
 

J. Mar. Sci. Eng. 2020, 8, 863; doi:10.3390/jmse8110863 www.mdpi.com/journal/jmse 

Article 

Sediment Deposition Following Construction of a 
Breakwater Harbor: Point Judith Harbor of Refuge, 
Rhode Island, USA 
Bryan A. Oakley 1,*, Cody J. Murphy 1, Kym K. Lee 1, Robert J. Hollis 2, Brian Caccioppoli 3 and 
John W. King 3 

1 Department of Environmental Earth Science, Eastern Connecticut State University, Willimantic, CT 06226, 
USA; murphycod@my.easternct.edu (C.J.M.); leeky@my.easternct.edu (K.K.L.) 

2 Rhode Island Geological Survey, Kingston, RI 02881, USA; rhollis@appliedcoastal.com 
3 Graduate school of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA; 

bcaccioppoli@uri.edu (B.C.); jwking@uri.edu (J.W.K.) 
* Correspondence: OakleyB@easternct.edu; Tel.: +1-860-465-0418 

Received: 9 October 2020; Accepted: 27 October 2020; Published: 31 October 2020 

Abstract: Breakwaters are a common shoreline protection structure, often trapping sediment as the 
incoming wave energy is reduced. Quantifying the dynamics and volume of these sediment sinks 
within a coastal system is an important step toward understanding the sediment budget for a 
particular coastal area. This study examines the volume of sediment deposited within the 
breakwater enclosed Point Judith Harbor of Refuge (Rhode Island, United States of America (USA)) 
in the late 19th century using seismic reflection profiles, bathymetric mapping, and isotopic analysis 
of core sediment. Geophysical profiles show a district seismic facies up to 4 m thick above the 
ravinement surface, particularly in the western and central portion of the harbor. Century-scale 
bathymetric changes revealed shoaling of a similar magnitude, and isotopic data support the 
deposition of this sediment package within the 20th century. The total volume of sediment within 
the harbor exceeds 5.0 × 106 m3, with an estimated sand volume of 3.6 × 106 m3. The results show that 
the harbor is a substantial sediment sink for the Rhode Island South Shore and provide the basis for 
future studies of the sediment budget for this shoreline. 
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1. Introduction 

The use of armoring to protect coastal properties from storm impact, erosion, and sea-level rise 
has increased markedly since 1900 [1]. Recent estimates are that 14% of the continual United States 
(US) shoreline has been armored, and that number could double by 2100 [1]. Shoreline protection 
structures alter the physical characteristics of a shoreline, affect sediment transport pathways, and 
can negatively impact the fronting beach and adjacent shorelines, both physically and ecologically 
[2–6]. Understanding the natural and anthropogenically influenced coastal sediment transport rates 
and pathways is a critical part of managing the shoreline behavior in a time of rising sea level [7] and 
the potential for increased storminess [8,9]. Breakwaters, either detached or shore-connected, are 
common shoreline protection structures, designed to reduce wave energy, providing a safe harbor 
and some protection of the shorelines and vessels behind the breakwater [2]. Sediment deposition 
behind these structures is expected as the incoming wave energy is reduced [10], and the volume of 
newly deposited sediment provides an estimate of the rate and direction of sediment transport, which 
is key to assessing the sediment budget in coastal systems. Sediment budgets remain one of the most 
useful concepts in coastal research and science-based coastal management [10] and can be used to 
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quantify the volume of sediment sources, sinks, and alongshore and cross-shore transport pathways 
for a given coastal segment [11]. Sediment budgets are typically based on the volume(s) of sediment 
that are the most well constrained within a system, and unknown or lesser known values can be 
approximated [12]. 

The Rhode Island South Shore (RISS) (Figure 1) has been described as “sediment-starved”, with 
an estimated berm volume based on beach profiles of 1 × 106 m3 [13] and less than 4 × 106 m3 of modern 
(Holocene) sediment in the uppermost shoreface [14] along the entire 33 km shoreline. To date, no 
sediment budget exists for the RISS, and the rates and relative magnitude of the various sediment 
transport pathways remain poorly constrained. The RISS was included in a conceptual regional 
sediment budget [15], which depicted the general sediment budget as “stable” (i.e., neither erosional 
nor accretionary), although the authors reported low confidence in the results along the RISS on the 
basis of limited available data. The aim of this paper is to describe a significant sediment sink for the 
RISS identified within the Point Judith Harbor of Refuge (HoR), a jetty/breakwater-enclosed harbor, 
using high-resolution seismic reflection profiling, sediment coring, and historic bathymetric surveys 
(Figure 1). The hypothesis tested is that sediment accumulating above the transgressive ravinement 
surface unconformity [16] began immediately following the construction of the breakwaters. 
Quantifying total sediment deposition within the HoR represents an important step toward 
completing a sediment budget for the RISS, as well as understanding the influences of attached and 
detached breakwaters on sediment transport and deposition along a sediment-starved coastline. 

2. Study Area 

The HoR is located near the eastern end of the RISS (Figure 1), a 33 km long, microtidal (great 
diurnal range 1.03 m [17]), mixed-energy, wave-dominated coastline [18,19]. Fitzgerald and van 
Heteren [20] classified the RISS as a wave-dominated mainland-segmented barrier system, with 
headlands composed of glacial stratified deposits composed of sand and gravel, with till (diamict) 
separating barrier spits. The HoR consists of three breakwaters, with the western structure also 
functioning as a jetty for the Point Judith Pond inlet (Figure 1). Two entrances to the harbor are 
located between the eastern breakwater and central breakwater (known locally as the “East Gap”) 
and between the western breakwater and central breakwater (“West Gap”). Construction of the 
breakwaters began in 1891. The central (main) breakwater was completed in 1898; the eastern and 
western breakwaters were completed in 1906 and 1914, respectively [21–23]. The enclosed harbor has 
a maximum depth of 10 m below mean lower low water (MLLW) [24]. The harbor has gone through 
various repairs and alterations over the past 60 years, and, while the structures have increased in 
elevation and width, they have not been lengthened [23]. Construction of the harbor was designed to 
provide a refuge for shipping traffic, to enable search and rescue operations, and to act as a 
commercial harbor and protection for the adjacent shoreline [23,25]. 
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Figure 1. (A) Locus map of southern New England showing the location of the study area. (B) 
Location of the Point Judith Harbor of Refuge (HoR) relative to the rest of the Rhode Island South 
Shore. (C) 2014 orthophotograph of the HoR. White lines are the extent of 2016 and 2017 seismic 
reflection profiles. Yellow lines show the location of the seismic reflection profiles seen in Figures 4–
7. Dashed red line shows the approximate boundary between the Sand Hill Cove Barrier and Point 
Judith Headland. Green circles show the location of sediment cores discussed in the text. Note the 
sand accumulations within Point Judith Pond and Potters Pond which represent flood-tidal delta 
deposition. 

