ( ) ( )

0

( ) 2 ,m m OPS

n nL r L r d    


   (36) 

To simplify their calculation, we used the equations that follow from the RTE in the refined 

small-angle approximation: 

(2)

(0) (0)

1 1

2 1

2

n

n n

L
c L b L

r r r


 
    

  
 (37) 

(4)

(2) (0) (2)

1 1 1 1

4 1

2

n

n n n

L
c L b d L b L

r r r
  

 
     

  
 (38) 

 
1

(0) 2 (2)

0 04 exp( ), 0L r cr L


    (39) 

First, we solved the set of Equations (37) and (38) with neglected last terms and then the 

expression for the moment (0)

2L  was refined by substituting the previously found functions (2)

nL  

into Equation (37). As a result, from (37)–(39) and (35) we obtained the expressions for the parameters 

of the function 3Q : 

   
1(0) 3

1( ) 8 1 / 3 exp (1 / 6)M r b d cr d 


      , 2

0

5

3
d   (40) 

3.3. Formulas for Calculating the Radiance of Multiple Scattered Light 

If 2

0 1  , the solution of Equation (30) with a distributed source 3Q  can be represented as  

( )

0 0

0

( , ) ( , , )

r

OPS

msL r L r r dr    (41) 

through the solution of the equation 

0
ˆ ( , , ) 0DL r r    (42) 

with the boundary condition 

(0)

2 20

0 0 3 0 02

0

( )
( , , ) ( , ) exp /

M r
L r r Q r   


      (43) 

If the solution of Equation (42) is sought as 

20

0 0

0

( , )
( , , ) exp / ( , )

( , )

E r r
L r r V r r

V r r
 


     (44) 
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then for the functions E  and V  we obtain the equations 

2

1/ 2 / / 2 4dV dr V r aV D    (45) 

  1 1ln / 2 / / 2 0d E dr a r aV     (46) 

with the boundary conditions 

(0)

0 0 0( , ) ( )E r r M r , 2

0 0 0( , )V r r   (47) 

As is seen in Equation (45), for r  , the function V  (variance of the angular distribution of 

radiance) takes the stationary value [21] 

1 1 18 / 2 /V D a d b a    (48) 

Passing to a new variable in Equation (45) 

  1/ 2V a r   (49) 

we obtain the equation for the function /U V V  

2/ 2 / 1dU d U U     (50) 

having a solution of the form 

 0( , ) (1/ )U r r cth       (51) 

with the parameter 0( )r  that is found from the condition 

  2

0 0 0) (1/ ) /cth V       ,  0 1 0/ 2V a r   (52) 

As a result, we have 

0 0

1 1
( ) ln

2 1
r


 




 


,    2

0 0 0( ) / 1/r V     (53) 

 
 

0

0 0

0

( 1)exp 2( ) ( 1) 1
( , )

( 1)exp 2( ) ( 1)
V r r r V

   

    


    
   

     

 (54) 

The function E  is found from Equation (46) after substituting the expression for V  into it: 

   
   

(0)

0 0 1 0

0 0

0 0

2 ( ) / exp ( )
( , )

1 exp( ) 1 exp( )

M r r r a r r
E r r r

     

 
 

    
 (55) 

Thus the calculation of the radiance of multiple scattered light is reduced to the calculation of 

single integral (41) of the function L  whose form is determined by Equations (44), (54), (55), and 

(40), (53). 

To calculate the field ( )OPSL  for 1  , one can use simpler formulas [32]. 

( ) 2( )
exp / ( )

( )

OPS E r
L V r

V r



    , 

 1

2

exp

4

a r
E

shr





  
  

 
,  1/V V cth      (56) 

showing, in particular, that for   , the variance of the angular distribution of radiance V  tends 

to the stationary value V , while the irradiance attenuates according to the formula 

   1 / 4 expE aV r r   ,  1 1 / 2a V    (57) 

The model of the field ( )OPSL  described above is applicable if 1V  . 

4. Simulation of the Structure of a Narrow Light Beam in Water 
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Using Equation (12), the irradiance distribution in a narrow light beam is represented through 

the radiance of the light field of the OPS. According to Equation (18), the radiance of this field is the 

sum of the radiance of nonscattered light (Equation (19)) and the radiance of single (Equation (25)), 

double (Equation (28)), and multiple (Equation (41)) scattered light. The expressions for these 

components of the light field are quite simple with the exception of Equation (28) that contains a 

quadruple integral. This formula can be simplified by using such approximations of the water 

scattering phase function, which allows one to analytically calculate integrals (17), (26) or 

approximate them by elementary functions. Such a possibility appears, in particular, when the 

scattering phase function is given in the form 

1 1 1 2 2( ) exp( / ) exp( / )p p          (58) 

(a more complex SPF with one exponential term is described in the paper [37]). This scattering phase 

function is characterized by four parameters that are connected to each other and to the parameter 

d  by the relations 

2

2

1 2 2 2

1 2 1

6

3 ( )

d
p



  





, 

2

1

2 2 2 2

2 2 1

6

3 ( )

d
p

 

  





 (59) 

The substitution of (58) into (26) yields 

2

1
1

exp( / )
( , )

/ 2

n n

n n

p
q r

cr

 


 






  (60) 

Integral (17) with scattering phase function (58) cannot be taken analytically but with an 

acceptable error (of the order of 5%) is presented in the form  

   
 1

2
1/4

1 4 4

1
1

0.35
, 2 exp

1 0.8

n

n n

n n

th
p p

 
     

