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Abstract: This study applies three different methods to assess the flood risk and damage from
the strongest high-pressure cold front (locally known as ‘Norte’) event in terms of the residual
tide from 30 years (1979–2008) of data for Progreso, Yucatan. The most important difference
between the three methods is the estimation of flood vulnerability for Progreso. The first method,
proposed by Mexico’s National Center for the Prevention of Disasters (CENAPRED) and used by the
Mexican government is based mostly on economic asset (household goods) values and flood impacts.
The second (CENAPREDv2) and third (FRI) methods are proposals for assessing risk that include 17
socioeconomic indicators. The former includes economic asset values, as is the case for CENAPRED,
while the latter does not. The main results of this study show that the modeled ‘Norte’ event flooded
25% of Progreso’s city blocks, with an estimated economic flood risk of $USD 16,266 (CENAPRED)
and $USD 223,779 (CENAPREDv2), and flood damage of $USD 48,848 and $USD 671,918, respectively.
When calculating flood risk (FRI) and flood damage (FRI_FD) without monetary terms, the risk
categories along the back-barrier behind Progreso varied spatially from ‘very low’ to ‘high’, while
areas along the coastal side presented a ‘low’ and ‘very low’ risk. These categories increased for the
flood damage because the exceedance probability of the flood was not considered as it was for flood
risk in the three methodologies. Therefore, flood damage provides the losses caused by a given flood
event without considering how probable that loss may be. In conclusion, this study proposes that the
selection of the applied method depends on the main objectives and specific interests when assessing
flood risk. For instance, if economic damage is the main concern, then the CENAPRED method
should be used as it identifies where the larger economic impacts could occur; when a socioeconomic
approach is needed then the FRI should be applied, but if both economic damage and socioeconomic
aspects are needed, the CENAPREDv2 is recommended. Besides considering economic aspects,
the FRI method also includes social variables that can help to map the most vulnerable population in
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terms of mobility, education, communication access and others. Therefore, the proposed FRI method
is very relevant for disaster risk managers and other stakeholders interested in disaster risk reduction.

Keywords: flood hazard; flood vulnerability; hydrodynamic modeling; CENAPRED; Yucatan State

1. Introduction

The geographical position and topographical characteristics of the northern Yucatan Peninsula
expose the coastal zone to flood threats induced by both tropical cyclones [1] and Central American
cold surges, locally called ‘Nortes’ [2,3]. A ‘Norte’ event is defined as a cold anticyclonic air mass
that originates poleward of Mexico and penetrates equatorward to at least 20◦ N [4–6]. ‘Nortes’ are
mid-latitude disturbances characterized by sustained winds of up to about 30 m s−1 and associated
with high-pressure systems that frequently originate in the rocky mountains in the United States [5].
They occur during the end of the fall and winter months (November-March) and present a strong
interannual variability associated with ENSO conditions [4].

Norte-induced flood damage may be significant along the Mexican coast of the Gulf of Mexico.
For instance, the fourth Norte event in 2007 (October 23) caused substantial flooding in the state of
Tabasco (southern part of the Gulf of Mexico) with a total cost of damage and losses evaluated in $ USD
2.45 billion [7]. The northern coast of Yucatan is also vulnerable to Nortes, mainly when they occur
during high spring tides [3]. As such, it is necessary to have data, tools, and methodologies to quantify
flood damage in coastal zones to improve flood risk management related to Nortes. However, the lack
of long-term tide gauge records along the Yucatan coast makes it challenging to perform extreme flood
analysis in this area; consequently, there is a need to use model data, as is the case for the sea level and
currents hindcast implemented for this area [3].

Flood threats increase during extreme events as a result of the wide and shallow Yucatan
continental shelf, amplifying storm surge and hence augmenting the physical vulnerability of
this region. Of particular interest in the northern Yucatan Peninsula are the ‘Norte’ events due
to their higher yearly occurrence (~22 events/year) [2] with respect to less frequent tropical cyclones
(0.16 events/year) [8]. Under scenarios of climate change, the number of high-intensity events for the
former is likely to decrease, while mild events become more frequent [2]; for the latter, the intensity of
hurricanes reaching the Yucatan Peninsula is expected to increase by the end of this century [9]. Recent
projections of global mean sea-level rise for the end of the century, incorporating Antarctic ice sheet
dynamics, indicate that sea level may rise 70–100 cm under representative concentration pathway
(RCP) 4.5 and 100–180 cm under RCP 8.5, and could even exceed 2 m in far-tail scenarios [10–13].
Adding to this global mean sea level trend, observations in some regions also show increasing tidal
amplitudes and increasing nontidal variations in sea surface height [14]. The combined effects of sea
level rise, potentially increased tidal ranges, and more frequent hurricane storm surges, will have a
significant impact on coastal inundation, which will elevate the risk to the population, economic and
natural environments, and more of the low-lying areas may become uninhabitable [14,15]. Moreover,
the pressure from the increasing population within low-lying coastal regions often translates into
natural defense degradation such as dunes [16], in turn increasing coastal flooding and erosion risk [17].
However, the projection of flood risk due to the impact of climate change is marred by uncertainties
related to the modeling of the physics of climate, hydrological, hydraulic domains, vulnerability
domains, policies to curb greenhouse gas (GHG) emissions, future human behavior, including future
GHG emissions, technological advancements, adaptation strategies, and other aspects [18].

