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Abstract: The existing oil spill detection methods mainly rely on physical sensors or numerical
models cannot locate the spill position accurately and in time. To solve this problem, combining
with underwater image processing technology, an unsupervised detection algorithm for oil spill
in underwater pipelines is proposed for the first time. First, the oil spill region to be detected is
regarded as the moving target, and the foreground detection algorithm is applied to the processed
images. Then, the HSV (Hue, Saturation, Value) color space of the image is used to screen the oil spill
region meeting the threshold requirements. Next, the bitwise of foreground mask and HSV mask
into cells are divided. Finally, according to the characteristics of the oil spill image, false detection is
eliminated by classifying cells three times. After qualitative and quantitative analysis, it is proved
that the proposed algorithm can detect oil spill region accurately.
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1. Introduction

There have been several oil spills at sea over the decades, e.g., the Gulf of Mexico (2010), the Timor
Sea (2009), and the North Sea (1988). Although oil spills occur infrequently, they cause severe economic
losses and a substantial adverse impact on the global environment [1]. Take the oil spill in the Gulf
of Mexico in 2010 as an example: the accident caused eleven deaths and economic losses amounted
to tens of billions of dollars. About 757,000 m® of oil spilled, which seriously threatened the marine
ecological environment.

To provide technical support for environmental risk assessment, emergency plan formulation and
emergency response, researchers have carried out numerous oil spill detection studies. The existing oil
spill detection methods can be roughly divided into two directions according to detection location.

Above the sea surface, most of them are detected by synthetic aperture radar (SAR) satellite
images or physical sensors. Dhont proposed the combined use of SAR and underwater gliders for oil
seeps detection [2]. However, due to poor timeliness, leakage points cannot be found in time and the
cost is high.

The other direction is underwater which mainly focuses on the numerical model research.
Qistein regarded the discharges as terms of multiphase plumes and proposed a plume model
based on Lagrange [3-5]. With image processing technology development, many target detection
and tracking algorithms based on image features have been proposed. Compared with numerical
models, vision-based target detection algorithms are more versatile. Some scholars have carried
out image-based oil spill research. Bescond proposed a photoacoustic detection and monitoring
method of oil spill [6]. Osman estimated the oil spill flow rate base on Wavelet in optical images [7].
Qasem implemented an underwater remotely operated vehicle (ROV) and identified oil spills by
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binarized difference images [8]. Oh proposed an underwater multispectral imaging system for
environmental monitoring to identify different oil samples [9]. However, the current use of image
processing technology is based on the image of the simulation experiment, with a simple image
background, which is different from the actual situation, and the primary purpose is to use the oil
spill image which spill region is known to calculate the relevant values, such as oil spill rate, oil spill
amount and oil spill area.

With the development of machine learning, it has been widely used in image processing.
Using convolutional neural networks (CNN), general target detection algorithms have achieved
good results on object recognition datasets such as Pascal VOC (Visual Object Classes) [10],
COCO (Common objects in context) [11], and ImageNet [12], which consist of a large number of
pictures and their annotated documents. However, target detection algorithms based on machine
learning often require massive amounts of datasets to extract features of the target. Commonly used
training sets often reach the level of millions or even hundreds of millions of samples. However,
underwater oil spill images are challenging to obtain and scarce in practice, which cannot meet the
requirements of statistical-based detection model training. Therefore, the target detection methods
based on machine learning are not suitable for underwater oil spill detection task. Feature extraction
has to adopt traditional methods.

Considering the oil spill movement characteristics are significant, motion detection can be applied
in detecting the oil spill. Although there are various motion detection methods, none achieve good
results in dynamic monitoring scenarios. Especially due to a lot of interference in the underwater
environment, such as seawater and marine life movement, underwater image motion detection’s
difficulty is further increased. Thus, false detection is easy to occur, and the detection results need to
be processed to reject false detection.

Considering the maturity of the existing algorithms and the limitation of their application on
underwater oil spillage detection, an unsupervised detection algorithm based on underwater oil
spill motion and color characteristics is proposed. It integrates the characteristics of the oil spill
image to eliminate false detection by using the proposed cell structure. It achieved high accuracy in
experiments. The rest of this paper is as follows. Section 2 introduces the proposed algorithm and
its specific implementation. Section 3 presents the detection results and evaluation of the proposed
algorithm. Section 4 gives the conclusion of the paper.

