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Abstract: Maritime pilotage is an important guarantee for the safety of water traffic in port. The pilot
is affected by the complex port environment, the differences of crew and equipment of different ships,
the physical and psychological pressure of the pilot himself, as well as the management factors from
the pilot station and maritime safety administration. In order to avoid pilotage accidents (PAs), it is
necessary to study the coupling effect of human-organizational factors (HOFs) on PAs. In this paper,
from the perspective of HOF risk coupling in pilotage, the problem of HOF risk coupling in maritime
pilotage is studied by using the hierarchical classification idea of the human factors analysis and
classification system (HFACS) and the method of system dynamics (SD). First of all, HFACS is used to
analyse the HOF risk causal elements (RCEs) in pilotage, and 70 RCEs are summed up in four layers;
secondly, the SD coupling model of RCEs is constructed; finally, based on a dataset of PAs collected
by the Shanghai Harbour Pilot Association, the coupling simulation of RCEs in pilotage is carried
out, and the volatility is evaluated. In general, the safety situation of maritime pilotage has been
improving in the Shanghai port. However, four RCEs (negligence, habit, pilotage experience, and
violations) in unsafe acts and two RCEs (teamwork and personal safety awareness) in precondition
for unsafe acts contribute the most to maritime PAs and need to be paid attention to.

Keywords: maritime pilotage; human-organizational factor (HOF); HFACS; system dynamics (SD);
risk coupling; risk causal element (RCE)

1. Introduction

Maritime pilotage, which plays a very active role in port maritime safety, refers to the operations
where pilots board a ship, guide the ship safely into and from the port, berth or unberth, drop or
heave up anchors, as well as passing ship locks and other restricted waters in certain water areas for
the purpose of ensuring the safety of the ships, ports, and facilities. However, due to the improper
judgment, operation, and decision-making of pilots, and the uncertainty and complexity of the
environment, it is unlikely to eliminate maritime pilotage accidents (PAs) completely and PAs will
continue to occur. Scholars and pilotage experts have studied the issue of pilotage risk of ships in
the port water areas from different perspectives. Hu et al. adopted a formal safety assessment (FSA)
proposed by the International Maritime Organization (IMO) to conduct a risk assessment on the safety
pilotage in the Shanghai port [1]. On the basis of applied research, Fang et al. analysed the importance
degree of the “human–machine–environment” cause of the pilotage risk system [2]. Xi et al. pointed
out that the main cause of PAs was human error [3].
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As important national and international hubs of transportation, ports are widely concerned by
the society. Moreover, with the continuous growth of international trade, the port becomes more and
more busy, making the density of ships in the port water area increase greatly. As a result, water traffic
accidents occur frequently, and people’s lives, property, and environment are facing a huge threat.
In particular, some serious accidents, such as the collision of CF Crystal and Sanchi in the East China
Sea [4], have caused great concerns.

In the actual pilotage, the pilot’s advice is supposed to be authorized by the captain and
implemented by the officer on watch (OOW) and helmsman in the normal conditions. As such, the
captain needs to supervise the operation of the pilot and take necessary actions, including taking
command when he has any doubt. Therefore, it is extremely important that the ship’s crew on bridge
and the pilot work closely to guarantee the safety of ships. When berthing and unberthing, the
cooperation between the ship and the tugboat and the dock side is also required. In some special
cases, if the visibility is poor, or the ship carried dangerous goods, some additional safety measures
are needed, such as additional look-out and tug escorts. Obviously, due to the addition of pilots,
the traditional ship’s bridge has changed in the operation of navigation, so that pilots’ technical
acts directly affect the safety of the ships entering and leaving the ports. Furthermore, pilots are
faced with the complicated environment of the pilotage waters, the quality of the crew on the piloted
ships, the diversity of equipment on the piloted ships, the psychological and physical pressure of
themselves, and the supervision of various departments within the pilot station. Therefore, the risk
of pilotage operations is characterized by diversity and complexity, and the occurrence of a PA is no
longer just the personal acts of the pilot. In this context, it is necessary to pay more attention to the
human-organizational factors (HOFs) in the entire piloting process.

