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Abstract: The objective of this study is to investigate the strength of the rectangular plates subjected
to cyclic load reversals with varying strain ranges. The finite element solution is implemented to
estimate the load-carrying capacity. The influence of the initial imperfections, plate thicknesses
and aspect ratio parameters have been accounted for. The cyclic response is predicted by using the
material model assumed to follow the combined non-linear isotropic and kinematic strain hardening
rules with Von Misses yield criterion accounting for the Bauschinger effect. It has been shown that the
type of plastic formation during the cyclic load has a significant influence on the structural capacity
and stiffness reduction. The initial imperfection has a significant impact on the ultimate load capacity
reduction where the uni-modal initial imperfection type leads to a more stable load transition and
plastic formation, reducing the structural capacity during the cyclic load exposure.
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1. Introduction

The cyclic load phenomenon is a common load type that the structures are subjected during their
service life. Its impact has been investigated accounting for different aspects of problems in various
fields of engineering. It may take place as a result of a variety of causes, for example, when civil
buildings are exposed to earthquakes or ships are subjected to extreme wave loads (Det Norske
Veritas-Germanischer LIyod, DNV-GL [1], Eurocode-3 [2], Eurocode-8 [3], the Federal Emergency
Management Agency, FEMA [4]).

When the steel structure is subjected to a cyclic load, their hysteretic behaviour becomes a critical issue
to be investigated involving the structural capacity and stiffness reduction. Its impact is magnified with the
strain reversals. Ibarra et al., 2005 [5] provided the description, calibration and application of hysteretic
models accounting for the strength and stiffness deteriorations for a variety of materials including steel.

Azevedo et al., 1994 [6] provided an overview of experimental methodologies for the cyclic load
and analytical methods to simulate the hysteretic behaviour of steel structural components.

Zhou et al., 2015 [7] performed a series of cyclic load tests accounting for several cyclic loading
protocols and material properties under considerable inelastic strain exposure and they concluded
that the loading history has a considerable influence on the stress-strain response and it is more
pronounced at low amplitude loadings. Different cyclic load protocols have also been studied by
Shi et al., 2011 [8] and Shi et al., 2012 [9] where the difference between the monotonic and hysteretic
curves has been presented.

Krolo et al., 2016 [10] investigated the behaviour of structures, built of mild steel and subjected
to the cyclic load accounting for variable strain ranges by applying the displacement controlled load.
They compared the hysteretic curves as predicted by the finite element solution and experimental
results, showing a good agreement.
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Zhao et al., 2019 [11] studied aluminium alloys under low-cycle fatigue loading and they showed
that as the number of the cyclic load increases, it gives rise to the load-carrying capacity and stiffness
reduction. Wang et al., 2019 [12] analysed steel-reinforced concrete columns subjected to the cyclic
load employing a damage assessment approach where the hysteretic and skeleton curves have been
developed based on the test results.

Ship hull structures are made up of steel by and largely are exposed to a variety of loads throughout
the ship’s service life at sea. The imposed loads play a significant role in defining the overall structural
capacity of the ship structure. Hence, the structural behaviour and capacity to resist different loads are
to be well understood in the first place to enhance the ship and crew safety and also to protect the
marine environment in case of structural failure.

The cyclic load is also one of the load types that the ships are subjected to. The degree of the cyclic
load exposure may differ depending on the sea state conditions where the ships are operating.

A variety of tools and methods have been developed to estimate the ultimate load-carrying
capacity of the ship structure (Smith 1977 [13], Paik et al., 2012 [14], ALPS/HULL [15]).

Smith 1977 [13] proposed a progressive collapse method also widely used by the Common
Structural Rules [16], in order to estimate the ultimate ship strength. The ship cross-section is divided
into components defined as a unit of plates with associated stiffeners, hard corner or plate elements.
Each element is independent and progressively loses its strength and stiffness during the incremental
permissible curvature.

Gordo and Guedes Soares 1997 [17] used the progressive collapse method to assess the ultimate
load-carrying capacity of the hull girders and verified with the experimental results demonstrating
good accuracy. The progressive collapse method was also implemented in Gordo and Guedes Soares
1996 [18] and Paik et al., 2012 [19].