2. Method

The proposed algorithm processes the video images collected by underwater cameras. Firstly,
theunderwater oil spill is regarded as the motion foreground, and the motion detection algorithm

is used to detect it. The suspicious oil spill region is screened out by threshold in HSV color space
too. Next, the two suspicious oil spill regions are united into the pre-detecting mask and the mask
image is separated into cells, which can be classified as oil cells or others. The spatiotemporal context
information is used in cells to eliminate missed targets and lock the oil leakage region. Finally,
combining the plume characteristic of spilled oil, a structure of root and branch cell is proposed, and a
cluster of cells belonging to the same root cell is regarded as the detected oil spill region.

Figure 1 is the flowchart of the proposed algorithm. Figure 2a shows the implement of the
algorithm. Figure 2b shows the process of pre-detection. It unites motion detection and color screening
in HSV space to generate a suspected oil spill region mask. Figure 2b—d are the single image feature
detection based on cell structures. From left to right are cell divisions, root-branch classification,
and root-branch stacks. Figure 2d is the process of eliminating false detection by introducing STC
information into cells and the final detection result.
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Figure 2. Algorithm implementation: (a) pre-detection; (b) cells division; (c) first classification;
(d) second classification and (e) third classification.
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In the past two decades, it is widely accepted that the progress of object detection has
generally gone through two historical periods: “traditional object detection period (before 2014)”
and “deep-learning-based detection period (after 2014)” [13]. Limited by the computing power
and the lack of datasets, traditional target detection mostly uses handcrafted features, and then
uses the classifier to classify the features. However, training a deep-learning-based model, such as
SSD [14], Faster R-CNN [15], and YOLO [16], requires many data, thus oil spill detection tasks lacking
underwater image information are not suitable for deep-learning-based detection models. To detect
oil spill in underwater images, we use an unsupervised algorithm system combining multiple image
features to achieve underwater oil spill detection.

2.1. Foreground Detection

Since the oil spill is continuously moving and changing, the underwater oil spill can be
regarded as the moving target. The underwater oil spill detection can be regarded as the motion
foreground detection task. Traditional motion detection algorithms include background modeling [17],
clustering [18], image segmentation algorithm. However, it is difficult to detect an object in the
dynamic background due to factors such as varying illumination, a sudden change in a scene, occlusion,
and shadow [19]. Some researchers have applied machine learning methods to motion detection in
recent years, such as FgSegNet series algorithms [20,21], which won first place in the CDNet2014
challenge [22]. However, these supervised algorithms are based on dataset training and have no
universality, so they cannot apply to underwater oil spill detection.

However, looking at the literature, we can remark that there is often a gap between the
current methods used in real applications and fundamental research [23]. After trials and contrasts,
T2FMOG [24] based on a fuzzy mixture of Gaussians model is used in this paper, which has a higher
tolerance to the background of slight motion and can produce ideal foreground detection effect in
more complex underwater environment.

According to the uncertain mean vector or error, T2FMOG is divided into T2FMOG-UM and
T2EMOG-UV. Due to the water flow in an underwater environment, the uncertainty variance is more
likely to occur. Therefore, T2FMOG-UV can achieve better results. For RGB images, the multivariate
Gaussian distribution with uncertain variance is as follows:

X; . — 2
(0,1, Y)) (Xt — pe)”

I DS ¥
= Ve

in which o, € [¢,,0],c € {R,G,B}, each exponential component in Equation (1) is the Gaussian
primary membership function (MF) with standard deviation. The upper MF is h(0) = f(o; 4,7) and
the lower MF is h(0) = f(o; u,0).

