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Abstract: The purpose of this study is to perform a numerical simulation of caisson breakwater
stability concerning the effect of wave overtopping under extreme waves. A numerical model,
which solves two-dimensional Reynolds-averaged Navier–Stokes equations with the k−ε turbulence
closure and uses the volume of fluid method for surface capturing, is validated with the laboratory
observations. The numerical model is shown to accurately predict the measured free-surface profiles
and the wave pressures around a caisson breakwater. Considering the dynamic loading on caisson
breakwaters during overtopping waves, not only landward force and lift force but also the seaward
force are calculated. Model results suggest that the forces induced by the wave overtopping on
the back side of vertical breakwater and the phase lag of surface elevations have to be considered
for calculating the breakwater stability. The numerical results also show that the failure of sliding is
more dangerous than the failure of overturning in the vertical breakwater. Under extreme waves
with more than 100 year return period, the caisson breakwater is sliding unstable, whereas it is safe
in overturning stability. The influence of wave overtopping on the stability analysis is dominated
by the force on the rear side of the caisson and the phase difference on the two ends of caisson.
For the case of extreme conditions, if the impulse force happens at the moment of the minimum of
load in the rear side, the safety factor might decrease significantly and the failure of sliding might
cause breakwater damage. This paper demonstrates the potential stability failure of coastal structures
under extreme sea states and provides adapted formulations of safety factors in dynamic form to
involve the influence of overtopping waves.
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1. Introduction

It is important to provide guidelines of structure stability for designing coastal protection
structures or harbor breakwaters. Many previous studies on wave-structure interaction have discussed
the seaward and lifting forces including those induced by the effects of wave overtopping and breaking
from the physical or numerical models. Among these studies, the most important historical failures
of the vertical structure have been documented [1]. Large-scale hydraulic experiments have been
performed over the past several decades, leading to different empirical formulations that allow for
the calculation of loads induced by wave breaking on vertical breakwaters [2–5]. Some semi-empirical
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equations for impulsive loads on vertical breakwaters are based on experimental data and, in some
cases, with prototype-measured data [6]. Recently, the most commonly semi-empirical formulas for
calculating pressures on a vertical structure wave have been developed [7–9]. When the wave obliquely
enters the elongated structure, the maximum wave force decreases [10,11]. Lately, research results have
reported that an increase in wave pressure caused by the diffracted wave can be one of the reasons for
destruction of the conventional caisson breakwater [12].

In the theoretical analysis, there are some idealized analytical models which have been presented
to study the forces exerted on the vertical structures [13,14]. However, these analytical approaches are
complicated and inconvenient due to the complex geometries. In order to overcome the limitations,
the numerical models have been developed since they are more flexible and efficient. The nonlinear
shallow water or Boussinesq equations are developed to simulate the wave–structure interaction
in coastal processes, especially for porous structures [15–22]. Besides, a boundary element method was
used to solve the unsteady Forchheimer equations and described the wave transmission and reflection
by a multilayer breakwater with arbitrary shapes [23]. Recently, the development of more efficient
Navier–Stokes solvers have allowed a more sophisticated modelling of the wave-structure interaction
problem [24–27]. For instance, the Reynolds-averaged Navier–Stokes (RANS) approach employing
the volume of fluid (VOF) method for the modelling of complex (turbulent) flows has become popular
in the past two decades [28–30]. A robust model was presented to investigate the functionality
of rubble mound breakwaters with special attention focused on wave overtopping processes [31].
Then a numerical analysis considering wave loads corresponding to a low-mound and a rubble-mound
breakwater with both regular and irregular incident wave conditions was carried out [32]. The results
showed that this RANS equation model had a high potential to become a complementary tool to
analyze the hydraulic response of caisson structures.