The shoreline within the HoR is a mixture of barrier and headland. The 1.6 km Sand Hill Cove 
barrier spit comprises the western portion of the HoR shoreline. The Point Judith headland forms the 
eastern end of the HoR (Figure 1) and is a combination of moraine deposits (a mixture of till and 
stratified deposits) and glacial stratified sand and gravel [26–28]. The tidal inlet within the HoR 
connects Block Island Sound to two coastal lagoons, Point Judith Pond and Potters Pond (called salt 
ponds in local terminology) (Figure 1). Long-term, nearshore wave observations here are limited; 
however, between July 2010 and July 2011, wave observations were recorded at a station 3 km west 
of the HoR (water depth 9.5 m) [29]. Over that period, significant wave heights ranged from 0–2.8 m, 
and wave heights were less than 1 m 83% of the time. Waves approached from the south-southeast 
(SSE) or south-southwest (SSW) 88% of the observed period [29]. Wave period ranged from 5–11 s 
[29]. These results are similar to the hindcast waves for the RISS, which report a mean significant 
wave height of 1 m, with an average period of 8 s [30]. Wave height observations at two stations in 
10 m of water depth during Tropical Storm Irene (2011) yielded significant wave heights elsewhere 
within Block Island Sound of 4.1 m (Hmax > 6 m), with a peak period of 10 s [29]. This is similar to 
modeled wave heights for the RISS, with heights of >7 m for a 10 year return period storm and >8 m 
for 100 year return period [30]. A lack of direct wave observations within the HoR limits 
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quantification of wave conditions or the reduction of incident wave energy within the harbor. 
Modeling studies show >50 % reduction in wave height relative to open ocean conditions, with higher 
wave energy entering the harbor through the eastern entrance [25]. Modeled wave heights during 
storms within the HoR were as high as 3.5 m near the east entrance and generally decreased toward 
the west [23]. Limited tidal current observations have been published for the HoR. Boothroyd et al. 
[31] reported strong flood asymmetry for tidal currents measured within the inlet channel to Point 
Judith Pond. Predictions of currents at the eastern entrance show a slight ebb dominance, with peak 
velocities >0.8 m·s−1 [32]. 

Vertical aerial photographs and digital orthophotographs were used to construct 1:2000 scale 
historic maps depicting shoreline change from 1939 to 2014 [33]. However, these maps postdate the 
construction of the breakwaters, but they show a period of shoreline progradation along the Sand 
Hill Cove Barrier between 1939 and 1963, with shoreline retreat up to 26 m between 1963 and 2014. 
Shoreline retreat in the eastern, headland portion of the HoR has been more systematic, with general 
recession since 1939 of 10–30 m. The exception is the area adjacent to the inside of the eastern 
breakwater, where the shoreline has prograded 50–90 m [33]. Some small segments of the shoreline 
show net accretion (1939–2014) of up to 10 m near the groin field at the east end of the Sand Hill Cove 
barrier. The US Geological Survey (USGS) shoreline change analysis [34] reported net accretion 
between 1970 and 2000 (mean +0.24 m·year−1); however. this included Light Detection and Ranging 
(LiDAR) derived positions (AD 2000) substantially seaward of other mapped shorelines. The USGS 
report also included a shoreline from an 1872 T-sheet survey, which suggests that the western half of 
the HoR has experienced ~30 m of progradation between 1872 and 2014 with minor (<10 m) retreat 
in the eastern portion of the HoR. 

Previous work using oblique aerial photographs, single-beam echosounder-derived 
bathymetry, and vibracores suggests that Point Judith Pond is a sediment sink, with 1.1 × 104 m3·year−1 
of sediment deposited within the flood-tidal delta complex [31]. Approximately 4 × 105 m3 of sediment 
has been dredged from the main channel and tidal delta complex within Point Judith Pond since 1950 
(Michael Walsh, U.S. Army Corps of Engineers, Concord (Massachusetts), USA; pers. comm.). Recent 
studies focused on the condition of the breakwater’s noted deposition at the apex of the central 
breakwater (visible in Figure 1), which they attributed to sediment transport via wave transmission 
through and over the top of the structure [25]. Mapping using side-scan sonar and sediment grab 
samples showed that the surface geology within the northwestern portion of the HoR is dominated 
by sand, with cobble to boulder gravel offshore of the Point Judith Headland in the northeastern HoR 
(Figure 2) [14,35]. Surface sediment samples from the inlet channel and adjacent tidal deltas consist 
of >90% sand [36]. 
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Figure 2. Simplified benthic geologic habitats of the upper shoreface within the HoR. Extent of the 
units was interpreted from side-scan sonar imagery collected in 2015. See Oakley et al. [14] for 
detailed descriptions of the shoreface units. 

3. Materials and Methods 

High-resolution geophysical profiles, bathymetry mapping, and sediment cores were used to 
assess and quantify the Point Judith HoR sediment budget following construction of the three main 
breakwaters. The thickness and volume of post-construction sediment interpreted from seismic 
profiles were compared to changes in bathymetry from historic hydrographic data. Sedimentation 
rates were calculated using lead-210 isotopes. 

3.1. Sub-Bottom Data and Analysis 

Subsurface interpretations are based on 28 km of sub-bottom seismic reflection profiles (Figure 
1) collected in 2016, using an EdgeTech (Wareham, MA, USA), SB-216S Full-Spectrum sub-bottom 
profiler (frequency sweep 10 kHz). Towfish height was maintained at 1 m below the water surface, 
towed at < 6.5 km·s−1. Spatial location was embedded into sub-bottom files using the serial output of 
a Trimble DSM-132 GPS with a reported accuracy of ±1 m. An additional 6 km of profiles were 
collected in 2017 using a Teledyne Benthos (North Falmouth, MA, USA) CHIRP III sub-bottom 
profiler (2–7 kHz frequency sweep) powered by a Teledyne Benthos DSP-664 transceiver. The 
assumed vertical resolution the seismic reflection methods was <15 cm. Profiles were post-processed 
using Chesapeake Technologies (Mountain View, CA, USA) Sonar Wiz v.6. Processing of seismic 
profiles was used to adjust for differences in gain and contrast prior to interpretation, and some 
profiles required a swell filter to remove motion imparted by waves. Depth to reflectors was 
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calculated using an acoustic velocity of 1500 m·s−1. Sonar records were not tide-corrected, which has 
no effect on the relative measurement (thickness of the sediment between digitized reflectors). 