Between & and / is the footprint of uncertainty (FOU) as Figure 3. To control the intervals, a factor
ky introduced:

) )

1
o =ky,o,0= = ky € 10.3,1] 2)
v
Our experiments verify that the result is more accurate when k, = 0.9. After getting the

T2FMOG-UV model of the image, we can detect the image foreground. Since the background is
more present than moving objects and its value is practically constant, a background pixel corresponds
to a high weight with a weak variance. Based on this prior knowledge, K Gaussian models are sorted
by w;/0c;j as a ratio. The first Gaussian distribution whose threshold exceeds T is regarded as the
background distribution in Equation (3); other distributions are considered as foreground.

b

B = argmin,(} w;; > T) 3)
i=1
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when a frame of the video comes in, use the log-likelihood and only consider the bilateral likelihood
interval to test and classify each pixel:

1 ) |Xt — ]’l|2
1/kU2 _ kyz 202

H(X:) = ( (4)
where y and ¢ are the mean and the std of the original T1 MF without uncertainty. If H(x;) < ko,
the pixel is attributed to Gaussian distribution. Therefore, the pixel test results can be divided into
two cases:

1. If a pixel belongs to a certain Gaussian distribution, then the pixel belongs to the category
represented by the Gaussian distribution.

2. If a pixel is not attributed to a Gaussian distribution, then the pixel is attributed to the motion
foreground.

Furthermore, to ensure the accuracy of the background model, the parameters update according
to Equations (5) and (6).
Case 1: Matched Gaussian distribution

Wit = (1 —a)wi; +a

Hipr1 = (1= p)pip +pXi 1 5)
2

0ri1 = (L= p)o7 + p(Xe1 — pipe1) (Xes1 — pipe1)"

« is a fixed learning rate, p = a#(X;41, #i, Y;)- For unmatched distribution, u and o are invariant,
Wit+1 = (1- ‘X)wj,t-

Case 2: The final probability distribution K

Wy t+1 = Low Prior Weight

i1 = Xip1 (6)
(Tlg,tﬂ = Large Initial Variance

Thus far, the motion foreground and the background model, which can be updated, are obtained
by using T2FMOG. However, when considering factors such as water currents, marine life movement,
and lens motion, there may be non-oil spilled parts in the foreground mask, so it is necessary to
eliminate false detection by other methods.

2.2. Color Screening

In addition to the motion features, the oil spill region’s color feature in an underwater environment
is the most obvious. Therefore, the color threshold screening method is considered for screening the
detected foreground further. However, in most videos, to display conveniently, the video pixel
value is often in RGB format, which is designed according to the principle of color luminescence.
The color is displayed by the excitation of red, green, and blue. Thus, it is not accurate enough
for oil spill segmentation by using RGB color space. HSV is an intuitive color model, and its color
parameters are hue, saturation, and lightness. Therefore, the videos can be converted to HSV space to
screen the oil spill region under the foreground mask. The S and V channel calculation methods are:
S =V —min{R,G,B} amd V = max{R, G, B}, respectively. The channel calculation method of H is
shown in Equation (7). When H < 0, H = H + 360.

60(G — B)/(V — min(R, G, B)) ifV=R
H={60(B—R)/(V—min(R,G,B))+120 if V=G @)
60(R—G)/(V —min(R,G,B)) +240 if V=B
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After obtaining the HSV model, the mask of the suspected oil spill region is obtained by threshold
screening, and the screening method is as follows:

Mask 1, T,<L<T; (®)
ask; =
' , others

where T; and T; are the lower and upper thresholds of each color channel, respectively. I; is the pixel
value on a single color channel in HSV space. The pixel value on mask is 1 only when the pixel values
on three channels meet the threshold requirements; otherwise, it is 0.

A single frame mask of the suspected oil spill region can be obtained by performing a bitwise
operation between the foreground detection mask and color screened mask. However, there is still
false detection in practical applications caused by those moving objects with the same color as spilled
oil. Further operations are needed to eliminate false detection after obtaining the detection mask of a
single image.

Figure 3. Gaussian membership function with uncertain variance.
2.3. False Detection Elimination

After watching more than 60 min of video containing oil spills, we found that the underwater oil
spill image has two characteristics:

e Oil spillage is always produced from bottom to top.
e  The movement of oil spillage occurs locally.

Based on these two characteristics, the root and branch cell structure and the STC method
are proposed to eliminate false detection. The oil spill region is finally accurately screened out by
classifying the cells three times.