The finite element solution is also being commonly used for the ultimate collapse analysis of marine
structures which was initially performed by Chen et al., 1983 [20]. Several authors, Paik et al., 2008 [21],
Xu et al., 2013 [22] and Tekgoz et al., 2018 [23], studied the ultimate shipload carrying capacity using
the finite element solution which is based on a force-rotation-controlled static load.

In these approaches, the structure is allowed to follow a path under a static pure-bending load
with an incrementally increasing curvature.

However, the ship plating is predominantly subjected to the dynamic loads that subsequently
leads to the cyclic load attack, which is added to the complexity of the geometrical and material
nonlinearity of the structural assessment.

Yao et al., 1990 [24] performed a series of elastic-plastic large deflection analysis on plates under
cyclic load. They studied the influence of the cyclic load on the plate in-plane rigidity, re-yielding and
ultimate load capacity reduction for a wide plate.

Goto et al., 1995 [25] studied the influence of the localization of the plastic buckling on the steel
structures where they concluded that it significantly reduces the loading capacity of the steel structure
under the cyclic load.

Komoriyama et al., 2018 [26] studied the influence of the cumulative buckling under the cyclic
load on the load capacity of the stiffened panels. They showed that when the cyclic compressive load is
around the ultimate capacity of the structure, the cumulative buckling deformation is high. However,
its impact on the ultimate load carrying capacity is small.

Yao et al., [27] developed an analytical solution for a plate subjected to a cyclic load in order to
simulate the collapse behaviours accounting for the welding induced residual stresses where a simple
dynamical model has been introduced presenting a good agreement with the one defined by the finite
element solution.

Cui et al., 2018 [28] studied the ultimate load-carrying capacity of the ship hull girder under a
cyclic load using the Smith’s method and a good agreement has been achieved when compared to the
one predicted by the finite element solution.
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Li et al., 2019 [29] proposed an analytical solution to predict the buckling and collapse response of
both plates and stiffened panels under the cyclic load showing a good agreement with the FEM prediction.

The cyclic response is a complex phenomenon that involves several aspects to be considered both
from material non-linearity being a function of the material stress-strain definition and geometrical
non-linearity being the buckling, initial imperfections, plastic formation pattern, etc.

Here in this study, the ship is considered to be exposed to an extreme cyclic load. The term extreme
cyclic load has been considered in the sense that the ship is already failed and she is in post-collapse
stages. In this state, the ship may experience extreme cyclic behaviour, and its post-collapse structural
capacity might be lower than what the static approaches predict.

Therefore, the strain ranges considered in this study can be considered within the range of the
extreme ones. The plates, as a part of the ship hull structure, have been assumed to be failed in the
initial loading and exposed to the multiple cyclic loads in order to see how the structural response of
the plate changes.

The objective of this study is to investigate the strength of rectangular plates subjected to cyclic load
with varying strain ranges. The finite element solution is implemented to estimate the load-carrying
capacity. The influence of the initial imperfections, plate thicknesses and aspect ratio parameters have
been accounted for.

2. Finite Element Modelling

2.1. Material and Structural Description

The material properties are assumed as reported in Krolo et al., 2016 [10] for the present study, as
can be seen in Table 1.

Table 1. Material property descriptors.

Yield Stress
(MPa)

Young’s Modulus
(MPa) ν

C1
(MPa) γ

C2
(MPa) γ

C3
(MPa) γ

Q∞
(MPa) b

285 207,000 0.3 13,921 765 4240 52 1573 14 25.6 4.4

Due to the complexity of the cyclic behaviour of the structures which may exhibit strain hardening
accompanying a structural capacity increase, and material yield stress reduction which is termed as
the Bauschinger effect, that leads to the structural capacity reduction, a comprehensive material model
that may mimic this complex behaviour under the cyclic load is defined.

Here the Chaboche [30] nonlinear kinematic hardening and the non-linear isotropic hardening
rules under the cyclic load has been used, and its descriptors have been shown in Table 1. which have
been calibrated based on the experimental cyclic test data as given by Krolo et al., 2016 [10].