3.2. Sub-Bottom Seismic Reflection Interpretation 

Sediment thickness was determined by manually digitizing the seafloor and underlying 
reflectors using using Chesapeake Technologies (Mountain View, CA, USA) SonarWiz Software v. 6 
and was calculated as the difference in relative elevation between the two surfaces. An isopach grid 
was interpolated using the natural neighbor algorithm within the ESRI (Redlands, CA, USA) ArcGIS 
v. 10.3 Spatial Analyst. The pixel size for the resulting grids was set at 5 m, similar to the reported 
accuracy of the Differential Global Positioning System (DGPS) utilized for the sub-bottom profiles 
(1–3 m). The resulting grid was then clipped using the mapped extent of the seismic reflection 
profiles. Volume calculations were performed using the Functional Surface tool within the three-
dimensional (3D) Analyst extension of ESRI ArcMap v. 10.3. Uncertainty estimates are based on the 
areal extent of the interpolation multiplied by an uncertainty factor. The vertical uncertainty factor of 
0.25 m is based on the estimated digitization error (0.1 m) and the minimum resolution of the sub-
bottom profiles (0.15 m) [37,38]. This value likely represents a conservative error estimate. 

3.3. Bathymetric Data and Analysis 

Historic hydrographic soundings, surveyed in 1904 [21] and 1913 [22] using lead lines were 
digitized and compared to digital soundings (n = 6274) from a 2009 NOAA bathymetric survey [39]. 
Uncertainty of the bathymetric data was not assessed; however, the 2009 survey would have a 
maximum uncertainty of 1.3% of the water depth (0.13 m for 10 m water depth) [40]. Uncertainty of 
the lead line surveys, particularly the positional accuracy, is difficult to assess. The vertical 
measurement of a lead line survey is likely within 0.07 m, with a total uncertainty (encompassing 
water level corrections and interpolation) closer to 0.5 m [41,42]. The two hydrographic sheets were 
georeferenced in ESRI (Redlands, CA, USA) ArcMap using 2014 U.S. Geological Survey Digital 
Orthophotos [43]. Resulting horizontal uncertainties, expressed as the root mean square of the error, 
was less than 15 m for both the 1904 and 1913 maps. Soundings from the lead line surveys were 
manually digitized as points (1904: n = 2304; 1913: n = 2171). The reported values were corrected for 
the difference in elevation between the datum used in 1904/1913 surveys (mean low water) and the 
2009 survey datum (mean lower low water (MLLW)) as reported for the Newport, RI tide gauge (25 
km northeast of the HoR; +0.11 m). Tidal range and data along the RISS are comparable to the 
Newport Tide gauge [44]. Depths were also corrected for sea level rise (2.72 mm·year−1), using the 
measured (1929–2017) rate of rise at the Newport Tide Gauge [45]. These adjustments increase the 
1904 soundings by 0.39 m and the 1913 soundings by 0.37 m. The preferred approach would be to 
find the historical benchmarks and resurvey them to determine the elevation relative to a modern 
datum [46,47]; however, the benchmarks installed during the 1904 and 1913 surveys could not be 
relocated. Given the relatively low tidal range (great diurnal range 1.03 m (3.85 ft) [17], the method 
used here provides a good first approximation of the vertical offsets. However, the total vertical 
uncertainty cannot be calculated for the adjusted soundings. Continuous surfaces were interpolated 
from the digitized soundings using the natural neighbor algorithm. The pixel size for the resulting 
grids was set at 5 m. Subtracting the historic surfaces from the 2009 surface using the ESRI ArcMap 
raster calculator produced continuous surfaces representing the change in elevation between 
surveys. The volume of eroded (negative values) and deposited (positive values) sediment was 
calculated using the Functional Surface tool within the 3D Analyst extension of ESRI ArcMap v. 10.3. 

3.4. Sediment Coring 

Sediment cores were collected using a Rossfelder (Poway, CA, USA) P-3 Vibro-Percussive 
system, accommodating 7.6 cm diameter, 3 m long steel core barrels with plastic core liners. The 
location, water depth, time, and measurements of cable tension were documented during coring at 
each station. The core barrel assembly was removed from the vibracore head following recovery, and 
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the core liner was extruded from the barrel. The recovered sediment length was measured, and the 
core was packaged for storage. For isotope analysis of sedimentation rates, two additional cores were 
recovered using a 10.2 cm polycarbonate piston corer, which maintains the sediment–water interface 
allowing for more accurate downcore measurements. All cores were kept refrigerated and 
subsequently imaged on a GEOTEK multisensory track data core logging system. Grainsize was 
measured using a Malvern Panalytical (Westborough, MA, USA) Mastersizer 2000 laser diffraction 
particle size analyzer, which measures 101 grainsize bins between 0.01 µm and 1000 µm (1 mm). 
Grainsize analysis was conducted on samples at 5 cm intervals downcore. The piston cores were 
subsampled every 5 cm (0 between 60 cm) and at 10 cm intervals from 60 cm to the base of cores and 
analyzed for nuclides of 210Pb and 137Cs. The second half of the core was archived in refrigerated 
storage. 

3.5. Isotope Analysis 

Sedimentation rates were obtained by analyzing core samples for 210Pb and 137Cs radioisotopes 
using gamma spectroscopy. Dried and homogenized samples were packed in Petri dishes and sealed 
with electrical tape and paraffin wax 30 days prior to analysis to allow for equilibration between 226Ra 
and its daughter isotopes, 214Pb and 214Bi (supported 210Pb). Total 210Pb (46.5 keV photopeak) and 137Cs 
(662 keV photopeak) activity was measured for all samples along each core using a Canberra GL 2020 
low-energy germanium detector at the Virginia Institute of Marine Science Geochronology Lab. Total 
210Pb counts were corrected for detector efficiency and self-attenuation using the point-source method 
[48]. Concentrations of excess 210Pb used to obtain age models were determined as the difference 
between total and supported 210Pb. 137Cs is a bomb-produced radionuclide used to verify 
accumulation rates determined by 210Pb geochronology. Peak 137Cs activity is assumed to be 1963. The 
constant flux-constant sedimentation (CFCS) model [49] was used to calculate sedimentation rates 
over the past ~100 years for both cores. The constant rate of supply (CRS) model [49,50] was applied 
to core HoR-3B to calculate age of individual samples down core; due to sampling errors where bulk 
density could not be accurately determined, this model was not applied to core HoR-1B. 