Aiming at the first feature of underwater oil spill images, an algorithm of eliminating false
detection based on cells with root and branch structures is proposed. First, the masked image is
divided into S*S cells; then, the cells containing suspected oil spills are pre-classified and screened.
The screening rule follows Equation (9), in which O; is the category of the ith cell, W; is the number
of white pixels in the masked cell, and T is the set threshold, 0 < T < 1. Figure 2b shows the
screening diagram

©)

1,W;/S$*>T
Cell,- = 5
0O,W;/S><T

Then, the algorithm traverses the cells that have been classified as an oil spill from bottom to top
and from left to right and secondarily classifies the pre-classified cells into root cells or branch cells.
The classification method is shown in Figure 2c. The category of the cell is determined by the eight
cells in the neighborhood. If there is no root cell or branch cell in the center cell neighbor positions 2-5,
the center cell is classified as a root cell, and a new cell stack is established. If there is a root cell
or branch cell in the center cell neighborhood, the center cell is pushed into the neighboring cell’s
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stack. Figure 2d shows the second classification method.The second classification method is shown in
Equation (10), in which neighbor; is the ith neighbor cell category.

5
root, Y neighbor; > 0
=2

Cell; = 5 (10)
branch, Z neighbor; =0
i=2

The movement of oil spillage occurs locally; that is, the movement amplitude of the oil spill
in a short period is tiny, especially when the seawater movement is relatively gentle. The oil spill
at the leakage point generally does not do translation movement. However, there is a diffusion
movement at the edge part, and the internal motion amplitude is low or even relatively static. It is
familiar to STC information, which models the statistical correlation between the low-level features
(i.e., image intensity and position) from the target and its surrounding regions. Taking advantage of
the oil spill movement characteristics, we propose an oil spill detection method that adds temporal
and spatial context information to the cells. Due to the low amplitude of oil spill translation, the oil
spill cell can always be detected within a certain period, and it cannot be detected for a long time
when the target cell is an oil spill. The number of times each cell is detected is counted, and the cell is
classified for the third time.

On the one hand, when the detection count is greater than the set value, the cell is confirmed to be
an oil spill. On the other hand, when the continuous missed detection count is greater than a certain
value, the detection count is set to zero, and the cell is regarded as a false detection for exclusion.
The cell classification method of the tth frame is as follows:

t t
oil, Y, hg>Ty & ) mp<Ty
f=t—w f=t—w
t
others, 'Y mg > Ty
f=t—w

Cell; = (11)

where w is the width of the counting window, /¢ is the category of the fth frame determined by
Equation (9), and the judgment rule of my is the opposite. T; and Tj, are detected and missed
thresholds, respectively. The third classification process is shown in Figure 2c.

Finally, all cells are traversed again and popped up, taking the circumscribed rectangle of the
graph formed by the cells in the same stack to form the detection boxes. The areas of the detection
boxes are calculated, and the detection box with an area smaller than a certain threshold is regarded as
invalid detection and excluded. The remaining detection boxes are used as the final detection result.

3. Results and Discussion

The dataset used in the experiment comes from underwater oil spill videos collected on the
Internet, including some videos recorded by remote operated vehicle (ROV) during the Deep Horizon
accidents. The videos were resized to a resolution of 640 x 480, and then cut into 1278 video frames.

Figure 4 shows the results of underwater motion detection [25]. The experimental results take the
60th and 215th frames of a video for comparison. Figure 4a shows the original frames. Figure 4b-d
provided the detection results of several algorithms based on background modeling. It shows that
the general background modeling algorithm cannot effectively distinguish the oil spill region and the
seawater background, resulting in many missed detection. Figure 4e is the result of VIBE algorithm
foreground detection, which can accurately detect part of the oil spill region, but there is still some
missed detection. Figure 4f gives the detection results of the foreground detection algorithm used in
this paper, which accurately detects oil spill movement in videos.
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Figure 4. Foreground detection: (a) original frame; (b) LOBSTER [26]; (c) MOG2 [17]; (d) SuBSENSE [27];
(e) VIBE [28]; and (f) T2FGMG-UV.