The yield surface definition is defined following the Von Mises criterion, ANSYS [31]:

F = f(σ− α) − σ0 = 0 (1)

where σ0 is the material yield stress and f(σ− α) is the equivalent Von Mises stress concerning the back
stress α, that equals to:

f(σ− α) =

√
3
2
(S− αdev) : (S− αdev) (2)

where σ is the stress tensor, S is the deviatoric stress tensor and αdev is the deviatoric part of the back
stress tensor.

The material yield stress definition with the material isotropic hardening rule is defined as,
ANSYS [31]:

σ0 = σ

∣∣∣∣∣o + Q∞
(
1− e−bε̂pl

)
(3)
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where σ|o is the material initial yield stress at zero plastic strain. Q∞ and b are the material parameters
of the isotropic hardening behaviour of the materials, defined based on the experimental cyclic test
data and ε̂pl is the equivalent plastic strain.

The evolution of each back stress model with the kinematic hardening rule equals to, ANSYS [31]:

∆α̂i =
2
3

Ci∆ε̂pl
− γiαi∆ε̂pl (4)

where Ci and γi are the material parameters of the kinematic hardening behaviour of materials, defined
based on the experimental cyclic test data, and finally, α is the overall back stress defined as, ANSYS [31]:

α =
∑N

i=1
αi (5)

where N is the back stress number which has been set to 3 here.
Three different plates with varying plate aspect ratios and plate thicknesses have been studied

here in order to investigate their impact on the structural capacity under the cyclic load, as shown in
Table 2.

Table 2. The plate structural definition.

Plates Length (mm) Breadth
(mm)

Thickness
(mm)

Aspect Ratio,
Length/Breadth

1 500 500 5,10 1
2 1 2610 880 10,15,20 3
3 1 4950 830 10,15,20 6

1 Paik et al., 2012 [19].

2.2. Load, Boundary Condition and Initial Imperfection

The boundary conditions applied to the Finite Element Method, FEM model edges are simply
supported conditions. The simply supported boundary conditions have been kept for all FEM studies
performed here.

For the plate with an aspect ratio 1, only a quarter part of the plate has been modelled, and the
symmetry boundary conditions have been applied to the respective locations, and for the longer plates,
the entire plate has been modelled as shown in Figure 1:
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There are two types of initial imperfections used, namely, the uni-modal and the multi-modal
ones (see Figure 2). The uni-modal one, which is termed here as Initial imp_B, takes the general form
as defined by Ueda et al., 1985 [32]:

Wo = w max sin
(mπx

a

)
sin

(nπy
b

)
(6)

where a is the length of the plate, b is the breath of the plate, m and n are parameters depending on
the number of half-waves considered. For all FE studies here, n is set to 1 and m is calculated as the
minimum integer as follows:

a
b
≤

√
m(m + 1) (7)

As for the mid-plate maximum initial imperfection, Wmax is given as for the average initial
imperfections unless stated otherwise in the respective sections, as defined by Smith et al., 1988 [33]:

Wmax = 0.1βp
2tp (8)

where βp represents plate slenderness and tp is the plate thickness.
As for the multi-modal initial imperfection that is labelled as Initial imp_A, it takes the general

form of Ueda et al., 1985 [32]:

Wo =
∑(∑

A 0mn sin
(mπx

a

))
sin

(nπy
b

)
(9)

where A 0mn is the maximum magnitude of each component of initial imperfection which is defined
concerning each plate aspect ratio and n is set to 1 for each component here.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 5 of 20 

 

where a is the length of the plate, 𝑏 is the breath of the plate, m and n are parameters depending 157 
on the number of half-waves considered. For all FE studies here, n is set to 1 and m is calculated as 158 
the minimum integer as follows: 159 

𝑎

𝑏
 ≤  √𝑚(𝑚 + 1)  (7) 

As for the mid-plate maximum initial imperfection, Wmax is given as for the average initial 160 
imperfections unless stated otherwise in the respective sections, as defined by Smith et al., 1988 [33]: 161 

Wmax = 0.1𝛽𝑝
2𝑡𝑝  (8) 

where 𝛽𝑝 represents plate slenderness and tp is the plate thickness. 162 

As for the multi-modal initial imperfection that is labelled as Initial imp_A, it takes the general 163 
form of Ueda et al., 1985 [32]: 164 