However, the existing research described above only considered the forces on the seaward and
bottom of the caisson breakwater. The harbor-side loads induced by wave overtopping on a caisson
breakwater have been investigated [33] and concluded that the backward loads should be considered
as failure mode when designing the caisson breakwater. Very little information has been reported
on wave forces acting on the backward side of caisson breakwater, which is an important factor
in calculating the sliding and overturning stabilities for the engineering design. In this study, we shall
extend the numerical model based on the Reynolds-averaged Navier–Stokes (RANS) equations to
simulate the extreme wave overtopping induced loads on the front, bottom and rear sides of caisson
breakwater. The numerical results are validated with the experimental data of surface elevations and
wave pressures acting on the caisson breakwater [34]. The numerical model is applied to actual caisson
breakwaters under various extreme wave conditions and the results are compared to the empirical
formulas to discuss the stability of sliding and overturning [35]. Finally, some conclusions are made.

2. The Numerical Model

In this paper we used a numerical model (COBRAS model) which is a depth and time resolving
2DV numerical model solving the Reynolds-averaged Navier–Stokes (RANS) equations and the k− ε
turbulence closure model to check experimental data. The RANS equations for the ensemble-averaged
velocity, < ui >, and the ensemble-averaged pressure, <p>, are well-known and can be expressed as
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∂xi
= 0 (1)
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in which i, j = 1, 2 for two-dimensional flow and τi j is the viscous stress. ρ, p and t denote
the water density, pressure and time. The Reynolds stress −ρ

〈
u′iu

′

j

〉
is calculated with a nonlinear

eddy viscosity relationship [36]. This nonlinear closure relationship for Reynolds stress mimics
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the more complete Reynolds stress closure without solving the transport equations of Reynolds
stress. A demonstratation showed that standard linear eddy viscosity closure tends to over predict
the diffusion of turbulence under breaking waves [29], and the nonlinear relationship suggested above
predicts better turbulence statistics when compared with laboratory data of breaking wave over sloping
beaches [37]. The governing equations are solved by a finite difference scheme. A two-step projection
method is adopted to calculate the RANS equation. The evolution of free surface is calculated by
the VOF method. The functionality of rubble mound breakwaters with special attention focused on
wave overtopping processes uses the COBRAS model, and the numerical result comparison with
experimental data has good agreement [38]. The mean overtopping discharge at the root of the South
Breakwater of Póvoa de Varzim Harbour (Portugal) modelling by COBRAS model has good agreement
with physical model tests [38].

A small-scale (1:36) physical model was carried out in a wave flume (100 m × 1.5 m × 2 m) to study
the wave forces on a composite vertical breakwater [34], which was composed of an impermeable
vertical caisson and permeable rubble foundation as shown in Figure 1. The specifications of
the breakwater were as follows: the water depth was 0.526 m, the freeboard height was 0.153 m,
the mound height was 0.138 m and the caisson weight was 780.66 kg. There were four wave gauges
marked g1–g4 to measure the surface elevations and nine pressure transducers to measure wave
pressures where five pressure transducers were along the front face of the caisson (U1–U5) and
four pressure transducers were set on the bottom of the caisson (V1–V4). For the permeable rubble
foundation, the median diameter was 0.7 cm and the porosity was 0.49. The incident wave height and
period was experimental measured at wave gauge g1. Wave gauges (g2–g4) were used to calculate
the reflection of the breakwater. A numerical flume was implemented with the same characteristics
in the experimental setup. The computational grid system was discretized with non-uniform meshes
in the x and z directions (∆x = 0.1 m, ∆z = 0.05 m). Thus, the total number of cell meshes was
300 × 34. Additionally, the total simulation time was 64 s and the Courant number was 0.3 for all
cases. The corresponding time step was automatically adjusted during calculations to satisfy stability
constrains by both advection and diffusion processes, in which the maximum time step was adequately
chosen as 10−2 s compared with experimental measurements. The aforementioned computational
conditions were used throughout this study.

Figure 1. Experimental setup for regular wave [34]. (a) is the side view; (b) is the detailed view of
the caisson breakwater.