This study aims to assess flood risk and flood damage for Progreso, Yucatan, during an
extreme Norte event to improve the understanding and awareness of storm impacts to enhance
management plans by strategically designing and implementing timely adaptation measures and
resource allocation [17]. For this, three methodologies are compared: the first, which is designed in
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terms of asset values (household goods) by Mexico’s National Center for the Prevention of Disasters
(CENAPRED) and implemented by governmental institutions, involves tangible damage and direct
impacts. The second (CENAPREDv2) and third (Flood Risk Index-FRI) are the methodologies
proposed in this study that include socioeconomic indicators, which are used to show the relevance
of social variables that represent the capacities of people to cope with flood events. These proposed
methodologies incorporate tangible and intangible damage as well as direct and indirect impacts since
they consider not only economic variables, but also social variables that are used to estimate risk levels.
CENAPREDv2 includes economic asset values, as is the case for CENAPRED, whereas the FRI does
not. For the three approaches compared in this study, categorization and mapping are performed in
order to identify the areas with the highest risk and potential damage, where coastal managers need
to make timely decisions to mitigate the flood risk. Each flood risk method has its associated flood
damage method. The latter differs from the former in excluding the exceedance probability of a given
flood. When defining the vulnerability from an economic or socioeconomic perspective, the resulting
flood risk allows emergency managers to decide what to protect from the flood hazard: economic
resources (CENAPRED), the coastal community (FRI), or both (CENAPREDv2).

2. Theoretical Considerations

Given that there is no consensus on flood risk management terms such as flood hazard, flood
vulnerability, flood damage, and flood risk [19,20], these need to be defined in each study. Hazard
and risk are not synonyms, and their distinction depends on the area where they are used; while
the former is unpredictable, the latter is predictable. The hazard becomes a risk only if there is a
probability of occurrence of damage to exposed elements (all elements of the human system, both built
and natural environments) [21,22]. Therefore, if there are no exposed elements, the flood is not
considered a hazard [23]. The flood hazard definition adopted in the present study is considered as
the exceedance probability of a potentially damaging flood event in a particular area and within a
specific period of time, as defined by [22]. However, the flood hazard should quantify the intensity
of the process that goes beyond a flood frequency curve, which does not provide information about
the damage to the natural environment or the society. The flood damage depends, among other
aspects, on the intensity of the flood and is usually transformed into inundation scenarios [22].
The flood hazard depends on many parameters such as occurrences, duration, magnitude, flow
velocity, water depth, rate of water rise, sediment or contamination load, etc. [24–27]. Among these
indicators, the one that has the most significant influence on flood damage is the water depth [28,29],
also known as the inundation depth [22,27] or flood depth [26,30], which is the water elevation
above the ground level. The exceedance probability of floods is usually calculated on the basis of
the general water level, which has a limited range that is significant for risk analysis, even though
potential flood damage is very high in the case of high water levels [21]. The water depth is the main
element of hydrodynamic flood modeling [31] preferable for Geographic information system (GIS)
models in the case of Coastal Flood Vulnerability Assessments (CFVA), as it avoids certain cases of
over-estimation–and over-management–found in GIS-based results. In fact, hydrodynamic models
are better suited for detailed CFVA, whereas GIS-based models, which do not take into account flow
dynamics, can be used to model flood exposure for large sites [32]. For vulnerability, we considered
the conditions determined by physical, social, economic, and environmental factors or processes that
increase the susceptibility of an individual, a community, assets, or systems to the impacts of hazards,
as defined by the UN Office for Disaster Risk Reduction [33]. In the case of inundations, a system is
susceptible to floods due to exposure in conjunction with its capacity/incapacity to be resilient, to cope,
recover, or adapt [34]. In the CENAPRED methodology, masonry structures [35] are considered in
the definition of vulnerability, using the characterization of masonry structures to infer the value of
household goods (refrigerator, washing machine, phone, TV, computer, etc.) that these houses may
contain. It is therefore assumed that the better masonry structures the houses have, the more expensive
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the household goods within them are, hence they are more vulnerable to flooding. This definition is
applied to all the exposed sectors (residential, industrial, etc.).