𝑊𝑜 = ∑(∑𝐴 0𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
))  𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)  (9) 

where 𝐴 0𝑚𝑛 is the maximum magnitude of each component of initial imperfection which is 165 
defined concerning each plate aspect ratio and n is set to 1 for each component here. 166 

  

Figure 2. Multi-modal initial imperfection (left) and uni-modal initial imperfection (right). 167 

As to the cyclic load, a displacement controlled load has been applied in order to avoid sudden 168 
load fluctuations that may occur during the plate buckling phenomenon as can be seen in Figure 3. 169 

 170 

Figure 3. Load application. 171 

The cyclic load response has been estimated by the FEM method using commercial finite element 172 
software, ANSYS [31]. The shell element SHELL181 has been used to model the studied plates. The 173 
element type has four nodes with six degrees of freedom at each node, including translations and 174 
rotations about the x, y, and z-axes. 175 

 176 
 177 

Displacement

Time

Ux

-Ux

Figure 2. Multi-modal initial imperfection (left) and uni-modal initial imperfection (right).

As to the cyclic load, a displacement controlled load has been applied in order to avoid sudden
load fluctuations that may occur during the plate buckling phenomenon as can be seen in Figure 3.
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The cyclic load response has been estimated by the FEM method using commercial finite element
software, ANSYS [31]. The shell element SHELL181 has been used to model the studied plates.
The element type has four nodes with six degrees of freedom at each node, including translations and
rotations about the x, y, and z-axes.

3. Results

3.1. The Impact of the Cyclic Load on the Load Capacity, Plate 1

Here the impact of the cyclic load on the ultimate strength is analysed. Firstly, a square plate,
that is labelled as Plate 1, with a thickness of 5 mm and 10 mm is studied. The amplitude of the initial
imperfection, Wmax, is taken as 10% of the plate thickness. The material property and load definition
are provided in Sections 2.1 and 2.2. Under these conditions, the plate may experience the elastic and
plastic buckling.

The influence of the varying strain range is studied employing one half-cycle load as can be seen
in Figures 4 and 5. Figure 4 shows the normalized strength and strains as a result of the half-cycle
load. The load is initially compressive, and the tensile load follows to complete the half cycle. Figure 5
shows the normalized strength and strains under half-cycle load. The load is initially tensile, and the
compressive load follows to complete the half cycle.
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Figure 4. Plate thickness: 5 mm (left) and plate thickness: 10 mm (right), first compressive followed by
a tensile load.
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The square plate response may differ depending on how the plate is initially loaded. The plate
re-yielding points do not differ if it is first loaded under tensile load and followed by a compressive
load. However, it significantly changes if it is firstly loaded under compression and followed by a
tensile load. This holds true for both plate thickness cases. Similar findings have also been given in
Yao et al., 1990 [24] for a wider plate.

This might be explained with the non-uniform residual plastic deformations that occur in previous
compressive loading history and due to the buckling phenomenon.

Additionally, the plate with a 5 mm thicknesses creates a local plasticity line forming a partial failure
mechanism (see Figure 6). When a failure mechanism occurs in the plate, it governs the plate deformation
and causes unloading on the stresses in the other parts of the plate, and this phenomenon, apart from the
developed residual plastic strains and Bauschinger effect, may also explain why the re-yielding reduction
is more influenced when it is re-loaded in the case of a plate thickness of 5 mm (see Figure 4).
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Figure 6. Plate thickness: 5 mm (left) and plate thickness: 10 mm (right), yielding location.

On the next stage, the square plate is subjected to the multiple cycle load with a variable strain
range. Figure 7 shows the normalized strength and strain response of the plate that is subjected to the
multiple cyclic loads accounting for the plate thicknesses. For both cases, a plate thickness of 5 mm
and 10 mm, the response approaches to converged loop after several cyclic loads.
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Figure 7. (a) t = 5 mm, −3 ≤ εx
εy
≤ 0.5; (b) t = 5 mm, −3 ≤ εx

εy
≤ 2; (c) t = 5 mm, −3 ≤ εx

εy
≤ 3; (d) t = 10 mm,

−3 ≤ εx
εy
≤ 0.5; (e) t = 10 mm, −3 ≤ εx

εy
≤ 2; (f) t = 10 mm, −3 ≤ εx

εy
≤ 3.
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As the number of the cyclic load is increasing, this gives a rise of the ultimate strength and initial
stiffness reduction which has been observed with the square plate (see Figure 8).
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Figure 8. (a) Strength decrease, −3 ≤ εx
εy
≤ 0.5; (b) Stiffness decrease, 3 ≤ εx

