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Abstract: It is expected that the prototypes of unmanned merchant ships will be deployed in the next
few years. However, there is no specific research on whether the introduction of unmanned ships
will reduce the risk of ship collision accidents in which communication between vessels is critical.
This work constitutes an attempt to bridge the gap identified above by applying the Hybrid Causal
Logic (HCL) methodology to model general-level collision scenarios of unmanned ships. The HCL
methodology has been selected for its proven applicability to risk assessments, even when empirical
data may be insufficient. Collision scenarios involving unmanned ships have been created in which
manned ships of the conventional collision scenario HCL model are replaced with unmanned ships.
Then, collision scenarios capturing the interactions between a manned ship and an unmanned ship
were modeled. By comparing the qualitative and quantitative results of the different scenarios,
we can see that the introduction of unmanned ships may effectively reduce the occurrence of ship
collision accidents.

Keywords: maritime management; unmanned ship; ship collision accidents; hybrid causal
logic methodology

1. Introduction

Benefiting from the development of technology and the testing experience of unmanned surface
vehicles, the deployment of unmanned cargo ships, which can travel across the oceans autonomously,
has been boosted by the rising pressure of maritime safety, crew costs rising, and environmental
protection. It is expected that the first unmanned cargo ship will be commercially available by 2035 [1,2].
Subsequently, waterway transport will enter a new era, in which both conventional ships and unmanned
ships will be sailing on the same water simultaneously. In this paper, such scenarios are called hybrid
scenarios, or more specifically, the Manned–Unmanned (M-U) scenario and Unmanned–Manned (U-M)
scenario. The same naming convention of scenarios is used for Manned–Manned (M-M) scenarios and
Unmanned–Unmanned (U-U) scenarios. The hybrid scenarios will remain relevant for quite a long
period until the conventional ships are totally replaced. However, there is no convincing evidence
that maritime safety will be increased by gradually adopting unmanned ships [3,4]. This worry is
not without reason, especially when it comes down to scenarios involving critical events, such as
ship encounter situations with collision risk, which need all the involved ships to communicate and
accompany each other.
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Research and development (R&D) activities have been initiated in recent years around the world for
the development of unmanned cargo ships [5,6]. In general, there are at least three modes of operation
for an unmanned cargo ship that can adapt to hazardous conditions: fully manned, remote-controlled,
and fully autonomous. According to Lloyd’s Register scale, the unmanned cargo ship with autonomy
level 5 (AL5) [7] should be able to travel across oceans autonomously or rarely supervised, performing
real-time navigation risk identification, navigational states assessment, and instant decision-making at
the total ship level. Besides, the ship should be able to switch to remote control via maritime satellite
whenever a shore-based operator deems it necessary, such as in challenging emergency conditions in
which the ship cannot recover by itself [8]. For example, the research team of the Maritime Unmanned
Navigation through Intelligence in Networks (MUNIN) project [3,9], one of the unmanned bulk carriers
development projects, have attempted to suggest a risk-based design method based on Formal Safety
Assessment (FSA) [10]. However, FSA also has some problems, such as insufficient consideration
of human-related factors, over reliance on expert judgment and over-generalization of methods [11].
The authors use different risk analysis methods to study the safety of unmanned ship [12,13], and draw
conclusions that the unmanned ships tend to be safer than the traditional ships, despite acknowledging
that necessary information about the ship’s design and operation is still missing. Our analysis intends
to qualitatively and quantitatively evaluate the safety improvement. Moreover, the potential hazards
studied in this research are mostly human-related, although the analysis of subsequent events following
accidents is expected to be important for unmanned ships given that they do not have a physical
onboard crew. Wróbel et al. [12,14] studied this problem by using a what-if analysis framework
and data from one hundred maritime accident reports. Their research is divided into two parts:
the potential impact on the occurrence and consequences of maritime accidents, and the probability
of occurrence of such events. Due to the limited available information and lack of objective accident
data [15], the research is only qualitative and summary. Nevertheless, the author’s expectation is a
decrease in the probability of occurrence, while the consequences of maritime accidents involving
unmanned ships are expected to be much larger compared to the conventional ones.