 








             


 

(61) 

In the calculations, we assumed that 

1/2 1/2

1 2 1 262 / , 3.34 / , / 8, /1.8p d p d d d         (62) 

so that function (58) reproduces the shape of one of the real scattering phase functions measured in 

the Black Sea. Other IOPs were expressed via attenuation coefficient according to Levin–Kopelevich 

empirical regressions for the “Case 2” water at a wavelength of 550 nm [38]: 

1

1 0.092 0.048a c m  , 1

1 0.908 0.048b c m  , 
1

1

0.036 0.001

0.051

c m
d

c m










 (63) 

The results of calculating the field ( ) ( , )UPSE r  by the above formulas are shown in Figure 2 solid 

curves. The dashed curves depict the irradiance distribution calculated in the small-angle 

approximation by the formula 

  22
( ) 1

02 2 2
10

exp
( , ) exp ( )

22 1

UPS n n

SA

n
n

cr pb r
E r J d

r


   

  





 
 
  

  (64) 

This formula neglects the photon path dispersion effects but it well describe the irradiance 

distribution near the axis of a stationary light beam at moderate optical distances from the source (

8 12cr    ), which is confirmed by field experiments and the results of Monte Carlo modeling the 

structure of a light beam in water [5,39]. As the figure shows, the new model of BSF underestimates 

the irradiation if (3 5) 12   , 10 15   deg. However, this model should more accurately 

describe the irradiance distribution far from the beam axis. The new model, unlike formula (64), 

correctly describes the evolution of the beam structure at very large distances from the source, where 

the stationary angular distribution of irradiance ( )F   is formed and BSF takes the form 

 ( ) ( , ) ( )expUPSE r F r    (see Equations (48), (56), and (57)). 
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But the main advantages of the new model should be manifested in the study of the influence of 

the aquatic environment on the characteristics of non-stationary light fields. As an example in Figures 

3 and 4 show the results of calculating the integral parameters ( 1 , 2 ) of a light signal coming from 

the  -pulse UPS to a given point in water from the solid angle 4 . The calculations were made by 

Equation (11) and model of the field ( )UPSE . Note that if we substitute the function ( )UPS

SAE  in Equation 

(11) instead of the function ( )UPSE , then we get 1 2 0    , since Equation (64) does not take into 

account the photon path dispersion effects. 

  

Figure 2. Irradiance from unidirectional point source (UPS) depending on the polar angle (a) and 

optical distance (b), calculated according to new formulas (solid curves) and to Equation (64) (dotted 

curves); the numbers in (a,b) indicate the values of   and  , respectively; source power 1 W, c = 0.4 

m−1. 

 

Figure 3. The delay of the “center of gravity” of the pulse 1 ( / )wt r c    (in nanoseconds) because 

of the scattering of light in water depending on the angle   at various optical distances   

(indicated by the numbers in the figure); c = 0.4 m−1. 
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Figure 4. The pulse broadening (in nanoseconds) because of the scattering of light in water depending 

on the angle   at various optical distances   (indicated by numbers in the figure); c = 0.4 m−1. 

A comparative analysis of the considered BSF models shows that it is advisable to use formula 

(64) to calculate the irradiation distribution in a stationary light beam at optical distances from the 

source 12  . It can also be used to estimate the energy of a signal from a pulsed UPS. The 

calculation of the characteristics of a modulated light beam for arbitrary values of   and the 

irradiation distribution in a stationary beam at optical distances 12   should be carried out using 

new formulas. Note that according to preliminary estimates, the accuracy of calculating the frequency 

characteristics of a modulated light beam at distances 12   can be increased if, instead of formula 

(8), one uses the equation 

( ) ( ) ( ) ( )( , , ) ( ) ( , ) / ( , , ) ( , , / )UPS UPS UPS UPS

s s SA wE r P E r E r a E r a i c           (65) 

A more detailed verification of the quality of new BSF model will require a special study. 

5. Conclusions 

A technique for calculating the irradiance distribution ( )UPSE  from a point unidirectional source 

(UPS) in turbid media with a narrow scattering phase function, which include sea water, is presented. 

Using the optical reciprocity theorem, the problem is reduced to finding the radiation field ( )OPSL  of 

an omnidirectional point source (OPS). A new analytical model of this field is developed, which is 

based on the solution of the radiative transfer equation (RTE) “in the refined small-angle 

approximation”. The field is represented as the sum of the first three terms of its expansion in 

scattering multiplicity powers and multiple scattered component. The first three terms were 

calculated using an RTE with an integral term, while to find the last term, we used an RTE “in the 

refined small-angle diffusion approximation.” A previously unknown solution of nonlinear Equation 

(50) with the boundary condition was found, because of which it was possible to obtain a compact 

expression for the multiple scattered component of the field ( )OPSL . To calculate the characteristics of 

modulated light fields, it is proposed to use a well-known method based on the similarity of 

equations for the stationary radiation field and harmonic component of the nonstationary field. A 

comparative analysis of the results of calculating the spatial structure of a stationary light beam using 

new formulas and a well-known formula, which neglects the effects of multipath propagation of 

light, was performed. The possibilities of employing the results of the paper to study nonstationary 

light fields was illustrated by calculating the temporal characteristics of a  -pulsed light beam. 

Considerations have been expressed for sharing the new BSF model and formulas of small-angle 

approximation for calculating the characteristics of light fields in the sea. 
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