The comparison of wave surface elevations for the four wave gauges between the numerical
results and experimental data for wave overtopping is shown in Figure 2. The agreement between
numerical results and experimental data was good except the wave gauge g2, where the vicinity of
a node of the partial standing wave effected the interaction of the incident wave and reflection wave.
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Figures 3 and 4 show the comparison of wave dynamic pressure time series between the numerical
simulations and experimental data for the regular overtopping wave condition (H = 0.25 m and
T = 2 s). The pressure transducers U1~U2 were above the still water label. In Figure 3, the pressure
transducers U3~U4 are exposed to air under the wave trough in that wave condition. The comparison
includes five pressure transducers along the vertical front face of the caisson (U1–U5) and four pressure
transducers underneath the caisson (V1–V4). The solid line represents the numerical simulations
while the dashed line represents the laboratory measurements. From Figures 2–4, good qualitative
comparisons between numerical simulation and experimental data are investigated. It indicates that
the numerical model could simulate the waves propagating through the porous medium. In general,
the COBRAS numerical model has a good prediction for the dynamic wave pressure time series at
the vertical face of the caisson than those beneath the caisson. To quantify the comparisons, a validation
method proposed by Wilmott was used as Equation (3) [39]

ϕ= 1−

∑∣∣∣Xnum −Xexp
∣∣∣2∑(∣∣∣Xnum −Xnum

∣∣∣2 + ∣∣∣Xexp −Xexp
∣∣∣2) (3)

Figure 2. Comparisons of the surface elevation in regular wave condition (H = 0.19 m, T = 1.67 s)
between numerical results (dashed line) and experimental data (solid line).
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Figure 3. Comparisons of the dynamic wave pressure along the front face of the caisson breakwater
in the typhoon wave condition (H = 0.25 m, T = 2 s) between numerical results (dashed line) and
experimental data (solid line).
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Figure 4. Comparisons of the dynamic wave pressure on the bottom of the caisson breakwater
in the typhoon wave condition (H = 0.25 m, T = 2 s) between numerical results (dashed line) and
experimental data (solid line).

In Equation (3), Xnum is the numerical result, Xexp is the experimental data and the “–” is
an averaging operator. The index of validation (ϕ), ranging from 0 to 1, represents the degree of
agreement between numerical predictions and experimental data, and the unit is dimensionless.
The validated results are shown as Table 1. The value of validated index, ranging from 0.71 to 0.96,
is acceptable. However, it has to be noted that a smaller index is found for the wave dynamic pressure
beneath the caisson breakwater. In general, the average value of all validated indexes is 0.8, which
indicates that numerical predictions from the COBRAS model and experimental data are consistent.
Consequently, the comparisons results provide confidence in the subsequent application of the model
to the prototype scale, and which is described in the next section. In this study, we focus on the load
on the rear sides of caisson breakwater induced by wave overtopping, so the overtopping discharge
won’t be concerned.
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Table 1. The index of model validation.

Case ϕ Case ϕ Case ϕ

g1 0.960 U1 0.723 V1 0.714
g2 0.638 U2 0.777 V2 0.741
g3 0.873 U3 0.772 V3 0.739
g4 0.920 U4 0.888 V4 0.708
– – U5 0.895 – –