Flood risk is usually considered as the product of hazard and vulnerability, risk being defined as
the probability that events of a given magnitude and a given loss will occur. Therefore, risk covers two
aspects: hazard and vulnerability [22,26]. In Mexico, CENAPRED defines flood risk as the product of
the cost of assets (household items) similar to [22], the vulnerability, and the exceedance probability of
a given flood [36]; vulnerability is expressed as the percentage damage of the exposed assets, and as
a function of the water depth (hazard) reached at each type of housing (economic vulnerability).
Therefore, according to the definitions presented above, CENAPRED’s vulnerability is closer to the
definition of risk than vulnerability itself.

In this study, we use the definition of [36] for flood damage, calculated as the product of the
cost of exposed assets (household goods) and flood vulnerability. This means that flood damage is
independent of the exceedance probability of a given flood. The magnitude of flood damage over a
determined area does not only depend on the characteristics of the event that generates the hazard
but also on the vulnerability of the elements exposed in the flooded area [30]. Therefore, areas with
higher vulnerability experience greater damage from floods of a given intensity and given exceedance
probability [22].

3. Study Area

The study area comprises the largest urban area of the municipality of Progreso, located on a
barrier island on the northern coast of the Yucatan Peninsula (Figure 1). The community of Progreso
is the most urbanized and economically important coastal city on the northern coast of Yucatan.
The coast of this community can be classified geomorphologically as a type of barrier island, backed
by the Chelem lagoon, which extends towards the western part of this community. Thus, important
hydrodynamic processes increase the inundation threat on the back-barrier behind Progreso. Inland,
the largest surface area corresponds to a mangrove ecosystem, although wetlands and petenes (islands
of flooded jungle vegetation around freshwater springs or sinkholes) can be found. Along the Yucatan
coast there are water bodies that are seasonally disconnected from one another, where the main
contributor is fresh water from springs due to fractures in the largely confined aquifer [37]. Figure 1
(panel c) shows the spatial distribution of water bodies surrounding Progreso’s coast based on the
global land cover classification with 30 m resolution from the National Geomatics Center of China data
set [38].

Regarding the climate of the study zone, predominant winds are associated with sea and land
breezes from the NE and SE, respectively with higher intensity and occurrence during spring [39].
The mixed tide has a diurnal dominance and strong neap-spring variability, with tidal ranges that vary
from 0.1 m during neaps to 0.8 m during springs [40]. Given the wide (245 km) continental shelf and its
mild slope (1/1000) [41], on the one hand, the wind-wave energy is dissipated far offshore [42], while
on the other hand, the area is highly prone to being flooded by hurricane storm surges [1]. A detailed
description of the characteristics of the study zone can be found in [3,43]. The study zone is boarded
by city blocks, which are the smallest part of a town enclosed by streets (Figure 1, panel c).
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Figure 1. Study area location in (a) Mexico, and in the (b) Yucatan state, (c) Progreso and Chelem lagoon.

4. Materials and Methods

To assess the Norte flood risk and flood damage for Progreso, Yucatan, three different approaches
were used. For this, the characterization of the flood hazard was carried out based on the work of [3].
Section 4.1 describes this characterization. The vulnerability was calculated based on two different
methodologies and combined with a flood hazard map to estimate the flood risk and flood damage as
mentioned in Sections 4.2 and 4.3, respectively.