While individual risk causal elements (RCEs) can lead to accidents, the interaction, which is
termed as the risk coupling, between two or more RCEs will also affect the risk of the entire HOF
system. Although risk coupling has been receiving more and more research attention [5], it has rarely
been studied in human factors research. Based on a database of PAs, this article investigates the risk
coupling effect between RCEs in maritime pilotage. The database contains all the PAs collected and
investigated by the Shanghai Harbour Pilot Association (SHPA) from 1995 to 2016, a total of 890,
including collisions, groundings, and all other types of accidents. All these cases are deemed worthy
of investigation by the SHPA. The reason that the SHPA collected information about and investigated
these PAs is to learn from these individual cases. The purpose of this paper, however, is to analyse
these PAs together in order to investigate the risk coupling effect. Shanghai is the busiest port in the
world, and the number of ships piloted in the Shanghai port is increasing day by day. It has exceeded
70,000 ships in 2016 [6], which is shown in Figure 1.
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Figure 1. Ship pilotage number and accident risk in the Shanghai port from 1995 to 2019.
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This article is structured as follows. Section 2 reviews the related research about human factors.
Section 3 presented the research theory about risk coupling and risk measurement, and proposes a
coupling model of RCEs in pilotage based on system dynamics (SD). In Sections 4 and 5, the coupling
model is simulated with the HOF data, and the results are analysed and discussed. Section 6 concludes
the paper.

2. Literature Review

While maritime transport has a long history, HOF research in maritime shipping originates from
aviation, nuclear energy, and other industries [7]. With the increase in the size of ships and the
constant complexity of traffic in the port waters, the risk of maritime pilotage continues to increase,
and risk management methods need to be introduced. As early as the 1930s, Heinrich proposed
the causal chain theory of accidents, expounding the relationship between accidents and causes [8].
After that, researchers and scholars in various industries used qualitative, quantitative, and mixed
methods to explore the relationship between causes and accidents, so that they could take better
measures to control accidents based on specific causes. Cooper et al. proposed a technique for human
event analysis (ATHEANA) to analyse human error and potential causes of nuclear power plants [9].
Marseguerra et al. used the cognitive reliability and error analysis method (CREAM) to evaluate
the impact of common performance conditions (CPCs) on operational reliability ratings [10]. Li et al.
used fuzzy Bayesian networks to study the root cause of human error as an organizational factor [11].
Sotiralis et al. focused on HOFs in ship collisions and estimated the risk of HOFs [12].

In 1972, Edwards proposed the SHEL model [13], which stands for software, hardware,
environment, and liveware. Subsequently, Hawkins modified the model by adding another “L”
to emphasize the interaction between liveware and other liveware; that is, the communication,
exchange, cooperation, and division of labour between humans [14]. As such, people are the most
important part of the model. In 1997, Kawano studied nuclear power and found that although
SHEL could explain HOFs, it could not take into account teamwork, equipment, and software, nor
management factors such as a safety culture and organizational management. Therefore, Kawano
proposed the M-SHEL evolution model, where M describes the organizational management factors [15].
The SHEL model has also been widely used. Chang et al. used the SHEL model to analyse the risk
factors of aircraft maintenance technicians in the aviation maintenance industry [16]. However, the
SHEL model only provides factors that are considered when dealing with HOFs without classifying
the hierarchical relations of these factors.

In 1990, Reason proposed the Swiss Cheese Model (SCM) [17]. In 2000, based on a large number
of aviation accident reports, Shappell and Wiegmann proposed the human factors analysis and
classification system (HFACS) model, which classifies faults into active faults and latent faults [18].
The idea of classification and stratification of HOFs was very popular in various industries and
made Reason’s SCM of practical significance. HFACS is widely used in accident investigations in
many industries, with some transformations to make it consistent with the characteristics and actual
conditions of various industries, such as the aviation industry [19,20], construction industry [21], railway
industry [22,23], shipping industry [24–26], oil and gas industry [27], and mining industry [28,29].

However, traditional linear relationship models can no longer explain complex systems nowadays,
and the SCM has been subject to criticism because simplified and linear models cannot explain the
complexity, dynamics, and adaptability of the system and unexpected failures caused by system
characteristics [30–32]. As the system thinking method can analyse the system as a whole instead of a
certain part in isolation [33,34], more recently safety scientists have proposed a series of systematic
thinking methods with social technology systems at the core, such as AcciMap [35], system theory
accident modelling and process models (Stamp) [36], SD [37], and the functional resonance accident
model (FRAM) [38]. It has become a trend to study HOFs from the perspective of systems thinking.

In the maritime transportation industry, 80% of maritime traffic accidents (MTAs) are related
to HOFs [30], such as negligence of watchkeepers, poor communication and teamwork, and lack of
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supervision and management. IMO revealed that human factor is one of the most important factors
that lead to accidents or avoid accidents in revised guidelines for FSA [39]. However, the human
factor in shipping has largely been used to identify the cause–effect relationship of the accident, while
ignoring the interaction or coupling effect between various factors.