4. Results 

4.1. Sub-Bottom Seismic Reflection Profiles 

Sub-bottom profiles collected within the HoR (Figure 1) showed a distinct seismic facies 
configuration, with a continuous, underlying regional seismic reflector, overlain by largely 
acoustically transparent sediment from 0 to > 4 m thick. The underlying reflector is relatively flat with 
a seaward slope, although hummocks and swales interpreted as boulder to cobble gravel topographic 
highs occur in places. The tops of the hummocks are overlain by a thin layer of acoustically 
transparent sediment. Figures 3–6 are seismic reflection profiles showing the thickness and 
distribution of sediment above the ravinement surface. Figure 7 shows the interpolated post-
construction sediment thickness. Sediment deposited above this surface is confined to the western 
and central portions of the HoR and is between 1 and 2 m thick (Figure 7). Sediment thickness exceeds 
2 m across 18% of the mapped area, and the thickest deposits exceed 4 m at the broad ridge adjacent 
to the inlet into Point Judith Pond (Figure 4), as well as near the center of the HoR. 
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Figure 3. Shore perpendicular seismic reflection profile from the northwest corner of the HoR 
extending from the upper shoreface south toward the center of the harbor, showing the seismic unit 
overlying the ravinement surface. See Figure 1 for the location of the survey line. Vertical exaggeration 
is 10× for both profiles; differences in the horizontal scale are due to slight differences in vessel speed 
during the survey. 

 
Figure 4. Seismic reflection profile from the northwest corner of the HoR running roughly west to 
east across a portion of the ebb-tidal delta. Red lines show the location of core HoR-5-1. See Figure 1 
for the location of the survey line. Vertical exaggeration is 10×. 
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Figure 5. West to east trending seismic reflection profile from the center of the HoR extending across 
the (now buried) topographic high showing the seismic unit overlying the ravinement surface. Note 
the presence of cobbles/small boulders visible at the surface and possible buried boulders. See Figure 
1 for the location of the survey line. Vertical exaggeration is 10×. 

 

Figure 6. North-northeast to south-southwest trending seismic reflection profile showing the seismic 
unit overlying the ravinement surface. The seismic profile was collected near the apex of the central 
breakwater. Red lines show the location and depth of sediment cores HoR-1B and HoR-3B. Note that 
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cores HoR-1-1 and HoR-3-4 were collected in similar locations to HoR-1B and HoR 3-B, respectively. 
See Figure 1 for the location of the survey line. Vertical exaggeration is 10×; differences in the 
horizontal scale are due to slight differences in vessel speed during the survey. 

Sediment thinner than 1 m covers 26% of the mapped area, largely in the northern and 
northeastern portions of the HoR, as well as near the western and eastern entrances to the harbor. 
Other areas with limited sediment deposition are on the shoal extending SSE from the inlet, as well 
as adjacent to the eastern and western entrances of the harbor (Figure 7). Seismic penetration in the 
northeastern portion of the HoR was limited by the outcropping gravel pavement, interpreted as an 
erosional surface following Holocene transgression of coarse-grained glacial deposits. The proximity 
to the eastern entrance, which is open to southeast storm waves, indicates that this area is 
nondepositional. Gas-attenuated reflectors were mapped in the southern portion of the HoR (Figure 
6) above a reflector approximately 2 m below the seafloor. The source of this gas (typically methane) 
is likely either recent (Holocene) accumulation and decay of organic sediment or the decay of buried 
organic rich deposits (i.e., freshwater or salt marsh deposits) [51–53]. Cores HoR-1B and HoR-1, 
collected near these reflectors did not penetrate deep enough to intersect the gas-attenuated reflectors 
(Figure 6), and both the source of the gas and the characteristics of the seismic reflector remain 
unclear. 

 

Figure 7. Interpolated sediment thickness within the HoR from seismic reflection profiles. The eastern 
portion of the HoR and shoreface showed no resolvable sediment above the ravinement surface. 
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4.2. Bathymetric Surfaces 

Comparison of the surfaces interpolated from the historic bathymetry shows a general pattern 
of shoaling within the HoR since 1904. Figure 8A–C show the three interpolated surfaces, displayed 
using the same color ramp. The increase in lighter blue and decrease in purple shades between 
1904/1913 and 2009 represents a decrease in water depths over time. The 25 m rectangular feature in 
the southeast corner of the 2009 survey is a shipwreck [54]. The deepest portion of the HoR is the 
southeast corner of the survey area and was reported as 11 m below MLLW in 1904 and 10.7 m in 
1913 (depths adjusted for sea level rise and tidal datums). The same area in 2009 was >2 m shallower. 
The arithmetic difference between the 2009 bathymetry and 1904 (Figure 8D) and 1913 (Figure 9E) 
surveys reveals a similar pattern of shoaling as the seismic profiles (Figure 8F). The total volume of 
sediment deposited between 1904 and 2009 was 2.8 × 106 m3. Compared to 2.2 × 106 m3 between 1913 
and 2009 (Table 1). Annualized rates of deposition based on bathymetric changes are similar at 2.7 × 
104 m3·year−1 (1904–2009) and 2.3 × 104 m3·year−1 (1913–2009) (Table 1). Comparisons between the 
historic and 2009 bathymetric surveys suggest that there has been net erosion on the uppermost 
shoreface following the construction of the breakwaters (Figure 8D,E). The net volume lost was 3.2 × 
105 m3 between 1904 and 2009, with a similar value (3.4 × 105 m3) between 1913 and 2009. 

 

Figure 8. (A). Bathymetry in 1904 (m below 2009 mean lower low water (MLLW)) (B). Bathymetry in 
1913 (m below 2009 MLLW) (C). Bathymetry in 2009 (m MLLW). Note that all three panels (A–C) are 
displayed using the same color ramp, and the shoaling is apparent by the decrease in purple (deeper 
areas) in 2009 and erosion of the upper shoreface shown by the darker blues in the same period (D). 
Difference in elevation between 1904 and 2009 bathymetric surfaces (E). Difference in elevation 
between 1913 and 2009 bathymetric surfaces (F). Sediment thickness interpreted from sub-bottom 
profiles. 
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Table 1. Total sediment volume and annualized deposition rate (over 125 years) for the seismic 
profiles and bathymetric comparisons. 