4.1. Flooding Assessment

To address the scarcity and large gaps of tide gauge data in the study area, we used a 30-year
(1979–2008) hindcast of water level and currents (excluding sea level generated by tropical cyclones) [3].
This hindcast was obtained using a hydrodynamic model forced with astronomic tides from the global
tide model [44], currents in the Yucatan channel based on results reported by [45], and wind and
pressure fields from the Climate Forecast System Reanalysis (CFSR) database [46]. The readers are
referred to [3] for more details regarding the model setup. The 30-year hindcast data were used
by [3] to compute the extreme water levels at Progreso using the Generalized Distribution of Extreme
Values [47,48], from which we selected the Norte event with the largest residual tide (12–14 March
1993) to assess the flood risk and damage for this study. The extreme analysis was performed based
on sea surface water level time series extracted from the computational domain from a point located
2 km offshore (5 m depth), where the Progreso tide gauge is situated (with only six years of records,
January 1, 1979–December 31, 1984). Based on tidal predictions [44] the Norte reached the Yucatan
Peninsula near low tide and corresponds to a Type IV Norte as defined by [2], which are the second most
energetic Norte event when considering wave power. The return period associated with the maximum
water levels at Progreso was of only three years when including astronomical tides. However, if the
extreme analysis is performed based on the residual tide (water level minus astronomical tide) the
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return period changes to 67 years. This shows that including astronomical tide is crucial for estimating
return period for a given sea water level. If the interaction between the residual and astronomical
tides is linear, the use of joint probability methods could be used [49]. However, [3], using numerical
experiments, a non-linear relationship between astronomical and residual sea levels was found at
Progreso. There are more complex alternatives to calculate sea water level probability given the height
of the astronomical tide and phase when the storm surge arrives [50], which is beyond the aim of this
study and for simplicity, the return period of three years associated with the water level induced by the
Norte was used to estimate the flood risk at Progreso. An in-depth explanation of the characteristics of
the Norte and the effects of astronomical tides on flooding is found in [3]. The exceedance probability
of a flood (P) is, by definition, just the inverse of the return period. Thus, the three-year Norte-induced
total water level (astronomical tide + residual tide) return period has a P of 0.333.

The Norte-induced flood simulation ran by [3] took into account the contribution of the astronomical
tide, storm surge, and wave set-up. The readers are referred to [3] for more details. Using these results,
the maximum envelope of water depth (MEWD) was computed, which is a map of the maximum
water level at each cell element of the computational mesh and includes all of these ocean forcings.
Figure 2 shows the distribution of the MEWD for this simulation, with maxima of up to 1.6 m, which
was the only flood extension taken into account for the risk assessments for the three methodologies
analyzed. The model result was extracted from the computational domain for the area of Progreso
landward of the coastline. The most affected areas are along the back-barrier behind Progreso, given
the hydrodynamic processes generated inside the Chelem lagoon. The total number of flooded city
blocks was 157 (25% of the total number of city blocks for Progreso), with eight located along the
coastal side, and 149 along the eastern lagoon shores.
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4.2. Flood Risk Assessment

Once the flood hazard had been characterized for the Norte, the vulnerability and flood risk
were estimated following three different methodologies: CENAPRED, CENAPREDv2, and the FRI,
as described below.

CENAPRED uses the following expression to compute the flood risk

R = C ∗V ∗ P (1)

where C is the cost of exposed assets (household items) to the flood hazard, V is the vulnerability
expressed as the percentage damage of the goods resulting from a potentially damaging phenomenon,
and P is the exceedance probability of a given flood hazard. For V, the CENAPRED methodology
quantifies the flood vulnerability for each type of housing based on the most commonly used materials
for the roofs and walls of Mexican homes.
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Houses are classified into five levels according to their masonry structures to infer their ability
to respond to flood events. To estimate vulnerability for every kind of housing, CENAPRED takes
into account the configuration of furnishings and domestic appliances, quantifying the percentage
damage to each house as a function of the water depth reached. This means that the higher the water
levels reached at the more luxurious type of housing, the more vulnerable the households are from
an economic perspective. However, according to the definitions of vulnerability [33,51,52], this is
an independent variable that exists whether there is a flood or not, which may be considered as a
limitation of the CENAPRED flood risk methodology. Figure 3 shows the vulnerability function for
type I housing, while the functions for type II to V are presented in [36]. In the absence of a hazard
(water depth = 0), vulnerability is zero. This vulnerability has non-dimensional units, ranging from 0
to 1, increasing when the water depth at the more luxurious housing increases. In this sense, the more
household goods there are, the more flood damage is expected for a given flood. Table 1 shows the
main characteristics of each house and the value of its associated household goods.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 18 
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Table 1. Characteristics of each type of housing and the value assigned to its associated household goods

Type of
Housing Description Assigned

Value ($USD)

I Most humble type of home, consisting of a single multifunctional room with the
minimum indispensable household goods. $1041.00.

II

The second type corresponds to low class homes which can be described as
self-built homes or houses constructed with materials from the surrounding area,
often without structural elements. With regards to household goods, it is
assumed that the different rooms have their own furniture and are more or less
defined.

$4163.00

III

Can also be classified as low class, similar to type II, but with more resistant roofs,
most often built without structural elements. Household goods correspond to
those which are necessary for the different rooms, as in the previous level;
however, they are considered of higher quality and therefore a higher cost.