This paper aims to make a contribution to maritime safety research by studying human factors
from the perspective of a systematic HOF. It first adopts the HFACS classification and hierarchical
thinking to analyse HOFs in pilotage in detail, and then it constructs a coupling model using SD.
The coupling model is used to carry out a quantitative study on the degree and volatility of HOF risk
coupling in maritime pilotage. It serves to reveal the impact of mutual coupling between HOFs at
various layers of HFACS on the risk of accidents. Most of the research on human error in the maritime
industry is qualitative, or quantitative with strong subjectivity, which makes the research results lack
credibility. In this paper, the influence of subjectivity is reduced by using SD simulation with historical
data (the dataset of 890 PAs from the SHPA).

3. Methodology and Data

3.1. Risk Coupling and the Coupling Function

3.1.1. Risk Coupling

Risk coupling refers to the degree to which the occurrence of an RCE and its influence depend
on other RCEs, and the degree of influence and occurrence of other RCEs during the process of a
system. In the HOF system of maritime pilotage, each RCE affects and interacts with each other,
thereby changing the influence and even the nature of other RCEs. Such risk coupling influences the
process of HOF risk evolution. For example, in one pilotage mission, due to a long backlog of ships
requiring pilotage, the pilot had to work continuously; but during the piloting process, the pilot was
fatigued, which led to his negligence and unsafe acts. In this case, the pilotage risk was increased
dramatically by the coupling effect between the supervision of the dispatching department, the status
of the pilot, and fatigue.

3.1.2. Coupling Degree Function

The calculation of the coupling degree of RCEs in maritime pilotage is based on the concepts of
capacity coupling and capacity coupling coefficient models in physics [40,41]. The calculation equation
is as follows:

Cn = n

(u1 · u2 · · · un)/

 n∑
i=1

ui

n


1/n

(1)

un denotes the risk of the RCE n in the coupling system.
Based on the HFACS model to be discussed in the next section, the risk coupling model of

maritime pilotage is composed of four core subsystems, namely unsafe acts, preconditions for unsafe
acts, unsafe supervisions, and organizational influences. According to mathematical principles, the
value of C is between 0 and 1. When C = 1, the coupling degree is maximized and the risk coupling
between subsystems is maximized. When C = 0, the coupling degree reaches the minimum value, and
the subsystems are independent. The coupling is divided into four stages according to the coupling
degree. When C ∈ (0, 0.3], the coupling model is in the disordered coupling stage; when C ∈ (0.3, 0.5],
the coupling model is in the low-level coupling stage; when C ∈ (0.5, 0.8], the coupling model is
in the intermediate-level coupling stage; when C ∈ (0.8, 1], the coupling model is in the high-level
coupling stage.

Cn =
1
m

m∑
m=1

Cnm (2)

where Cn is the average coupling degree of the coupling model n for m years.
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3.2. HFACS Model

The HFACS model as mentioned in Section 2 classifies HOFs faults into two layers, active faults
and latent faults, by taking into account all aspects of human error, including the errors of front-line
operators and organizational departments. It has established a bridge among accidents, direct causes,
indirect causes, and deeper causes [20]. This article also uses HFACS’s classification and hierarchical
thinking to analyse HOFs in pilotage. In maritime traffic [42,43], HFACS describes four layers of human
factor failures or defects, including unsafe acts, precondition for unsafe acts, unsafe supervisions, and
organizational influences. The layer of unsafe acts is the HOF that directly lead to the accident, and the
other three layers are potential HOFs.

Based on the dataset of 890 PAs and with the help of maritime pilotage experts, an HFACS model
suitable for maritime pilotage is constructed. It consists of four layers: the phenomenon layer (unsafe
acts of pilots, 15 RCEs), the influence layer (precondition for unsafe acts, such as environmental factors,
28 RCEs), the supervisory layer (unsafe supervisions, 11 RCEs), and the root layer (organizational
influences, 12 RCEs). These factors are listed in Table 1.

Table 1. Node system of the human-organizational factors (HOF) risk coupling model in pilotage.