3. Stability Analysis of Prototype Vertical Breakwater

3.1. Prototype Wave Load Analysis

The validated numerical model was used to evaluate the total wave forces on the caisson
breakwater in Taiwan at a prototype scale. There are two parts of the caisson breakwater: the porous
rubble foundation and vertical caisson with parapet [40]. The vertical caisson is installed on a rubble
foundation, which has a thin filter layer between caisson and foundation and is placed on a foreshore
slope of 1 on 100. The design wave condition for the breakwater of Taichung harbor is 50 year return
period wave condition. The specifications of the breakwater is as follows: the water depth is 22 m,
the freeboard height is 11 m and the mound height is 6 m. Figure 5 shows a vertical breakwater
cross-section at Taichung harbor in Taiwan. Tests were simulated using regular waves for various
values of wave conditions as shown in Table 2. In order to understand the force contribution clearly,
the regular wave was applied. Besides the condition of different return period typhoon waves,
extreme waves due to climate change were also used [41]. According to [41], the wave height will
increase up to 65% and the corresponding wave period might increase to 25% in 2039 around Taiwan.
The numerical domain is 1125 m long and 80 m height. The mesh resolution at the structure is 0.2 m
in the x-direction and 0.5 m in the y-direction. The rubble mounted layers beneath the caisson are
defined using the porous flow parameter in Table 3.

Figure 5. The wave-structure interaction model setup of Taichung harbor setup [41].
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Table 2. The wave conditions (including return period of typhoon wave and extreme condition).

Case H (m) T (s) Return Period (Year)

1 7.77 11.30 50
2 8.46 11.70 100
3 9.24 12.20 200
4 9.45 12.30 250
5 12.87 14.13 50 *
6 13.70 14.63 100 *
7 14.47 15.25 200 *
8 14.63 15.38 250 *

mean water depth = 28.86 m at x = 0 m. * represents the climate change effected extreme wave condition [41].

Table 3. The porous flow parameter for rubble mounted layers.

Layer Porosity The Median Diameter (m)

1 0.49 0.118
2 0.53 0.387
3 impermeable materials

In the past, the existing researches only considered the forces on the seaward and bottom of
the caisson breakwater. Very little information has been reported on overtopping wave forces acting
on the backward side of caisson breakwater, which is an important factor in calculating the sliding
and overturning stabilities for the engineering design. In order to bring more insight on the wave
forces induced by the overtopping waves, the numerical model is extended for simulating the wave
pressure acting on the front, bottom and back sides of the caisson breakwater. A free body diagram
shown in Figure 6 was used to analyze the overtopping wave induced forces and moments acting
on the caisson breakwater. In Figure 6, W denotes the weight of caisson, f 1 denotes the horizontal
force acting on the front face of the caisson, f 2 denotes the horizontal force acting on the rear face
of the caisson and f 3 denotes the uplift force acting on the bottom of the caisson. Buoyancy force is
included in still water. The fixed reference point of the moment for the landward overturning is denoted
by the point s1, while that for seaward overturning is denoted by the point s2. The moment of f 1 is m1,
and the moments of f 2 is m2. The moment of f 3 at fixed point s1 is denoted by m3, and the moment of
f 3 at fixed point s2 is denoted by m4. The moment of W at fixed point s1 is mw1, and the moment of W
at fixed point s2 is mw2.

Figure 6. Free body diagram of load analysis.

The relative forces and moments acting on a vertical structure can be determined by integrating
the numerically calculated pressure over a portion of vertical structure. Figure 7 presents the time
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histories of horizontal forces on the seaward-side (upper panel), harbor-side (middle panel) and
uplift force for the studied case 1. In case 1, wave overtopping happens, indicating that all cases
in Table 2 are necessary to investigate the influence of wave overtopping (IWO) on the structure
stability. The force calculated included the behavior of flow transmitting through the rubble mound.
In case 1, the overtopping wave happened after t = 75 s, so the transmitting flow disturbed a fluctuation
of f 2 before overtopping. The calculated moments induced by the three forces are shown in Figure 7.
From Figure 7, the oscillation of the rear force f 2 and the induced moment m2 occurs after wave
overtopping. Moreover, the peak values occasionally appear at some instantaneous time which might
be caused by the jet of the overtopping wave. In addition, the differences between the water level on
the front face and that on the rear side of caisson breakwater will influence the pressure distribution
underneath the caisson. Therefore, the corresponding upward force f 3 and the induced moments
(m3 and m4) will vary with the surface elevation difference for wave overtopping. The negative
maximum of f 3 is larger than the positive maximum of f 3, which is the same as the experimental results
in [34].