$12,530.00

IV

The typical middle class house, i.e., it can be compared to a house of social
interest, most often built with structural elements. The household goods selected
correspond to those of a typical house belonging to a family of professionals who
work and live with no economic complications

$24,978.00

V
Residency built with finishes and decorative elements that substantially increase
its value. The household goods consist of high quality items with many elements
of comfort.

$37,467.00
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The housing lots for Progreso were defined according to the database of the National Institute
of Statistics and Geography [53] and complemented with satellite images and a LIDAR topographic
survey from 2011. Subsequently, to classify the properties of the lots according to the CENAPRED
methodology, we collected the information through visual inspections outside of the houses in Progreso.
Using a Geographical Information System, we assigned different attributes to each lot (type of housing,
cost of exposed household items, maximum water depth reached, vulnerability, P, and risk).

Given that the variables for risk are dimensionless, except for the value of assets, which were
converted to US dollars, taking into account the exchange rate and the accumulated devaluation from
2006 (year of the CENAPRED methodology) to 2018, which according to the Mexican consumer price
index was 66.52% [54]. To estimate the total flood risk in monetary terms for each event, we calculated
the sum of the individual flood risk per house for Progreso.

The CENAPRED methodology is the official approach used at the federal level in Mexico to assess
coastal flood risk. It is a tool used for determining the flood risk in monetary terms for areas struck by
storm events but has limitations in evaluating an integrated flood risk, as it does not take into account
other aspects of vulnerability. For example it does not account social [20,51,55], cultural, educational,
political, ideological, institutional [56], and ecological issues, which are closely interconnected and
form characteristics of the socio-ecological communities which face the diverse impacts of floods.
These aspects of vulnerability are crucial for obtaining an integrated flood risk assessment. For the
CENAPRED methodology, the highest flood risks are for flooded areas with more expensive housing.
For instance, from a socioeconomic perspective [57] found that the neighborhoods that were more
vulnerable to flooding in Georgetown, Guyana, tended to be those with low household incomes, poor
housing quality, and low levels of community organization. Another study by [56] at the regional
level, focusing on the coastal zone of the Mexican Caribbean, shows that the vulnerability of human
settlements in coastal areas is closely linked to social processes, social fragility, and a lack of capacity to
recover from flood damage. Therefore, informal settlements with high population density, poor shelter,
little or no access to resources such as safe water and public health services, and low adaptive capacity,
are more vulnerable. Based on the importance of including these diverse impacts, which are not
included by the CENAPRED methodology, we have proposed two alternatives to assess flood risk and
damage, covering some of the aspects mentioned above.

CENAPREDv2 is a new alternative to the CENAPRED methodology. This methodology uses the
following expression

R1 = C ∗V1 ∗ P (2)

where C and P have the same definitions as in the CENAPRED methodology, but V1 is the socioeconomic
vulnerability proposed by [1] for the states of Yucatan and Campeche, which consists of 17 indicators:
total inhabitants, people under 14 years old, people over 64 years old, unemployed population,
illiterate population, disabled population, non-Spanish speakers (indigenous population), people born
in a different entity, foreign population, population with no health services, divorced or windowed
population, total homes, total inhabited homes, homes with no services such as electricity, water, sewer
system, homes with no fridge, washing machine or car, homes with no communication technologies
and homes with no home appliances. These indicators were selected in terms of mobility (age),
education, households and communication access, similar to [58], and were standardized, weighted,
and summed to obtain a single indicator. For more information the readers are referred to [1]. In the
CENAPRED and CENAPREDv2 methodologies, the risk is expressed in US dollars; therefore, these
two methodologies are comparable. Given that the socioeconomic vulnerability ranges from 0 to 1,
the natural break method [59] was used to create five categories, as shown in Table 2. This classification
was also used for the CENAPRED vulnerability for comparison purposes.
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Table 2. Flood risk categories

Water
Depth (m) Hazard Vulnerability P FRI FRI_FD Hazard/Vulnera

Bility/FRI/FRI_FD Zones

>2 0.4–1 0.61–1 0.33 0.081–0.333 0.244–1 Very high
1–2 0.2–0.4 0.37–0.6 0.33 0.025–0.080 0.074–0.240 High

0.5–1 0.1–0.2 0.21–0.36 0.33 0.007–0.024 0.021–0.072 Medium
0.2–0.5 0.04–0.1 0.075–0.2 0.33 0.003–0.007 0.003–0.020 Low
0–0.2 0–0.04 0–0.07 0.33 0–0.001 0–0.003 Very low

The FRI methodology has already been implemented for the states of Yucatan and Campeche,
Mexico by [1], where risk is the product of the vulnerability and the hazard [26,30]. However, here we
included P in the FRI expression as in CENAPRED, where the FRI formulation is defined as

R2 = P ∗V1 ∗wd1 (3)

where P has the same definition as in the CENAPRED methodology, V1 is the same as in CENAPREDv2,
and wd1 is the normalized total water depth as defined in previous studies [1,22,30].