Nodes No.
in HFACS Components and Meaning Nodes No.

in Category
Nodes No.
in HFACS Components and Meaning Nodes No.

in Category

MR Risk level for organizational influences RN1 P10 Own ship crew LN14
M1 Resource management IN1 P11 Other ship crew LN15
M2 Organizational climate IN2 P12 Tug crew and stevedores LN16
M3 Organizational process IN3 P13 Structural defect LN17
M4 Human resources IN4 P14 Equipment failure (A10) LN18
M5 Equipment resources LN1 P15 Goods factor LN19
M6 Training (A12/P7) LN2 P16 Natural environment IN17
M7 Personal safety awareness (P8) LN3 P17 Physical environment (A15) IN18

M8 Organizational safety awareness LN4 P18 Technological environment
(A14) IN19

M9 Scheduling of dispatching section (P9) IN5 P19 Visibility LN20
M10 System documents IN6 P20 Wind LN21
M11 Pilot procedure LN5 P21 Current LN22
M12 Super norm operation LN6 P22 Channel curvature LN23
SR Risk level of supervising RN2 P23 Narrow waterway LN24
S1 Inadequate supervision IN7 P24 Restricted water circulation LN25
S2 Planned inappropriate piloting operations IN8 P25 Depth limit of waterway LN26
S3 Failed to correct problem IN9 P26 Obstacles LN27
S4 Supervisory violations IN10 P27 Navigation aids failure LN28
S5 Dispatching supervision LN7 P28 High navigation density LN29
S6 Monitoring and commanding of VTS LN8 AR Risk level of unsafe acts RN4

S7 Pilotage plan unreviewed/improperly
audited LN9 A1 Errors IN20

S8 Improper planning LN10 A2 Violations IN21
S9 Improper plan implementation LN11 A3 Perceptual errors IN22

S10 Similar problems without corrective
measures LN12 A4 Skilled-based errors IN23

S11 Inadequate safety measures LN13 A5 Decision errors IN24
PR Risk level of preconditions for unsafe acts RN3 A6 Exceptional LN30
P1 Status of pilot IN11 A7 Routine LN31
P2 Teamwork IN12 A8 Negligence LN32
P3 The ship with pilot on board IN13 A9 Habits LN33
P4 Environmental factors IN14 A10 Equipment failure (P14) LN18
P5 Fatigue/Adverse physiological state IN15 A11 Experience of pilots LN34
P6 Adverse mental state (A13) IN16 A12 Training (M6/P7) LN2
P7 Training (M6/A12) LN2 A13 Adverse mental state (P6) IN16

P8 Personal safety awareness (M7) LN3 A14 Technological environment
(P18) IN19

P9 Scheduling of dispatching section (M9) IN5 A15 Physical environment (P17) IN18

In the actual pilotage, the RCEs of the phenomenon layer and the influence layer have the greatest
influence on the pilotage operation. The RCEs of the phenomenon layer directly affect pilotage safety,
and the RCEs at the influence layer directly affect the RCEs at the phenomenon layer. That is to say,
the entire pilot is under the influence of RCEs at both the phenomenon layer and the influence layer.
In the meantime, the RCEs of the supervisory layer and the root layer in pilotage are related to the
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shore-based departments, which manage scheduling management, equipment and technical support,
personnel management, supervisions of pilotage plans and implementation processes, etc. The RCEs
at the supervisory layer and the root layer indirectly affect pilotage safety through affecting the RCEs
at the phenomenon layer and the influence layer.

3.3. Research Framework

Based on the constructed HFACS framework, an SD model is then built to produce the complete
HFACS–SD framework (see Figure 2) used in this paper. The risk and weight of the foundational RCEs
are calculated based on the database of PA causes, avoiding the subjectivity of the questionnaire survey,
and thus obtaining SD equation of the upper RCEs. Then the risk of upper RCEs can be simulated
dynamically. Finally, according to the coupling theory, the coupling influence and stability among
HOFs are studied. These processes are explained in detail in the next few sections.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 7 of 18 
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where wi is the weight of the LN i, and m is the number of LNs under the same IN.

ukj =
m∑

i=1

wiri j,
m∑

i=1

wi = 1 (6)

where ukj is the risk for the year j about the upper RCE k. This is also the SD equation of the upper RCEs.
Repeating Equations (4)–(6), the risk of the RNs can be calculated based on the INs.

3.5. SD in HOF Risk Coupling Model for Maritime Pilotage

3.5.1. SD Theory

SD is a computer simulation technique proposed by Dr. Forrester of the Massachusetts Institute of
Technology (MIT) to study the dynamics of the system [44]. SD is based on systems theory, cybernetics,
and information theory, and applies the ideas of system science to build the SD model, so as to
determine the internal components of the system and the characteristics of causal feedback. In this
way, one can easily grasp the discipline of systematic change and development and find out the basic
cause of the problem from the inside of the system, and then optimize and control it [45].