Method Time Period Total Volume (m3) of 
HoR 

Annualized Deposition Rate 
(m3·year−1) 

Seismic Survey 1891–2016 3.1 × 106 2.5 × 104 
Bathymetric Changes 1904–2009 2.9 × 106 2.8 × 104 
Bathymetric Changes 1913–2009 2.2 × 106 2.3 × 104 

4.3. Sediment Coring 

Eleven attempts were made to collect vibracores at five locations within the HoR in May 2018. 
Minimal penetration was achieved and/or no recovery occurred at four locations; five recovered cores 
were <0.6 m. Two vibracores exceeded 1 m. The results of the coring attempts are summarized in 
Table 2. Three vibracores (HoR 1-1, HoR 3-4, and HoR 5-1) were selected for grainsize analysis. Two 
additional cores collected using the polycarbonate piston corer in November 2019 were recovered in 
the same general locations (HoR-1B (recovered length 1.15 m) and HoR-3B (recovered length 1.2 m)) 
for isotopic analysis of 210Pb and 137Cs. The positions of HoR-1B and HoR-3B are shown in Figure 1; 
HoR-1-1 and HOR3-4 were collected within 100 m of these locations and are not shown. Sediment 
texture results of the five cores are shown below. Cores HoR-1, HoR-1B, HoR-3, and HoR-3B 
demonstrate a general coarsening upward over the upper 0.25 m, ranging from sandy silt to silty 
sand on the basis of the Shepard [55] classification system (Figure 9). A surface sediment sample 
collected 125 m west of core HoR-1B by the US Geological Survey (Sample NBIS70, [56]) (77% sand, 
22% silt and 1% clay) is nearly identical to the surface sample of HoR-1B (79% sand, 19% silt, 1.5% 
clay). The four cores collected in the central basin of the HoR averaged 50% sand (predominately fine 
to very fine sand), although this varied downcore from 25% to 79% sand. Core HoR-5-1, taken on the 
shoreface within the northern parts of the HoR, was largely sand. The inlet channel and adjacent ebb-
tidal delta is composed of >90% sand [36]. 

Table 2. Summary of core attempts. Core type is abbreviated; VC = vibracore; P = piston core 
Estimated sediment thickness from seismic reflection profiles. 

Core Core 
Type Latitude Longitude Water 

Depth (m) 
Core 

Length (m) 
Interpolated 

Thickness (m) 
HoR 5-1 VC 41.36955 −71.50963 5.2 0.5 1.8 
HoR 5-2 VC 41.36955 −71.50963 5.2 0.5 1.8 
HoR 4-1 VC 41.36752 −71.50090 5.0 0.0 1.3 
HoR 4-2 VC 41.36752 −71.50090 5.0 0.0 1.3 
HoR 4-3 VC 41.36745 −71.50090 5.5 0.1 1.3 
HoR 2-1 VC 41.36407 −71.50153 6.7 0.6 1.4 
HoR 1-1 VC 41.36095 −71.50460 7.6 1.8 2.5 
HoR 3-1 VC 41.35615 −71.50785 5.8 0.0 0.9 
HoR 3-2 VC 41.35615 −71.50785 5.8 0.3 0.9 
HoR 3-3 VC 41.35620 −71.50785 6.4 0.6 1.0 
HoR 3-4 VC 41.35620 −71.50737 6.4 1.4 1.5 
HoR 1B P 41.36095 −71.50460 7.7 1.2 2.4 
HoR 3B P 41.35620 −71.50740 5.8 1.1 1.4 
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Figure 9. Grainsize measured for cores HoR-1, HoR-1B, HoR-3, HoR-3B and HoR-5. Full textural data 
is available in the supplemental materials. 

4.4. Lead 210 Isotope Analysis 

The CFCS 210Pb model was applied to the measured concentrations in cores HoR-1B and HoR 
3B. Concentrations of excess 210Pb ranged between 25 and 40 Bq·kg−1, except the base of HoR-1B, 
which decreased to 12.5 Bq·kg−1 at 1.2 m (Figure 10). Average accretion rates were calculated as the 
slope of a best-fit linear regression line of the natural log of excess 210Pb [49]. The resulting best-fit 
lines showed relatively poor fits (HoR-1B, 2.3 cm·year−1, R2 = 0.25; HoR-3B, 0.78 cm·year−1, R2 = 0.02). 
The poor fit of these lines suggests that the accretion rate varied downcore and makes any age-depth 
model suspect; however, applying these values places the base of the cores at AD 1967 (HoR-1B) and 
1878 (HoR-3B). The 137CS results are not robust for both cores, given the relatively low concentrations 
of 137Cs (<  Bq·kg−1); however, assuming a small spike in 137Cs at a depth of 0.4 m in HoR-3B represents 
the peak of atmospheric testing in AD 1963, the sedimentation rate would be ~0.7 cm·year−1, similar 
to the calculated sedimentation rate. A second peak in 137Cs at 0.9 m complicates this interpretation 
and could place the accretion rate as high as 1.6 cm·year−1. There is no discernable peak in the 137Cs 
measurements observed in HoR-1B. The CRS Accretion Model was applied to HoR 3-B, placing the 
age at the base of the core at 1917, with an average sedimentation rate 0.57 cm·year−1 (accretion rate 
ranged from 1.10 to 0.06 cm·year−1) similar to the CFCS rate of 0.78 cm·year−1 (Figure 11). 
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Figure 10. Constant flux-constant sedimentation (CFCS) model showing (A) excess 210Pb and (B) total 
137Cs (Bq·kg−1) for core HoR-1B, as well as (C) excess 210Pb and (D) total 137Cs (Bq·kg−1) for core HoR-
3B. See core location in Figure 1. The full results of the analysis are available in Table S6 
(Supplementary Materials). 
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Figure 11. Sediment age dates (solid line) and accumulation rate (dashed line) calculated using the 
constant rate of supply (CRS) model. See Figure 1 for the location of the core. The full results of the 
analysis are available in Table S7 (Supplementary Materials). 