The units for R2 are dimensionless, and it is the product of the hazard, the socioeconomic
vulnerability [1,26,30], and P [36]. P was assumed to be constant for the entire flood-prone area for
these three methodologies.

4.3. Flood Damage Assessment

The flood damage (FD) associated with the CENAPRED and CENAPREDv2 methodologies,
hereafter referred to as CENAPRED_FD and CENAPREDv2_FD, respectively, was calculated as
the product of the cost of exposed household goods and the flood vulnerability. The flood damage
associated with the FRI, hereafter referred to as FRI_FD, was calculated as the product of the normalized
water depth and the normalized socioeconomic vulnerability. Given that the FRI_FD has an associated
return period of three years, it is sometimes defined as an FRI [26,30,52]. Nevertheless, these authors do
not consider the exceedance probability of a given flood in their FRI formulation, and instead, they used
the return period alone to show the water depths and extent of the floods associated with the FRI_FD.
Therefore, the differences between an FRI and FRI_FD need to be defined. In this study, FRI is an
estimate of the probability of occurrence of a given magnitude and a given loss, and FRI_FD estimates
the losses in the case of occurrence. The Norte-induced FRI and FRI_FD categories were calculated
as shown in Table 2, where the water depth ranges are based on the level of difficulties in daily life
and/or damage to properties, as defined by [30], hazard ranges are the normalized water depth ranges.
The vulnerability ranges, P and estimation of FRI have already been described in Section 4.2. Given
that the ranges of FRI_FD are larger than for FRI, these were also used for FRI for comparison. FRI_FD
ranges were subsequently converted into five categories, from ‘very low’ to ‘very high’.

5. Results

This section shows the results for the flood vulnerability, flood risk, and flood damage of the Norte
for Progreso, Yucatan.

5.1. Flood Vulnerability of the Norte for Progreso

Figure 4 shows the Norte flood vulnerability estimated with the CENAPRED approach (top panel)
and the socioeconomic vulnerability (lower panel). For the former, the values range from 0.02 up to
0.45, and since CENAPRED vulnerability depends on the water depth, the vulnerable areas are only
located in flooded areas, showing ‘low’ and ‘very low’ as predominant categories. The socioeconomic
vulnerability ranges from 0 to 1, and given that it is independent of the water depth, it is homogeneously
spatially distributed across both dry and wet areas. This socioeconomic vulnerability was used to
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calculate CENAPREDv2, FRI, CENAPREDv2_FD, and the FRI_FD, where most of the areas along the
back-barrier behind Progreso are in the ‘high’ and ‘very high’ categories.
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Figure 4. Flood vulnerability maps. (a) CENAPRED vulnerability and (b) socioeconomic vulnerability
for Progreso, Yucatan. The categories in (a,b) are similar and correspond to the values defined for
vulnerability in Table 2.

The flood-prone area shown in the flood map (Figure 2) is larger than its associated CENAPRED
vulnerability (Figure 4) since according to CENAPRED, vulnerability is zero for areas where there are
no houses, regardless of the water depth reached.

5.2. Flood Risk Assessment of the Norte for Progreso

Figure 5 shows the Norte flood risk for Progreso estimated by using the CENAPRED (top panel),
CENAPREDv2 (middle panel), and the FRI methodologies (lower panel). The total flood risk in terms
of USD for all individual houses in Progreso when using CENAPRED and CENAPREDv2 was $16,266
USD and $223,779 USD, respectively, as the CENAPRED vulnerability is lower. Regarding the FRI,
the flood risk on the coastal side is ‘very low’ and ‘low’, and ranges from ‘very low’ to ‘high’ on the
lagoon side.
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5.3. Flood Damage Assessment of the Norte for Progreso, Yucatan

Figure 6 shows the Norte-induced flood damage in Progreso obtained using the CENAPRED_FD
(top panel), CENAPREDv2_FD (middle panel), and FRI_FD (low panel) methodologies. The total
economic loss for all individual houses in Progreso when using the CENAPRED_FD and
CENAPREDv2_FD methodologies was US $48,848 and $671,918, respectively. The flood damage
categories for the FRI_FD on the lagoon side varied spatially from ‘very low’ to ‘very high’, and on the
coastal side was ‘very low’ and ‘low’.
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6. Discussion

The magnitude of extreme water level events has an inverse relationship with the frequency
of its occurrence. In this sense, high-magnitude floods occur less frequently than more moderate
events [52]. However, in our study area, the astronomical tides play a crucial role in coastal flooding.
Even though the Norte used in this study generated the maximum residual tide in 30 years, the return
period associated with the Norte-induced total water level was of only three years, as the highest wind
intensity and storm surge associated with the Norte occurred near low tide. If the Norte had occurred
during spring high tide, the storm impact would have been more significant [16]. Interaction between
residual and astronomical tides, as well as their effect on determining return periods, is discussed
in [3].