The SD model of HOF risk in the maritime pilotage based on HFACS includes HOF risk at all the
four layers, organizational influences, supervising, precondition for unsafe acts, and unsafe acts, as
shown in Figure 3. The purpose of the SD modelling process is to observe the interaction of the four
layers in the system, determine the key variables of the system, and establish a causal feedback loop as
well as SD equations between the variables. These key variables (status variables, auxiliary variables,
rate variables, and table functions) all depend on the SD equations, which is a causal relationship
between variables. This causality constitutes a feedback loop and a feedback system.
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Figure 3. Causal relationship flow graph in the complex human factors analysis and classification
system (HFACS) system.

3.5.2. Causal Relationship SD Model for Maritime Pilotage

According to the causal chain theory of accidents, accidents are caused by the unsafe acts of
human and unsafe states of things [46]. In HFACS, the latter is placed in the preconditions for unsafe
acts, which is the prerequisite to trigger unsafe acts.

In the actual pilotage operation, the preconditions for unsafe acts directly affect the pilot’s unsafe
acts. The Shanghai port channel is the estuary of the Yangtze River. Ships entering the Yangtze river
need to pass through the waters of the Shanghai port. In the Shanghai section of the Yangtze River,
there are dense traffic, complicated traffic forms, various types of ships, uneven quality and literacy of
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crew, extremely busy very-high-frequency (VHF) communications, the using and upgrading of new
navigation aids, such as ECDIS and AIS, and the difference of various ships’ handling performance
under different cargo loading conditions. Furthermore, due to the large number of ships in its
jurisdiction, the vessel traffic system (VTS) may find it is difficult to supervise and give adequate advice
to all of them. Navigable waters are limited for deep-draft ships in some complicated water areas
with a tortuous coastline. All of these factors can lead to unsafe acts of pilots. Furthermore, although
maritime pilotage is a highly practical industry, it cannot do without the support of shore-based
departments, including supervisions for the pilot, management of pilotage equipment, training of
pilots and shore-based personnel, and construction of corporate culture. As such, the coupling of RCEs
in maritime pilotage is complicated, as shown in Figure 4.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 18 
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Figure 4. Causal relationship system dynamics (SD) model of maritime pilotage based on the HFACS
model (Note: When an RCE appears the second time, the software producing this diagram will
automatically put it in < . . . >).

4. Results

4.1. Flow Diagram of the HOF Risk Coupling Model in Pilotage

According to the causal relationship SD model in Section 3.5.2, it is easy to get the flow diagram
of the HOF risk coupling model. For ease of expression, the nodes of the HOF risk coupling model are
shown in Table 1. The LNs are all table functions according to the risk of the foundational RCEs in the
PA data of the Shanghai port over 22 years. INs are auxiliary variables, and RNs are status variables.
The INs and RNs can be calculated according to its sub-nodes and SD equation.

According to the theory of SD, there will be six combinations of two-HOF coupling model flow
diagrams, four combinations of three-HOF coupling model flow diagrams, and one combination
of four-HOF coupling model flow diagram in pilotage, which are V1: AR–MR, V2: AR–SR, V3:
AR–PR, V4: SR–MR, V5: PR–MR, V6: PR–SR, V7: AR–MR–SR, V8: AR–MR–PR, V9: AR–SR–PR, V10:
MR–SR–PR; V11: AR–MR–SR–PR, respectively. Because the layer of unsafe acts is closely related to the
layer of preconditions for unsafe acts in the process of pilotage operations, one additional combination
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of the four-RCEs coupling model flow diagram is added; that is, V12: P1–P2–P3–P4. An example V3:
AR–PR is shown in Figure 5.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 10 of 18 
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4.2. Data Acquisition

4.2.1. Risk of Foundational RCEs

According to Equation (3), the risk of each foundational RCE from 1995 to 2016 can be obtained.
Figure 6 shows the contribution of 38 foundational RCEs to PAs each year. For example, it can be noted
that the influence of wind is greater than the influence of visibility.
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4.2.2. Risk of Upper RCEs

To determine RCE weights, many scholars used subjective methods, such as expert judgment.
However, the results obtained with such methods are relatively uncertain. In this paper, the weight of
the RCEs is determined by the contribution of the RCEs to the PA, the actual result from historical data.