From the very limited literature in the area of unmanned waterway transport, one of the main
challenges of unmanned ships is the need for analyses of their safety [16]. The main argument in
favor of the research into unmanned ships is the increase in maritime safety. This is expected to be
accomplished by eliminating or reducing the accidents involving the onboard crew by merely reducing
the crew size. However, instead of migrating and disappearing entirely, the crew may work in a
remote shore-based command center [17]. In turn, this configuration may create some new problems,
such as situations in which the damage cannot be counteracted in a timely way by crews mobilized to
reach the scene of the accident [12]. Among the different kinds of maritime accidents, it is generally
considered that the probability of the occurrence of ship collision accidents will benefit the most from
the deployment of unmanned ships [18]. In practice, to identify and maneuver a ship on a collision
course with another ship is a complex task [19,20]. Although the commonly used navigation equipment,
such as maritime radar/Automatic Radar Plotting Aid (ARPA) and Automatic Identification System
(AIS), play a significant role in navigation, they still have various problems in practical use. Due to the
huge inertia and typical under-actuation of most cargo ships, communication and cooperation are
always needed during the whole process [21,22]. Within most autonomous decision-making algorithms
designed for unmanned ships [23], collision avoidance is just a part of path planning, constructed with
dynamic obstacles avoidance, traffic regulations (e.g., Convention on the International Regulations for
Preventing Collisions at Sea (COLREGs), formulated by IMO, 1972) and motion constraint obedience.
In most projects, communication with the target ship is not designed as an essential part of the collision
avoidance process for unmanned ships, particularly in the hybrid scenario. Considering that the
hybrid scenario will be the status quo until all the manned ships are replaced, it is necessary to evaluate
the potential impact of unmanned vessels on ship collision accidents.

Based on the previous work of the risk assessment of two conventional ships collision accidents [24],
this article aims to generalize the HCL model of the future ship collision avoidance scenario with
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unmanned ships on the basis of the HCL model of the conventional scenario established in the previous
study. Firstly, ship collision scenarios have a high degree of consistency of event sequence at the logical
level. For example, collision avoidance decisions must be made after risk detection and confirmation.
From this point, encountered ships with different levels of automation can be seen as ships with
different decision-making methods and maneuver preferences. Secondly, the HCL methodology
allows analysists to study different generation processes of the same event in similar scenarios, such as
decision failure, which can be caused by human error or software failure. Finally, the quantitative
analysis can be carried out on the basis of the HCL model to some extent.

The remainder of the paper is organized as follows: Section 2 gives a short introduction of the
previous study of the HCL model of the M-M scenario. In Section 3, the HCL model of the U-U scenario
is constructed by some assumptions of the application of unmanned ships. In Section 4, the HCL
model of hybrid scenarios is built based on the models of the M-M scenario and the U-U scenario.
The results of the risk assessment of ship collision accident scenarios for the various types of vessels
are shown in Section 5. Finally, some discussions and conclusions are given in Section 6.

2. Overview of the HCL Model for Ship Collision Risk Analyses of the M-M Scenario

In the previous paper, the ship collision accident of the conventional scenario was modeled based
on 50 ship collision accident investigation reports.

The initiating event (IE) of the event sequence diagram (ESD) occurs when the distance to the
closest point of approach (DCPA) is less than a predefined minimum safe distance. The ESD in
Figure 1 illustrates the following pivotal event (PE) sequences caused by the initiating event, which is
a graphical representation for all the possible accident scenarios. The events and related details are
listed in Table 1. The whole ESD can be divided into three main parts: the collision risk identification
and confirmation, the own ship’s (OS’s) decision-making and communication with the target ship (TS),
and OS’s response action under different conditions. There are eleven end states following the various
response actions and systems performance.

There are three main logic paths in the ESD after the collision risk identification (PE 3):

(1) The scenarios with successful communication with TS—This will lead to a collaborative effort
between both sides for avoiding a collision (PE 4\5\6\7, End 1\2\3);

(2) The scenarios with failed communication with TS—This will lead to a unilateral effort of collision
avoidance (PE 4\5\8\9, End 4\5\6);

(3) The scenarios under emergency conditions—Since it is under emergency conditions, both ships
do not have time to communicate with each other and only take recovery measures based on
their assessment alone (PE 4\10\11\12, End 7\8\9\10).

The HCL model of M-M scenario also includes Fault Trees (FTs) and Bayesian Networks (BNs)
associated with PEs in ESD, as well as the assignment of related probability values. Detailed analysis
and the modeling process can be seen in the previous paper.
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Figure 1. ESD of M-M ship collision scenario.

Table 1. Events’ information of M-M scenario’s ESD model.