Figure 7. The time histories of wave-induced forces and their moment acting on caisson in case 1.

3.2. Stability Analysis

It is important to safely design a vertical breakwater with respect to the stability criteria of sliding
and overturning. The movements of a caisson breakwater are influenced by the total active forces
exerted on the seaward, harbor side and underneath the vertical structure. The minimum safety factors
for sliding and overturning are suggested by [35] for engineering design and these values must not be
less than 1.2 in practice. These safety factors for sliding and overturning are reviewed as the following:

Using an empirical formula to calculate the safety factors for sliding and overturning, the force
acting on the rear side of the caisson was usually taken to be static for simplicity’s sake. Few literatures
studied the horizontal force acting on the rear side along the caisson for overturning wave.
Therefore, the total force determination requires a good understanding of the overtopping wave
behavior in the front and rear sides of the caisson as well as beneath the caisson. Here, the sliding
safety factor and overturning safety factor without the force on the backward side can be presented as
Equations (4) and (5).

fs = µ
W − f3

fp
(4)

f0 =
mW −m3

mp
(5)
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where µ is the coefficient of friction between the caisson and the foundation, W denotes the weight
of caisson, fp denotes the maximum horizontal force along the front side of caisson, mp denotes
the moment of fp at the point s1, and mw denotes the moment of W at the point s1.

Due to the rear side force being considered, the safety factor against seaward sliding and
overturning should be accounted. Consequently, the corresponding safety factor against landward
sliding and seaward are presented as Equations (6)–(9), where superscript “+” and “−” represent
landward and seaward, respectively. The subscript “s” and “o” mean the sliding and overturning.

f+s = µ
W − f3
f1 − f2

(6)

f−s = µ
W − f3
f2 − f1

(7)

f+o =
mW1 −m3

m1 −m2
(8)

f−o =
mW1 −m3

m2 −m1
(9)

For example, the time histories of the safety factors against sliding including sliding safety
factor (fs), landward sliding safety factor (fs+) and seaward sliding safety factor (fs−) in case 1 are
shown as Figure 8, and that against overturning including overturning safety factor f0, landward
overturning safety factor f+o and seaward overturning safety factor f−o in case 1 are shown as Figure 9.
The water wave in the rear side caused the sliding safety factor and overturning safety factor to oscillate,
which means Equations (6)–(9) provide a time series variation value as shown in Figures 8 and 9.
Overall, the caisson breakwater in Taichung harbor has sufficient stability for sliding and overturning
on the IWO in the 50 year return period wave condition.

Figure 8. The time histories of the safety factors against sliding among fs+(.), fs− (×) and fs (—) for
case 1.

Figure 9. The time histories of the safety factors against overturning among fo+ (.), fo− (×) and fo (—)
for case 1.

4. Results and Discussions

To investigate the structure stability on the IWO, the sliding and overturning safety factors
considering the water level fluctuates on the rear side of caisson were calculated under 50 to 250 year
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return period typhoon wave conditions as well as extreme wave conditions. The represented safety
factors for sliding on the IWO determined by the minimum of landward sliding safety factor and seaward
sliding safety factor was denoted by fs±. In the same way, the overtopping safety factors determined
by the landward overturning safety factor and seaward overturning safety factor, was denoted by fo±.
The comparisons of the safety factors against sliding are shown as Figure 10. Generally, the safety
factors following severe wave conditions get lower, and cases 6–8 are less than 1.2, indicating the risk
of sliding failure might occur in extreme wave conditions. Although fs± is closed to fs, fs± varies due to
the IWO.

Figure 10. Comparisons of the safety factors against sliding among the minimum of fs± (o), fs (×) and
safety criteria 1.2(—).