εy
≤ 0.5; (c) Strength decrease,

−3 ≤ εx
εy
≤ 2; (d) Stiffness decrease, −3 ≤ εx

εy
≤ 2; (e) Strength decrease, −3 ≤ εx

εy
≤ 3; (f) Stiffness decrease,

−3 ≤ εx
εy
≤ 3.
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It has been observed in the case of a square plate that as the plate thicknesses are reduced,
the ultimate load-carrying capacity and its stiffness reduction is more pronounced and in addition to
this, the reduction is magnified with the increase of the strain range.

3.2. Impact of the Cyclic Load on the Load Capacity, Plate 2 and 3

Firstly, the impact of the plate thickness using the Initial imp_B has been studied under a half load
cycle, as shown in Figure 9. This study is performed to see the influence of the order of the loading
with long plates by varying the plate thicknesses. A particular case with a plate thickness of 8 mm is
also presented to analyse the response under the half-cycle load concerning the order of the cyclic load.

The results show that when the plate thickness is less than 10 mm, it may show a different
structural capacity when it is loaded first under tensile load. For the rest of the cases, the order of the
loading does not have a significant impact on the structural response.
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Figure 9. (a) t = 8 mm, first compressive followed by tensile load; (b) t = 8 mm, first tensile followed by
compressive load; (c) t = 10 mm, first compressive followed by tensile load; (d) t = 10 mm, first tensile
followed by compressive load; (e) t = 15 mm, first compressive followed by tensile load; (f) t = 15 mm,
first tensile followed by compressive load; (g) t = 20 mm, first compressive followed by tensile load;
(h) t = 20 mm, first tensile followed by compressive load.

At the next stage, the impact of the uni-modal and multi-modal initial imperfection is studied
under multiple cyclic loads with a constant strain range of −3 ≤ εx

εy
≤ 3 using Plate 2 and 3 that has an

aspect ratio of 3 and 6, respectively in order to see the effect of the initial imperfection on the ultimate
load-carrying capacity under the multiple cyclic load exposure.

Figure 10 shows the normalized strength and strain prediction of the FEM accounting for the plate
initial imperfections under the multiple cyclic loads for the plate with an aspect ratio: 6.

The multi-modal initial imperfection, the initial imp_A, exhibits lower strength performance
contrary to the uni-modal initial imperfection, the Initial imp_B, as can be seen in Figure 10.

In the case of the uni-modal case, Initial imp_B, the load transition forms smooth plastic
deformation to other parts and follows the pattern during the entire cyclic load exposure. However, in
the case of the multi-modal case, Initial imp_A, the load transition is not smooth and very local plastic
formation occurs at the early stage of the cyclic load and continues with it throughout the cyclic load
exposure. In addition to that, at the final stages of the cyclic load exposure, in both cases, the structure
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creates a local plastic mechanism by which the structure is governed, and it may finally lead to rupture
as can be seen from Figures 11 and 12.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 20 
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Figure 10. (a) t = 10 mm, Initial imp_A −3 ≤ εx
εy
≤ 3; (b) t = 10 mm, Initial imp_B, −3 ≤ εx

εy
≤ 3;

(c) Normalized ultimate strength, −3 ≤ εx
εy
≤ 3; (d) t = 15 mm, Initial imp_A, −3 ≤ εx

εy
≤ 3; (e) t = 15 mm,

Initial imp_B −3 ≤ εx
εy
≤ 3; (f) Normalized ultimate strength −3 ≤ εx

εy
≤ 3; (g) t = 20 mm, Initial imp_A

−3 ≤ εx
εy
≤ 3; (h) t = 20 mm, Initial imp_B −3 ≤ εx

εy
≤ 3; (i) Normalized ultimate strength −3 ≤ εx

εy
≤ 3.