4.5. Total Volume of Post-Construction Sediment 

The volume of deposited sediment and the annualized rates are similar between estimates from 
both the seismic and the historic bathymetric data, and, given the uncertainties in the various methods, 
the slight differences are likely not substantial. Taken together, the total deposition within the center of 
the HoR is > 3 × 106 m3 (Table 1). Outside of the seismic survey area, sediment deposition at the apex of 
the center wall (visible in orthophotographs (Figure 1)) [25] is estimated to be 4 × 105 m3 (average 
thickness of 7 m according to the historic bathymetric surveys). An estimated 1 × 105 m3 of sediment has 
also accumulated inside the eastern breakwater and is visible in aerial photographs (Figure 1). Within 
the HoR, the ebb-tidal delta contains an estimated 7.5 × 105 m3 of sediment (Figure 12). The flood-tidal 
delta represents an additional 1.4 × 106 m3 according to the annualized rates of deposition [31]. Taken 
together, these estimates suggest a total sediment volume within the HoR and adjacent Point Judith 
Pond to be 5.0 × 106 m3. Sediment cores and sediment grab samples ranged from 30% to >90% sand 
within the central basin. The ebb-tidal delta, as well as the sediment at the apex of the central breakwater 
and inside the east breakwater, is assumed to be >90% sand. Table 3 summarizes the total sediment 
volume and estimated sand volume for the deposition sinks within the HoR. The total sand volume 
reported here (3.6 × 106 m3; annualized rate of deposition 2.9 × 104 m3·year−1) is likely a conservative 
estimate. 
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Table 3. Total volume, percentage sand, and estimated sand volume of the depositional sinks within 
the HoR (* grainsize ranges from 30% to >80% sand; 50% likely represents a conservative estimate). 

Depositional 
Sink 

Total Volume 
(m3) 

Percent 
Sand 

Sand Volume 
(m3) 

Source 

Central basin 2.3 × 106 * 50% 1.2 × 106 Seismic/bathymetry 
Ebb-tidal delta 7.5 × 105 >90% 6.8 × 105 Seismic/bathymetry 

Flood-tidal delta 1.4 × 106 >90% 1.3 × 106 Boothroyd et al., 1985 
Eastern 

breakwater 1.0 × 105 >90% 0.9 × 105 
Estimated from 

bathymetry 

Center axis 4.0 × 105 >90% 3.6× 105 
Estimated from 

bathymetry 
Total Volume 5.0 × 106  3.6 × 106  

Annualized Rate 4 × 104 m3·year−1  2.9 × 104 
m3·year−1 

 

5. Discussion 

Deposition within a breakwater harbor is fairly common, due to reduced incident wave energy 
and interruption of longshore sediment transport [57]. The onset of sediment deposition was likely 
coincident with the emplacement of the structures, as rapid infilling is common when there is an 
adequate sediment supply [2,57–64]. The volume of sediment here is noteworthy, however, given the 
sediment starved nature of the RISS ([13,14]. Sediment sinks are confined to three main areas within 
the HoR, the central basin, flood-tidal delta, and ebb-tidal delta. Smaller deposits were also identified 
inside the eastern breakwater and at the apex of the central breakwater. Table 3 summarizes the total 
sediment volume within these sinks. Deposition in the center of the HoR occurs to the east of the 
roughly north to south trending bathymetric high seen in the 1904 and 1913 surveys (Figure 8). The 
relatively complicated pattern of deposition shown in Figures 3-6 suggests that, rather than a simple 
basin fill model, deposition occurred on top of and around a complex shoreface topography. Given 
the glacial inheritance of the region, a heterogeneous shoreface is expected [14], with cobble to 
boulder gravel occurring throughout the study area. Figures 5 and 8A,B show a good example of 
cobble to boulder gravel topographic highs on the shoreface. The hummocky topography of the 
ravinement surface has been largely buried, particularly in the western and central portion of the 
HoR. Whereas the antecedent topography controls the properties of the shoreface [65–67], it appears 
that the deposition of sediment following breakwater construction has covered and buried some of 
the original shoreface topography. Elsewhere along the RISS, the upper shoreface offshore of the 
barriers and headlands is dominated by the shoreface depositional platform, a deposit of sand >2 m 
thick overlying the ravinement surface, extending offshore to a water depth of 7–8 m [14]. The upper 
shoreface seaward of the depositional platform is a mixture of cobble-gravel pavement and coarse 
sand, mapped as a thin reworked layer over the underlying glacial deposits [14]. Whereas ebb-tidal 
deltas are absent along the open coast of the RISS, as is typical for sediment starved, microtidal, wave-
dominated coastlines [18], the accumulation of sediment adjacent to the inlet into Point Judith Pond 
represents the terminal lobe/channel margin linear bar of a complicated ebb-tidal delta complex [68], 
which has formed within the HoR due to reduced wave energy. This landform accounts for 25% of 
the total volume deposited (7.5 × 105 m3); according to sediment samples, the ebb-tidal delta is 
composed of >90% sand (>6.8 × 105 m3). 

The erosion of the uppermost shoreface within the HoR over the last century of >3.0 × 105 m3 
(Figure 8D,E) is supported by the apparent lack of sediment accumulation on the uppermost 
shoreface in seismic records (Figure 3) and the prevalence of cobble gravel cropping out from the 
underlying glacial deposits (Figure 1), as observed in side-scan sonar records, aerial imagery, and 
sediment grab samples. This shoreface erosion and the subsequent redistribution of sediment within 
the HoR accounts for 2% of the sediment deposited within the entirety of the HoR system, suggesting 
that much of the sediment originated from outside the harbor. Some of the eroded shoreface sediment 
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was likely transported eastward via longshore transport to the inside of the eastern jetty (Figure 12), 
where 1.0 × 105 m3 of sediment has accumulated. Transport along the eastern breakwater and out of 
the HoR remains uncertain, but the boulder/cobble shoreline east of the HoR suggests that this 
process is likely not a significant transport pathway for sand. Deposition of sediment within the apex 
of the central breakwater [25] is another sink of approximately 4.0 × 105 m3 of sediment. 

 
Figure 12. Semi-conceptual sediment budget for the Point Judith Harbor of Refuge. Total deposition 
between 1891 and 2016 and inferred minimum longshore sediment transport from the adjacent RISS. 
Flood-tidal delta deposition [31]. The wave transmission/overtopping deposition at the apex of the 
center wall is based on [25]. Other possible pathways are discussed in the text. 