The risk of each foundational RCE can be obtained according to Equations (3) and (4). As an
example, the risk of the foundational RCEs of the coupling model V3: AR–PR is shown in Table 2.

Table 2. The risk of the foundational risk causal elements (RCEs) of the coupling model V3: AR–PR.

Foundational RCEs P7 P8 P9 P10 P11 P12 P13 P14 P15 P19

ri 0.059 0.211 0.181 0.061 0.281 0.098 0.012 0.123 0.001 0.056

Foundational RCEs P20 P21 P22 P23 P24 P25 P26 P27 P28 A6
ri 0.190 0.150 0.112 0.029 0.000 0.062 0.030 0.009 0.146 0.281

Foundational RCEs A7 A8 A9 A10 A11
→A3

A12
→A3

A11
→A4

A12
→A4

A11
→A5 A13

ri 0.379 0.532 0.469 0.123 0.268 0.059 0.268 0.059 0.268 0.177

The weight of the foundational RCEs can be obtained according to Equation (5). The example of
the coupling model V3: PRAR is shown in Table 3.

Table 3. The weight of the foundational RCEs of the coupling model V3: AR–PR.

Foundational RCEs P7 P8 P9 P10 P11 P12 P13 P14 P15 P19

wi 0.220 0.780 1.000 0.139 0.638 0.223 0.090 0.900 0.010 0.140

Foundational RCEs P20 P21 P22 P23 P24 P25 P26 P27 P28 A6
wi 0.481 0.378 0.482 0.123 0.000 0.266 0.128 0.056 0.944 0.425

Foundational RCEs A7 A8 A9 A10 A11
→A3

A12
→A3

A11
→A4

A12
→A4

A11
→A5 A13

wi 0.575 0.335 0.295 0.077 0.169 0.037 0.662 0.147 0.415 0.274

4.3. Dynamics Simulation

Using Equation (6), the risk of the upper RCEs can be obtained, and then Equation (5) can be used
to calculate the weight of them.

Taking the coupling model V3: AR–PR as an example, Table 4 shows the risk and weight of the
upper RCEs.

Table 4. The risk and weight of the upper RCEs of the coupling model V3: AR–PR.

Upper RCEs PR P1 P2 P3 P4 P5 P6 P16 P17 P18

ut 0.168 0.179 0.209 0.112 0.133 0.181 0.177 0.156 0.078 0.138
wt 0.210 0.283 0.331 0.176 0.210 0.506 0.494 0.420 0.208 0.372

Upper RCEs AR A1 A2 A3 A4→A1 A5 A14 A15 A4→A5 –
ut 0.286 0.295 0.337 0.385 0.201 0.222 0.138 0.078 0.201 –
wt – 0.369 0.422 0.477 0.249 0.275 0.087 0.192 0.311 –

By inputting risk and weight calculated in the previous section into the simulation model
established by Vensim PLE 8.0.5 and using Equation (6), the HOF risk level of HFACS in each year
from 1995 to 2016 can be obtained, as shown in Figure 7.
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Figure 7. HOF risk level of HFACS from 1995 to 2016.

4.4. Analysis of RCEs in Pilotage Operation

The results of the SD simulations show that the risk level of unsafe acts is the highest, with a
comprehensive contribution value of 0.318, followed by precondition for unsafe acts with a value of
0.181, organizational influences 0.174, and unsafe supervisions 0.124. Figure 8 shows the trend of the
overall contribution of 28 INs in pilotage.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 12 of 18 

 

 
Figure 7. HOF risk level of HFACS from 1995 to 2016. 

4.4. Analysis of RCEs in Pilotage Operation 

The results of the SD simulations show that the risk level of unsafe acts is the highest, with a 
comprehensive contribution value of 0.318, followed by precondition for unsafe acts with a value of 
0.181, organizational influences 0.174, and unsafe supervisions 0.124. Figure 8 shows the trend of the 
overall contribution of 28 INs in pilotage.  

 
Figure 8. The risk of 28 intermediate nodes (including four overlapping intermediate nodes (INs)) 
from 1995 to 2016. 