Figure 11 shows the progress of the equivalent plastic strains at the ultimate compressive capacity
under the cyclic load for the plate thicknesses of 10 mm using an aspect ratio of 6 accounting for the
different initial imperfection.
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Figure 11. (a) Initial imp_B, plastic strains at C0; (b) Initial imp_A, plastic strains at C0; (c) Initial
imp_B, plastic strains at C1; (d) Initial imp_A, plastic strains at C1; (e) Initial imp_B, plastic strains at C2;
(f) Initial imp_A, plastic strains at C2; (g) Initial imp_B, plastic strains at C3; (h) Initial imp_A, plastic
strains at C3; (i) Initial imp_B, plastic strains at C4; (j) Initial imp_A, plastic strains at C4; (k) Initial
imp_B, plastic strains at C9; (l) Initial imp_A, plastic strains at C9.

Figure 12 shows the progress of the equivalent plastic strains at the ultimate compressive capacity
for a plate thickness of 20 mm with an aspect ratio of 6.
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Figure 12. (a) Initial imp_B, plastic strains at C0; (b) Initial imp_A, plastic strains at C0; (c) Initial
imp_B, plastic strains at C1; (d) Initial imp_A, plastic strains at C1; (e) Initial imp_B, plastic strains
at C2; (f) Initial imp_A, plastic strains at C2; (g) Initial imp_B, plastic strains at C3; (h) Initial imp_A,
plastic strains at C3; (i) Initial imp_B, plastic strains at C9; (j) Initial imp_A, plastic strains at C9.

It is observed that in the case of a plate thickness of 10 mm, the load transition is faster contrary
to the one of 20 mm as shown in Figures 11 and 12 in the case of the uni-modal initial imperfection.
This may be one of the reasons why the plate with a 10 mm thickness exhibits more considerable
ultimate carrying capacity reduction as the cycle number is increasing.

Figure 13 shows the normalized strength and strain prediction of the FEM accounting for the
plate initial imperfections under multiple cyclic loads with an aspect ratio of 3. The multi-modal initial
imperfection exhibits a lower strength performance compared to the uni-modal initial imperfection,
as can be seen in Figure 13. Similar predictions have also been observed with the plate aspect ratio of 6.
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Figure 13. (a) t = 10 mm, Initial imp_A −3 ≤ εx
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≤ 3; (b) t = 10 mm, Initial imp_B, −3 ≤ εx
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≤ 3;

(c) Normalized ultimate strength, −3 ≤ εx
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≤ 3; (d) t = 15 mm, Initial imp_A, −3 ≤ εx

εy
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Initial imp_B −3 ≤ εx
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≤ 3; (f) Normalized ultimate strength −3 ≤ εx
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≤ 3; (g) t = 20 mm, Initial imp_A

−3 ≤ εx
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≤ 3; (h) 20 mm, Initial imp_B −3 ≤ εx
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≤ 3; (i) Normalized ultimate strength −3 ≤ εx

εy
≤ 3.

Figure 14 shows the progress of the equivalent plastic strains at the ultimate compressive capacity
under the cyclic load for a plate thicknesses of 10 mm with an aspect ratio of 3.

Figure 15 shows the progress of the equivalent plastic strains at the ultimate compressive capacity
under the cyclic load for a plate thicknesses of 20 mm with an aspect ratio of 3.

Similar observation as with the plate with an aspect ratio of 6 can be seen in the case of a plate
thickness of 20 mm, where the uni-modal initial imperfection has smooth load transition, plastic
formation, as can be seen in Figure 15 and in the case of the multi-modal one, the local plastic formation
again occurs at early stages during the cyclic load exposure.
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Figure 14. (a) Initial imp_B, plastic strains at C0; (b) Initial imp_A, plastic strains at C0; (c) Initial imp_B,
plastic strains at C9; (d) Initial imp_A, plastic strains at C9.
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Figure 15. (a) Initial imp_B, plastic strains at C0; (b) Initial imp_A, plastic strains at C0; (c) Initial imp_B,
plastic strains at C9; (d) Initial imp_A, plastic strains at C9.