Regarding the Norte-induced flood affectation in Progreso, the flood hazard associated with
this event at Progreso is described in [3]. However, the associated vulnerability and risk was not
considered in their study. Therefore, the present study focuses on estimating the associated flood risk
and damage for this event to demonstrate its consequences in Progreso, providing tools for flood risk
management, which is not possible with the visualization of the flood hazard alone [26]. Reference [3]
found that (i) on the coastal side, the flood was not significant because the Norte occurred near low
tide, (ii) flooding was significant along the back-barrier because of the substantial contribution of
hydrodynamic processes in the Chelem lagoon, mainly wind setup. Therefore, flood affectation was
greater for houses located along the lagoon than those found along the coastal side.

Regarding the vulnerability, [56] stated that the vulnerability of coastal communities to
flood hazards is usually estimated using socioeconomic indicators. However, for the CENAPRED
methodology, vulnerability depends on the water depth and type of housing. Therefore, if the type of
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housing is more expensive, vulnerability is greater for a given water depth. The vulnerability obtained
with the CENAPRED methodology was lower than for the CENAPREDv2 methodology. On the one
hand, this is because the vulnerability used in CENAPRED depends on the water depths, which
were not large enough for the Norte to generate high vulnerability values. On the other hand, the
vulnerability used in CENAPREDv2 is based on socioeconomic indicators and is related to the coping
capacity that human communities may have when a flood occurs [60]. Also, the datasets used to create
each vulnerability map were different; for instance, the data for producing the vulnerability dataset
used in the CENAPREDv2 and FRI methodologies were collected by [53] by means of a demographic
census for Mexico, which is carried out every 10 years, whereas the data for the vulnerability dataset
used in the CENAPRED methodology were collected in 2016 in this study. Therefore, it is likely that the
CENAPREDv2 and FRI methodologies did not include the information from houses built after 2010,
which would be included in the vulnerability dataset used by CENAPRED. Thus, the vulnerability map
coverage results in larger or smaller areas due to small differences in the datasets. As expected, when
the vulnerability is zero, the risk is zero. Therefore, CENAPRED and CENAPREDv2 methodologies are
comparable only in areas where the settlements were not modified. However, we assumed that there
were no significant changes in terms of population and number of properties since the geographical
conditions of the study zone do not permit further urban development due to physical barriers such
as the Chelem lagoon to the south, and the sea to the north. Nonetheless, this study can be updated
as soon as a new Mexican census data become available. According to definitions found in [61],
vulnerability, as defined in the CENAPRED methodology, focuses on variations in exposure to hazards,
whereas in the CENAPREDv2 methodology it focuses on variations in people’s capacity to cope with
hazards [62] suggests that it is the socio-political process by which people are made vulnerable. In this
sense, the CENAPREDv2 and the FRI methodologies offer new approaches for estimating flood risk,
taking into account socioeconomic aspects not considered in the CENAPRED methodology. As such,
CENAPREDv2 and the FRI methodologies can help to make coastal communities more resilient from a
socioeconomic perspective.

CENAPREDv2 has advantages over CENAPRED because it combines vulnerability, focusing on
people’s capacity to cope with flood hazards and the values of exposed household goods. In financial
terms, larger flood risks were obtained when using CENAPREDv2 than when using CENAPRED.
This is in part because of the definition of vulnerability and the dataset used in each case to estimate
vulnerability, which is part of the expression used to determine the flood risk. Figure 4 shows that the
values for the CENAPRED vulnerability are lower than for the socioeconomic vulnerability throughout
the flooded area. In comparison, when using the FRI methodology, the flood risk map shows a larger
area to be at risk than for the other two methodologies, mainly because the value of household items
was not considered in this method. For instance, when the value of household goods is zero for a given
lot, the flood risk is zero for the CENAPRED and CENAPREDv2 methodologies, regardless of the
water depth reached at each lot. The settlements located along the back-barrier behind Progreso are at
higher risk than those along the beach due to the presence of the Chelem lagoon, where significant
hydrodynamic processes are generated when storm events occur. The predominant flood risk categories
are ‘low’ and ‘medium’ for the lagoon side and ‘low’ and ‘very low’ for the western part of the coastal
side. The FRI methodology does not take into account the values of exposed household goods, mainly
because according to recent studies poor settlements, such as Progreso, suffer more from hazards than
wealthy settlements [56,57,63,64]. Thus, the more impoverished people are, the more vulnerable they
are. When using the value of household goods in the flood risk formulation, the highest values of
flood risk are for areas with greater availability of services, infrastructure, and economic resources [65].
The FRI method is based on a socioeconomic vulnerability, and is necessary to identify the location of
the people who may have a more limited capacity to anticipate, cope with, resist, and recover from a
flood event.