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Ri
sk

 Organizational influences (MR)

 Unsafe supervisions (SR)

 Preconditions for unsafe acts (PR)

 Unsafe acts (AR)

1995 2000 2005 2010 2016

0

0.2

0.4

0.6

Ri
sk

(a) Intermediate nodes in MR

 Resource management

 Organizational climate

 Organizational process

 Human resources

 Scheduling of dispatching section (P9)

 System documents

1995 2000 2005 2010 2016

0

0.1

0.2

0.3

Ri
sk

(b) Intermediate nodes in SR

 Inadequate supervision

 Planned inappropriate piloting operations

 Failed to correct problem

 Supervisory violations

1995 2000 2005 2010 2016

0

0.2

0.4

0.6

Ri
sk

(c) Intermediate nodes in PR (P1-P4)

 Status of pilot

 Team work

 The ship with pilot on board

 Environmental factors

1995 2000 2005 2010 2016

0

0.2

0.4

0.6

Ri
sk

(d) Intermediate nodes in PR (exclude P1-P4)

Fatigue / Adverse physiological state

 Adverse mental state (A13)

 Natural environment

 Physical environment (A15)

 Technological environment (A14)

1995 2000 2005 2010 2016

0

0.2

0.4

0.6

Ri
sk

(e) Intermediate nodes in AR

 Errors

 Violations

 Perceptual errors

 Skilled-based errors

 Decision errors

Figure 8. The risk of 28 intermediate nodes (including four overlapping intermediate nodes (INs))
from 1995 to 2016.
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4.5. Risk Coupling and Volatility Judgment

Putting the above risk values into Equations (1) and (2), the average coupling degrees of the
coupling risk systems are obtained.

In order to judge the degree of fluctuation or stability of the coupling system, a coefficient of
variation (CV) method is introduced to calculate the CV of the coupling system [47]. The larger the CV
is, the stronger the volatility of the coupling system is.

η = (σ/µ) × 100% (7)

where η, σ, and µ are the CV, standard deviation, and average of the coupling degree C, respectively.
The average coupling degrees and CVs are shown in Figure 9.
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Figure 9. Average coupling degree and CV of the coupling systems. Note: V1: AR–MR, V2: AR–SR,
V3: AR–PR, V4: SR–MR, V5: PR–MR, V6: PR–SR, V7: AR–MR–SR, V8: AR–MR–PR, V9: AR–SR–PR,
V10: MR–SR–PR; V11: AR–MR–SR–PR, V12: P1–P2–P3–P4, respectively.

5. Analysis and Discussion

5.1. Risk Analysis of HOF RCEs

At the layer of unsafe acts, the factors that have a higher impact on the pilotage safety include
“negligence”, “habits”, and “the experience of pilots” in “perceptual error”, “routine”, and “exceptional”
in “violations”, the risk of which were 0.532, 0.469, 0.268, 0.379, and 0.281, respectively. Among them,
the “experience of pilots” also affects “skilled-based errors” and “decision errors”, which shows that
maritime pilotage is a practical operation industry. The pilot’s own negligence, habits, experience, and
violations all directly affect the safety level of maritime pilotage.

At the layer of precondition for unsafe acts, “other ship crew” in “team work” contributed the
most to the PAs, with a risk of 0.281, which is in line with the fact that collision accidents accounted
for 37% of all the PAs, and that collision accidents with primary and full responsibility of other ships
accounted for 68%. The risks of “personal safety awareness” in “status of pilot” and “fatigue” caused
by improper scheduling are 0.290 and 0.245, respectively. “Personal safety awareness” corresponds to
“negligence” in unsafe acts. “Negligence” is related to “fatigue”, which reflects the heavy workload of
maritime pilotage in the Shanghai port. In fact, the pilotage intensity in the Shanghai port is very high:
The monthly average number of piloted ships is 25 per pilot and the average pilotage time per ship is
7.5 h. Among the environmental factors, the natural environment contributes the most. Strangely, the
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effect of wind is greater than that of current and visibility, which are 0.190, 0.150, and 0.056, respectively,
which is inconsistent with the traditional idea that “poor visibility has a great influence on maritime
pilotage”. This may be because the pilots know that the risk of poor visibility is extremely high, which
increases their safety awareness. The risk of “equipment failure” in “piloted ship” is the largest with
32 “out of control” accidents due to equipment failure.

At the layers of unsafe supervisions and organizational influences, the average risk of nearly all
the RCEs are less than 0.2, indicating that while the management of the shore-based department has
affected the pilots to a certain extent, in the actual pilotage the pilot has a direct bearing on the safety of
the pilotage operations. The only RCE whose risk exceeds 0.2 is “personal safety awareness” caused
by “organizational climate”, indicating that the safety atmosphere of the pilot station affects the pilot’s
safety awareness. Then, poor safety awareness is conducive to the pilot’s negligence and indirectly
affects the unsafe acts of the pilots, which leads to the accident in the end. This is an important path to
accidents caused by RCEs in pilotage.