The plate with a thickness of 10 mm and aspect ratio:3 shows a different plastic formation which
may be one of the reasons why the ultimate load-carrying capacity is more pronounced under the
multiple cyclic load exposure. The plate, in this case, might follow the plastic formation pattern,
as shown in Figure 16. In this case, the plastic lines govern the plate deformation, which gives rise to
more considerable ultimate load capacity reductions during the cyclic load exposure.
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Figure 16. Initial imp_A (left) and initial imp_B (right), possible plastic formation pattern, t = 10 mm,
aspect ratlio:3.
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In the next study, the longer plates are subjected to a multiple load exposure considering only
the uni-modal initial imperfection, the initial imp_B, in order to analyse the ultimate load-carrying
capacity reduction accounting for the plate thickness and aspect ratios.

Figures 17 and 18 show the cyclic response of the plate with an aspect ratio of 6 and 3, respectively,
by varying the plate thicknesses and strain ranges.
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Figure 17. (a) t = 10 mm, −3 ≤ εx
εy
≤ 0.5; (b) t = 10 mm, −3 ≤ εx

εy
≤ 2; (c) 10 mm, −3 ≤ εx

εy
≤ 3; (d) t = 15

mm, −3 ≤ εx
εy
≤ 0.5; (e) 15mm, −3 ≤ εx

εy
≤ 2; (f) 15 mm, −3 ≤ εx

εy
≤ 3; (g) 20 mm, −3 ≤ εx

εy
≤ 0.5; (j) 20 mm,

−3 ≤ εx
εy
≤ 2; (k) 20 mm, −3 ≤ εx

εy
≤ 3.
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Figure 18. (a) t = 10 mm, −3 ≤ εx
εy
≤ 0.5; (b) t = 10 mm, −3 ≤ εx

εy
≤ 2; (c) t = 10 mm, −3 ≤ εx

εy
≤ 3; (d) t =

15 mm, −3 ≤ εx
εy
≤ 0.5; (e) t = 15mm, −3 ≤ εx

εy
≤ 2; (f) 15 mm, −3 ≤ εx

εy
≤ 3; (g) t = 20 mm, −3 ≤ εx

εy
≤ 0.5;

(j) t = 20 mm, −3 ≤ εx
εy
≤ 2; (k) t = 20 mm, −3 ≤ εx

εy
≤ 3.

Figure 19 shows the ultimate capacity reduction accounting for the plate thickness and aspect
ratios subjected to multiple cyclic loads.

It has been observed that in the longer plates, there is a correlation between the plate thickness
and ultimate load capacity reduction that as the plate thickness gets larger, it gives rise to more
load-carrying capacity reduction during the cyclic load.

However, there are cases where the reduction is more pronounced with the thinner plates.
The reason for this is attributed to the pattern of the plastic formation where a partial failure mechanism
may form and governs the entire plate collapse. This phenomenon has been observed with a plate
thickness of 10 mm, with an aspect ratio of 3, as shown in Figure 14.
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4. Conclusions

The strength of rectangular plates subjected to cyclic loads has been analysed by employing the
finite element method accounting for different plate aspect ratios and thicknesses. It has been shown
that as the plates are subjected to the cyclic load, the ultimate load capacity, along with their stiffness
decreases. The reduction is more pronounced as the strain range is increased.

It has been observed that with the square plate, there is a correlation between the ultimate capacity
reduction and the plate thickness as the plate thickness gets smaller that gives rise to the capacity
reduction under the multiple cyclic loads. The capacity reduction might also be influenced by the type
of plastic formation that may lead to local plastic collapse during the cyclic load exposure.

For the plates with higher aspect ratios, as the plate gets thicker, the plate load capacity reduction
gets more pronounced under the cyclic load. The response is also highly influenced by the type of
plastic formation.

Therefore, the ultimate capacity reduction might be more pronounced as the cyclic load exposure
is increased in the case of the thinner plate because of the local plastic formations.

It has been observed that the initial imperfection has a significant influence on the ultimate load
reduction during the cyclic load exposure that has been seen with the plate with higher aspect ratios.

The multi-modal initial imperfection is observed to be less stable, as opposed to the uni-modal
initial imperfection. The ultimate load capacity reduction is more significant with the multi-modal
initial imperfection during the cyclic load exposure because the local plastic formation is earlier and
governs the plate deformations.

However, in the case of the uni-modal initial imperfection, during the cyclic load exposure,
the load transition and plastic formation are smooth and more balanced, which can be observed with
the equivalent plastic strain formation sequence.
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