Regarding flood damage, the results show higher economic losses when using CENAPREDv2_FD
than when using CENAPRED_FD, which is mainly related to the definition of vulnerability in each
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case. For the FRI_FD methodology, since P is not included in its formulation, the impact categories are
higher than for the FRI methodology. In this sense, for events with large return periods, the flood risk is
expected to be ‘very low’, but the flood damage is expected to be large. For instance, the return periods
for events such as Hurricane Galveston and Hurricane Katrina are large, but their consequences were
very significant, as thousands of lives were lost, and economic losses were estimated in thousands of
billions of dollars [66]. Areas with higher vulnerability will be more affected than those with lower
vulnerability by a given extreme flood event [22]. Therefore, people living in conditions of greater
poverty are exposed to persistent, intersecting, and entrenched structural inequalities, making them
particularly vulnerable to harm from the hazards unleashed by climate change [67].

While we do not have control over hazards, it is possible to reduce physical vulnerability through
the optimization of flood protection measures that aim at limiting inundation. Although floods cannot
be managed per se, we can manage flood risk by means of the measures implemented. For instance, in a
city such as Amsterdam, exposure is extremely high (USD 83 billion of assets exposed to the 100-year
flood), but the average annual economic losses do not exceed USD 3 million, because estimated defense
standards are the highest that exists globally [64]. However, in poor settlements where engineering
interventions are not possible or are scarce, nonstructural measures such as flood warning systems,
evacuation programs, land use controls on flood-prone sites [68], building regulations to prevent the
incursion of floodwaters, and insurance schemes have tended to grow in prominence [69].

Storms across the globe, as well as sea level rise due to climate change and their associated
consequences in coastal zones represent a threat to life, assets and ecosystems [14,15]. Therefore, coastal
managers and policymakers need to make effective and timely decisions on the use of resources in the
immediate and longer-term [17]. More applied research, showing results with high spatial resolution,
is needed to provide detailed information to local governments to mitigate the flood risk.

7. Conclusions

This study presents three different methodologies to assess the flood risk (CENAPRED,
CENAPREDv2, and FRI) and flood damage (CENAPRED_FD, CENAPREDv2_FD, and FRI_FD)
of the Norte that generated the highest residual tide in 30 years (1979–2008) of data for Progreso,
Yucatan. The main conclusions from the analysis were as follows:

(a) When using the CENAPRED and CENAPREDv2 methodologies, the flood risk was estimated
to be $US 16,266 USD and $US 223,779, respectively. These differences are mainly associated with the
definition of vulnerability and, to a lesser extent, to the dataset used to create the vulnerability map in
each approach. The FRI shows a higher flood risk for the lagoon side than for the coastal side.

(b) When using the CENAPRED_FD and CENAPREDv2_FD methodologies, the flood damage
was of $US 48,848 and $US 671,918, respectively. The FRI_FD method shows considerable flood
damage along the lagoon side but negligible damage on the coastal side.

(c) The CENAPRED flood risk methodology may be useful from an economic perspective to assess
the flood risk during storm events. However, additional aspects of vulnerability need to be included to
obtain an integrated flood risk assessment to improve flood risk management in Mexican coastal areas.

(d) This study highlights that the flood risk in terms of asset values (CENAPRED) is needed when
financial analysis is going to be performed. However, when characteristics of the community need to be
considered, the flood risk provided by the FRI methodology may be more useful. This information can
be used for disaster risk reduction, depending on the goal and interests of the stakeholders. For instance,
stakeholders or emergency managers who are mostly interested in economic resources should consider
the CENAPRED method, but if they want to focus more on the socioeconomic perspective of coastal
communities, they should implement the FRI method, and if they want to consider social aspects as
well as financial issues, then CENAPREDv2 should be considered.

(e) Further research should address more aspects of vulnerability to obtain an integrated flood risk
assessment for Mexican coasts. This would provide better tools for emergency managers to implement
initiatives to make the coast more resilient.
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