Based on the opinions solicited from seven experts from the SHPA, those RCEs with a contribution
value of 0.2 or more needed special attention and immediate corrective action; those RCEs with a
contribution value of 0.1–0.2 need attention; while a value below 0.1 indicates a low-risk level.

5.2. Coupling Analysis of HOF RCEs

In the two-factor coupling, it can be seen from Figure 9 that the average coupling degree of
V3, V4, and V5 exceeds 0.9, but the volatility of V4 is higher. It is necessary to pay attention to
the coupling risk between the layer of unsafe acts and the layer of precondition for unsafe acts.
The layer of organizational influences and the precondition for unsafe acts also deserve attention
because the scheduling of dispatching section, safety awareness, and personnel training in the layer
of organizational influences all affect the sub-RCEs of the precondition for unsafe acts. Figure 10a
indicates the dynamic changes of the two-factor coupling each year. From 2010, the coupling degree
has decreased, and the volatility is becoming larger. This may be due to the fact that the number of
pilotages was stabilized every year, and the rate of PAs has been decreasing. As the safety situation
improves, the risk level shows some contingencies.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 15 of 18 
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In the three-factor and four-factor coupling, the average coupling degrees are all around 0.9, and
only V8 has a slightly better stability. In this case, special attention needs to be paid to the fact that the
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error chain for the occurrence of an accident has been formed, and measures must be taken to reduce
the risk of a certain factor so that the coupling effect can be reduced to ensure pilotage safety.

Regarding V12, it can be found from Figures 9 and 10c that the volatility is large, and the coupling
degree varies greatly, because P1, P2, P3, and P4 are all sub-RCEs of the precondition for unsafe acts.
The coupling degree shows a two-level appearance. Pilotage risk is mainly determined by the pilot;
that is, the layer of unsafe acts.

As shown in Figure 10a,b, the coupling degree shows some volatility and a downward trend after
2010. This may indicate that with the promulgation of the STCW Convention Manila Amendment
in 2010, the pilot station and shipping companies have made improvements in management, with
more and more standardized management and stricter system requirements. The Manila Amendment
also introduced mandatory ECDIS training, which forces shipping companies to provide more
adequate training to seafarers. These improvements reduce the risk of shore-based supervisions and
organizational influence.

6. Conclusions

This paper proposes a method of SD for studying the HOFs system and the coupling effect between
factors. Risks at different HOF layers are calculated based on the HFACS model with historical data
(the database of PAs in Shanghai port). The RCEs related to the PAs were identified and the risks were
quantified. The coupling degree and volatility of different RCEs were calculated using the coupling
degree function and the coefficient of variation method. This method provides a new tool to analyse
and make sense of maritime pilotage accidents, especially the coupling of different factors. The model
and algorithm of SD simulation reasoning and the related characteristics of risk coupling are verified
using the cases of historical PAs from the SHPA.

Some conclusions can be drawn here. Firstly, the approach to risk reasoning with an HFACS-based
SD simulation can effectively measure risk of RCEs for PAs. Four RCEs (negligence, habit, pilotage
experience, and violations) in unsafe acts and two RCEs (teamwork and personal safety awareness) in
precondition for unsafe acts contribute the most to maritime PAs and need attention from pilots and
the pilot station. Furthermore, the calculation of the risk coupling degree shows that the risk coupling
between different RCEs is different. Through the calculation of the volatility of the coupling degree, it
is found that the randomness of the risk coupling becomes larger, and the safety situation of maritime
pilotage has been improving. This may indicate that the safety regulations implemented recently have
improved safety management ashore. Moreover, pilots’ unsafe acts may deserve more attention in the
future so that early warning can be made to improve safety.

This research also has a number of limitations. First, the 890 PAs in the dataset include many
types of accidents. Although all of them are deemed to be worthy of investigation by the SHPA, some
of them are more serious and cause more damage than others. In this research, the severity and type of
accidents are not considered. In future research, it may be fruitful to examine whether risk coupling
effects differ in relation to severity level and/or type of accidents. This can generate new knowledge
about risk management in the maritime pilotage. Second, although the PAs are real, the analysis of
them cannot be completely free from subjectivity. Which PA to investigate and which information to
include are a subjective decision made by the SHPA. Furthermore, it is likely that some accidents are
not reported by the pilots and thus unknown to the SHPA. These PAs would not be included in the
SHPA dataset. All these factors are likely to introduce some bias.
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