Given the likely underestimation at locations, including accumulation within the beaches/dunes 
and transport from Point Judith Pond into the connected coastal lagoon (Potters Pond), the total 
deposition within the HoR and adjacent coastal lagoon exceeds 5.0 × 106 m3 over the previous 125 
years (annualized rate 3.9 × 104 m3·year−1). The deposition of >5.0 × 106 m3 represents a significant and 
previously unquantified sediment sink for this system. The annualized rates of deposition of sand-
sized sediment within the HoR (2.9 × 104 m3·year−1) is roughly double the reported sum of annual 
deposition (1.5 × 104 m3·year−1) within the other three coastal lagoons along the Rhode Island South 
Shore with jettied inlets [31]. The likely source for the bulk of the sand-sized sediment deposition 
within the HoR is longshore sediment transport from the adjacent RISS, entering the HoR via the 
western entrance (Figure 1). Different rates and directions of longshore sediment transport have been 
reported along the RISS [69], whereby both Boothroyd [31] and Fisher [70] suggested a net easterly 
sediment transport. McMaster [71] suggested a more complicated pattern of transport along the RISS, 
with net transport toward the east into the HoR from the adjacent barrier and headland only. Oakley 
et al. [14] reported the thickest shoreface deposits on the western side of headlands and adjacent to 
the western breakwater of the HoR, as well as along other points along the RISS, which also supports 
net easterly longshore sediment transport along the RISS. The volume of sediment deposited within 
the harbor over the past 125 years is >4-fold larger than the berm volume for the entire 33 km RISS 
[13] and is approximately equal to the berm volume combined with the upper shoreface deposits 
along the entire RISS [14]. This high value suggests that sediment is likely contributed from the entire 
RISS, although further work is needed to examine the overall sediment budget of the RISS, 
particularly the contribution of sediment from dune/headland erosion and shoreface erosion/incision 
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into underlying glacial deposits. The total longshore sediment flux along the RISS has not been 
quantified, but estimate rates have ranged from 5 × 103–3 × 104 m3·year−1 [72,73]. The annualized rates 
of deposition of sand-sized sediment within the HoR reported here suggest that these may represent 
an underestimation, and further work is needed to better quantify these values. 

The source of the finer-grained (silt and clay) sediment is likely a combination of erosion of the 
glacial headlands (composed of a mixture of till (diamict) and stratified glacial fluvial deposits 
capped by the eolian mantle composed of silt and very fine sand [26–28] coupled with primary 
production of organic material and macroalgae and phytoplankton [74]. Shoreface incision into 
underlying glacial lakefloor deposits and coastal lagoon deposits uncovered during transgression 
cannot be ruled out as additional sources of sediment. The inlet channel, portions of the ebb-tidal 
delta and flood-tidal delta are dredged periodically to maintain navigation to the port of Galilee 
within Point Judith Pond. This sediment, which is composed of >90% sand, is placed on the shoreface 
5 km west of the HoR [75]. While the central basin of the HoR contains abundant sediment, it exceeds 
the typical 10% maximum “fines” for beach replenishment borrow sites [2]. Sediment sources 
containing >10% silt and clay have increased costs, as well as environmental concerns, as more 
turbidity is created at the source and during placement [2]. While not currently suitable for beach 
replenishment, as competition for available sand resources increases, alternative sources may become 
viable for future projects [2]. More detailed coring studies in the future may show some areas within 
the HoR may meet the 10% maximum for fine-grained sediment, particularly closer to the shoreface 
and ebb-tidal delta. Prior to construction of the breakwaters, sediment likely bypassed Point Judith. 
McMaster [71] suggested that longshore transport to the north from Point Judith was responsible for 
the deposition of sandy sediment along the east facing shoreline between Narragansett Bay and Point 
Judith, and some of this sediment was likely transported from the RISS. The volume of sediment 
transported today from the HoR, out through the eastern entrance and around Point Judith, today 
remains unclear. The predicted currents within the inlet show some ebb-asymmetry, whereas the 
cobble to boulder gravel adjacent to the entrance and the preponderance of gravel along the shoreline 
east of the HoR suggest that this process is not a significant sediment transport pathway for sand. 

The accretion rates estimated from radiometric nuclides (0.57 to >2 cm·year−1) are consistent with 
the measured thickness of the sediment above the ravinement surface in seismic reflection profiles. 
The average thickness (1.5 m) annualized over 125 years yields a rate of 1.2 cm·year−1. Seismic profiles 
near HoR-3B suggest a maximum sediment thickness of 1.4 m, suggesting that the cores reached near 
the ravinement surface at HoR-3B. This matches the interpreted age of the core base (1917) (Figure 
11) and supports the hypothesis that sedimentation began shortly after breakwater construction. 
Seismic profiles near core HoR-1B suggest the ravinement surface is 2.4 m below the seafloor; 
however, only 1.2 m of sediment was recovered in the piston core (1.8 was recovered using a 
vibracore, but isotopes were not analyzed). According to the seismic survey, the sediment thickness 
of 2.4 m equates to an annualized accretion rate of 1.9 cm·year−1, which is comparable to estimated 
rate based on isotopic analysis (2.3 cm·year−1). The CFCS accretion rate at HoR-1B places the age of 
the core base at AD 1966, with an estimated age of AD 1915 for sediment 2.4 m below the seafloor. It 
remains unclear if the increased accretion rate in HOR-3B (Figure 11) is related to dredging of the 
inlet channel in the second half of the 20th century. Taken together, the results of the isotopic analysis 
support the hypothesis that the sediment within the HoR above the mapped ravinement surface was 
deposited after the construction of the breakwaters 

The total post-construction volume of sediment here is consistent with deposition in other 
breakwater harbors, although the volume of sediment deposited varies with the size of the harbor 
and availability of sediment. The Channel Island Harbor breakwater traps approximately 1 × 106 
m3·year−1, most of the calculated annual longshore transport volume [76]. Similarly, Santa Barbra 
Harbor, California, which is 10% of the size of the HoR, is dredged annually with an average volume 
of 2.6 × 105 m3·year−1; however, the sediment input to that coastal system (>2.8 × 106 m3·year−1) [77] is 
greater than the berm volume for the entire RISS [13], suggesting that it is a comparatively sediment-
rich coastal system. Other harbors along the California have smaller sediment inputs. Dana Point, 
California, a small (0.75 km2) breakwater harbor, has an average sediment input of 4–5 × 103 m3·year−1 
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[78], ~10% the volume deposited in the HoR. The total sediment budget here is lower, however, with 
a total input of 27,000 m3·year−1 over the entire 13 mile coastal segment [77]. Studies conducted on 
Breakwater Harbor, located landward of Cape Henlopen Spit, Delaware, reported shoaling rates of 
0.6 to 5.7 cm·year−1, predominately composed of finer-grained (silt- and clay-sized) sediment [79–81]. 
These values are similar to, albeit slightly higher than, the rates measured here (1–>3 cm·year−1). Pozm 
Port, Iran, a partially enclosed harbor on the Gulf of Oman, showed a similar volume of deposition 
to the HoR (43,000 m3·year−1) [64]. Point Sapin, New Brunswick, Canada, a small breakwater enclosed 
harbor (0.04 km2), requires dredging of up to 3 × 104 m3·year−1, similar to the estimated deposition 
within the HoR; however, the actual volume accumulating is likely higher [73,74]. The variation 
within these harbors is likely related to a variety of factors, but an underlying factor in all is the 
availability of sediment within the coastal system entering the harbor via longshore transport, where 
harbors located along shorelines with high rates of sediment supply annual deposition up to an order 
of magnitude larger than the HoR. 