Figure 5 shows the result of color threshold screening. Figure 5a is the original image, which is
converted to HSV color space, as shown in Figure 5b, and Figure 5c shows the color mask obtained
after threshold screening. The experimental results show that the algorithm can screen out accurate
suspected oil spill region, but there is still false detection.

The mask of the suspected oil spill region is obtained by the motion mask bitwise and color mask,
as shown in Figure 6a. Directly extracted detection results of the suspected oil spill region mask show
that there are still some false detection boxes, as shown in Figure 6b. Figure 6¢c shows the cell stacks
after removing false detection by using STC.

Figure 5. HSV threshold: (a) original image; (b) HSV image; and (c) color mask.
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(b) (0)
Figure 6. detection results: (a) fusion-mask; (b) pre-detection; and (c) cell stacks.

Figure 7a gives the proposed algorithm detection results. Compared to the frame difference in
Figure 7b, our results locate the oil spill position and estimate the false detection. Figure 7c shows the
yolov3 results. When the iteration number is low, there are many false detections, while, when the
iteration number is high, the model is overfitting and it cannot detect oil spill.

(b)

Figure 7. Results comparison: (a) ours; (b) frame difference [8]; and (c) yolov3 [29].

To evaluate algorithm results, we adopted the calculation method of VOC2010 [10]. It includes
two import evaluation indicators: precision and recall. Their calculation methods are shown in
Equations (12) and (13), respectively.

TP
P= TP+ FP (12)
TP
R=—" 1
TP +FN (13)

where TP, FP and TN mean the amount of true positive, false positive and false negative, respectively.
They are decided by the intersection over union (IoU) threshold of the detected bounding box and
ground truth.

To calculate average precision, the precision at each recall level r is interpolated by taking
the maximum precision measured for a method for which the corresponding recall exceeds r.
The interpolation method is shown in Equation (14). Then, we computed the average precision
(AP) as the area under this curve (AUC) by numerical integration, as shown in Equation (15) .

Pinterp(r) = lg}i); F’(r) (14)
T'max

AP = 2 Pinterp(r) (15)
r=0

The precision—recall (P-R) curve and average precision (AP) value of the test results are shown in
Figure 8 and Table 1. The proposed algorithm achieves extremely high detection accuracy when the
intersection over union (IoU) is set at 0.5. However, when the IoU is greater than 0.7, the accuracy of
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the proposed algorithm declines, which is due to the limitation of the algorithm caused by the motion
detection algorithm and partial oil spill color is close to the color of seawater.

1.0 - 10—
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5 5
‘% 0.6 ‘% 0.6
2 2
o o
a 0.4 a 0.4
—— loUgp s — loUgs
0.2 /OUo_G 0.2 /OUo_s
-_ /OU0_7 - IOUOJ
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Recall Recall
(a) (b)

Figure 8. precision-recall graph: (a) Video 1; (b) Video 2.

Table 1. average precision.

Video APy5 APy APy7

1 0958 0.662 0.369
2 0943 0.659 0.192

4. Conclusions

This paper presents a method to detect oil spills by underwater images, which can be applied
to fixed underwater cameras or remote operated vehicle (ROV). Compared with existing algorithms,
it can process more complex real underwater images. It needs less hardware support, thus it can be
integrated into an embedded system for independent use with ROVs in the future. It has massive
potential for further treatment of the spill area too, such as calculation of spill speed and volume. It has
the characteristics of low cost and good timeliness.

The experimental results show that the proposed algorithm can be applied to the alarm operation
with less strict requirements for the oil spill position.

However, when the IoU is greater than 0.7, the limitations of the pre-detection part of the algorithm
leads to a decline in the proposed algorithm’s accuracy. Therefore, further optimization is needed in
the detection applications with higher requirements for location and area.
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Abbreviations

The following abbreviations are used in this manuscript:

HSV Hue, Saturation, Value STC spatiotemporal context

CNN  convolutional neural networks  VOC visual object classes

COCO  common objects in context SSD single shot multibox detector

YOLO  you only look once T2FMOG  type-2 fuzzy mixture of Gaussian model

MF membership function FOU footprint of uncertainty

RGB red, green, blue ROV remote operated vehicle

P-R precision-recall AP average precision

IoU intersection over union AUC area under curve
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