The safety factors against overturning are shown as Figure 11. All of the cases are greater than 1.2.
Therefore, sliding failure is more dangerous than the overturning failure in Taichung harbor breakwater.
Comparing between Figures 10 and 11, the tendency of safety factors between sliding and overturning
are similar. This study shows the impact of overtopping waves in respect of the phase difference
between the front and rear side. Not only wave condition but also the configuration of caisson
such as its width and crown height might also affect the safety factor of breakwater. The impact on
the fluctuation of the safety factor in case 2 is smaller than in case 1.

Figure 11. Comparisons of the safety factors against overturning among the minimum of fo ± (o), fo (×)
and safety criteria 1.2(—).

To focus on the IWO on the stability analysis of vertical breakwaters, the load analysis of case
4, an example of fo± < fo, is shown as Figure 12. When time is 189.5 s, the minimum safety factor
against sliding on the IWO fs± = 1.32 is greater than the safety factor against sliding in static fs = 1.43.
At that time, the force f 1 in Figure 12b is 4395 kN and the force f 2 in Figure 12c in dynamic is 1840 kN,
while that in static is 2084 kN, and the force f 3 in Figure 12d is 5614 kN. Because the force on the rear
side of caisson considers the IWO is less than the force in still water, that caused the corresponding
safety factor against sliding to be lower. Therefore, the impulse force happens at the moment of
the minimum of load in the rear side, the safety factor drops significantly and the failure of sliding
might cause breakwater damage. Furthermore, overtopping safety factors in case 4, an example of fo±

< fo, are shown at Figure 13. At 189.6 s, the minimum safety factor against overturning on the IWO
fo± = 1.921 is less than the safety factor against overturning in static fo = 2.048. At the time point,
the moment m1 in Figure 13b is 42,230 kNm, the moment m2 in Figure 13c in dynamic is 12,035 kNm;
while that in static is 14,317 kNm and the moment m3 in Figure 13d is 69,279 kNm. Since the moment
m2 on the IWO is less than that in static, the corresponding safety factor against overturning is lower.
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Figure 12. Comparisons of time histories of the safety factors against sliding and their loads for case 4.
(a) The safety factors against sliding among fs+(.), fs− (×) and fs (—); (b) The forces f 1 (—); (c) The forces
f 2 in static (—) and in dynamic (—); (d) The forces f 3 (—).

Figure 13. Comparisons of time histories of the safety factors against overturning and their moments
for case 4. (a) The safety factors against overturning among fo+ (.), fo− (×) and fo (—); (b) The moment
m1 (—); (c) The moment m2 in static (—) and in dynamic (—); (d) The moment m3 (—) and the moment
m4 (—).
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In summary, the risk of sliding is greater than that of overturning in Taichung harbor breakwater.
Under the extreme wave more than 100 year return period, the breakwater is unstable due to sliding,
but safe from overturning. The IWO on the stability analysis is dominated by the force on the rear side
of the caisson and the phase difference on the two ends of caisson.

5. Conclusions

To evaluate the stability of caisson breakwater concerning the effect of wave overtopping, a 2D
VOF-type RANS model using a k−ε turbulence closure (COBRAS) has been demonstrated to be
suitable for simulating the complex hydrodynamics induced by overtopping waves. Experimental
wave profiles and dynamic wave pressures on the seaward, backward and the bottom of the caisson
breakwater can be suitably simulated by the present model. The horizontal forces on the front and rear
sides and the uplift force as well as the moments on the caisson could also be analyzed. According to
the numerical simulations, the risk of sliding is greater than that of overturning in the case of caisson
breakwater in Taichung harbor. Under the extreme wave more than 100 year return period, the caisson
breakwater is unstable due to sliding, but that is safe for overturning. Therefore, it is important to
calculate the force on the rear side of the caisson and the phase difference of surface elevation on the two
sides of the caisson as we analyze the stability analysis for wave overtopping for engineering design.
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