While the discussions herein are largely empirical, several inferences on sediment transport 
within the HoR can be discussed. A conceptual sediment budget shown in Figure 12 outlines inferred 
volumes of sediment deposited since construction of the breakwaters, as well as the potential 
transport pathways. The distribution of sediment within the western and central portion of the HoR, 
coupled with previous estimates of longshore sediment transport for the RISS, indicates that most of 
the sediment entering the HoR comes in via the western entrance, transported from the adjacent RISS. 
Once inside the breakwaters, a combination of waves, wave-induced currents, and tidal currents 
disperse the sediment. Waves, likely from the southwest (fair-weather wind direction) transport 
sediment into the center of the harbor, over and ultimately in the lee of the north to south trending 
shoal visible in the historic bathymetric surveys (Figure 8A,B). Confluence of sediment transport 
pathways from both the western and the eastern entrances could also help to focus sediment into a 
thicker deposit near the center of the HoR. Sediment transport via tidal currents from the HoR into 
the adjacent lagoon is apparent from both the growth of flood-tidal deltas [31] and the need to dredge 
the inlet channel and portions of the ebb-tidal delta to maintain navigation. Wave transmission and 
overtopping could represent a possible process to deposit sediment within the apex of the central 
breakwater [25]; however, the source of the sediment here remains unclear. Several possibilities exist. 
For example, the sediment could be transported onshore from the adjacent shoreface [82] and then 
through/over the central breakwater. Alternatively, sediment could be transported from the adjacent 
RISS, along the western breakwater, bypassing the entrance and moving along the outside of the 
breakwater before being transported through/over the central breakwater. Conversely, rather than 
being transported from the south, this deposit could represent sediment transported along the inside 
of the breakwater as waves diffract and deposited at the apex of the V-shaped breakwater at the 
confluence of northwest and northeast wind waves. 

The breakwaters limit the fetch within the harbor and produce a complicated longshore 
sediment transport pattern. Sediment accumulating in the far-eastern end of the harbor suggests that 
some longshore transport is toward the east driven by prevailing southwest winds during fair-
weather conditions. The likely source of sediment is erosion of the shoreline and uppermost shoreface 
of the Sand Hill Cove Barrier, as the Point Judith headland is mostly composed of diamict with 
abundant boulders. The groin field in the center of the HoR shows no clear pattern of deposition, 
with slight accretion on both the east and west sides [33,34], suggesting that transport here may be 
bimodal. Bimodal transport can be supported, as the largest waves entering the east and west 
entrances converge on this area, anecdotally observed as a popular surf break during storms. Storm 
waves from the southeast entering the HoR via the eastern entrance likely drive transport toward the 
west along the Sand Hill Cove Barrier, supported by the deposition of sediment against the jetty at 
the eastern side of the inlet, the net accretion between 1939 and 1963, and the relatively low rates of 
erosion since 1963 [33]. Comparing the modern and historic bathymetric surfaces suggests that the 
upper shoreface within the HoR has deepened by >2 m in some areas (Figure 8C,D). Where this 
sediment was transported (alongshore toward the east, into the adjacent inlet or offshore into the 
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center of the HoR during storms) remains unclear and likely represents a combination of 
morphodynamic factors. 

The erosion of the shoreface over the past century and the lack of sediment deposition on the 
uppermost shoreface are likely the result of asymmetric cross-shore sediment transport; storm waves 
entering the harbor can induce both alongshore and offshore sediment transport. The subsequent 
fair-weather waves are fetch limited by the western and central breakwaters, limiting the onshore 
transport of sand reported on open coastlines [82,83]. The calculated return depth, where sediment 
could be returned to the shoreline during a period of fair weather, for the open coast of the RISS, is 
12 m [84]. The return depth is different than the depth of closure, which was calculated using hindcast 
wind data along the RISS and varies from 7 to 9 m depending on the calculation methods [85–87]. 
The reduction of wave energy during both storm and fair-weather conditions would substantially 
decrease the return depth within the harbor, thereby altering the depositional processes. Similar 
observations have been made for the Connecticut Long Island Sound shoreline, where Long Island, 
New York limits fair-weather wave energy [88]. Future work, both observational and modeling, are 
needed to quantify these empirical sediment transport pathways. 

6. Conclusions 

An integrated database of seismic reflection profiles, historic bathymetric data, and sediment 
cores demonstrates that the Point Judith Harbor of Refuge, a breakwater enclosed harbor along the 
Rhode Island South Shore, is a sediment sink with a total sediment volume of 5 × 106 m3 deposited 
above the ravinement surface within the harbor. A comparison of historic and modern bathymetry 
supports the interpretation that sediment deposition above the ravinement surface within the HoR 
occurred following the construction of the harbor, which began in 1891. Sediment within the harbor 
ranges from >90% sand in the inlet channels and tidal deltas to silty sand (average 50% sand) in the 
center of the harbor. Sediment composition within the central basin of the HoR (30–70% sand) likely 
limits this deposit as a potential borrow source for beach replenishment. Isotopic 210Pb analysis on 
two sediment cores supports the post-construction interpreted formation of the sediment, with 
vertical accretion rates similar to those estimated from the seismic and bathymetric data. According 
to seismic reflection profiles, the uppermost shoreface here shows little sediment accumulation on 
the seismic profiles unlike much of the rest of the RISS. The historic bathymetry shows that the 
shoreface has eroded over the last 125 years; however, the volume of sediment here is less than 2% 
of the that deposited within the system, suggesting that the source of much of the sediment is from 
outside of the HoR. The lack of sediment on the shoreface is likely due to the asymmetric forcing 
during and following storms. Storm waves can enter the harbor via the eastern entrance and induce 
offshore sediment transport, whereas the fair-weather waves, predominantly from the southwest, are 
fetch-limited, reducing onshore sediment transport. The predominant source of sand deposited in 
the harbor is likely longshore sediment transport from the adjacent RISS, supported by a net easterly 
longshore transport direction along the RISS, and it suggests that the HoR is a substantial sediment 
sink and an important component of the RISS sediment budget. 
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