Node NO. Node Name Description

IE Initiating Event: CPA<n The closest point of approach less than the
minimum safe distance (e.g., 100 m)

PE1 OS Collision Alarm Own Ship (OS) alarm signal for possible collision
PE2 OW Identifies Collision The officer on watch identifies possible collision
PE3 OS Crew Confirmation OS crew confirm possible collision
PE4 OS Response Strategy Decision The crew decides response strategy
PE5 OS Effective Communication with TS OS effective communication with TS

PE6 OS Crew Response Action with Successful TS
Communication

OS crew response action with successful TS
communication

PE7 OS Propulsion and Steering

PE8 OS Crew Response Action with Failed TS
Communication

OS crew response action with failed TS
communication

PE9 OS Propulsion and Steering with Failed TS
Communication

OS Propulsion and steering with failed TS
communication

PE10 OS Response Strategy Decision for
Emergency

The crew decides the response strategy for
emergency

PE11 OS Crew Response Action for Emergency OS crew response action for emergency
PE12 OS Propulsion and Steering for Emergency OS propulsion and steering for emergency
PE13 TS Measures Target ship measures

E1 End State 1 Successful avoidance
E2 End State 2 Ship mechanical failure
E3 End State 3 Crew response action failure

E4 End State 4 Successful avoidance with failure TS
communication

E5 End State 5 Ship mechanical failure with failed TS
communication

E6 End State 6 Crew response action failure with failed TS
communication

E7 End State 7 Successful avoidance for emergency
E8 End State 8 Crew response action failure for emergency
E9 End State 9 Crew response action failure for emergency

E10 End State 10 Crew response decision failure
E11 End State 11 OS and TS all failure for collision

3. HCL Model for Ship Collision Risk Analyses of the U-U Scenario

3.1. The Effect of Unmanned Ships on the Likelihood and Consequences of the Accidents

Based on the HCL model of the M-M scenario in Section 2, the ship collision scenarios will
be analyzed in the following sections. Due to the discussion about how the unmanned ships will
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actually be operated in reference [25,26], the assumption is applied that the unmanned ship will keep
the automatic mode in most of its entire voyage until approaching a certain point outside the port.
Subsequently, the shore-based center operator would take over the control and remotely control the
ship to complete the berthing process. This navigation process is similar to the current pilotage process
in conventional navigation. To take advantage of the unmanned ship’s capabilities and reduce the extra
expenditure, the ship owners are likely to keep the vessel in automatic mode as long as possible. Based
on this assumption, a preliminary ship collision scenario involving unmanned ships can be sketched.

Out of all the global maritime accidents, the ship collision accident constituted as much as 36% of
the total amount [27]. According to the investigation, most of the accidents were navigation-related
human errors [28]. A consensus has been reached that the deployment of unmanned ships could
enable avoiding accidents due to human errors [29]. However, for the type of collision accidents due
to the bridge team’s non-compliance in detecting the target ship or navigational danger, which is
in violation of Rule 5 of COLREGs, “Look-out”, the unmanned ships being equipped with a sensor
and optimizing risk identification and decision algorithms, such as lidar and infrared cameras, can
help eliminate those events [30]. Updating the sensing and cognitive abilities has become of interest
in the recent unmanned ship Research and Development (R&D) projects, and this also meets the
COLREG’s requirement about increasing detection methods to cope with the lack of radar detection
capabilities [31]. Thus, a reduction in the likelihood of collision accidents is to be expected given that
all the new systems perform better than the crew they replace.

However, even if the likelihood of collision accidents can be reduced, it is difficult to draw the
same conclusion about the consequences of such events. In the process of ship collision avoidance
practice, the crews on board played an important role in damage reduction and self-rescue processes
after the accident. For instance, when the damage was significant or the recovery was complicated,
needing the shore parties’ assistance, the survivors had to be picked up by the other encountered ship.
There is no evidence showing that the unmanned ships have the function of picking up survivors,
nor the purpose of cooperating in case of an emergency. Therefore, once the two ships collide in
the hybrid scenario, the crew on the manned ship may be in a more challenging situation than the
traditional scenario (M-M scenario).

It should be noted that the ademption in this paper is only a first try at modeling future ship
collision accidents. By changing the structure of the FT or BN in the existing HCL model and
qualitatively adjusting the probabilities of the risk influencing factors (RIF), we can examine the ship
collision accident in the hybrid and the U-U scenarios with a relatively high degree of resolution.

3.2. Basic Assumptions and Construction of U-U Scenario

Since the hybrid scenario can be seen as a combination of the M-M scenario and U-U scenario,
the HCL model of the ship collision accident for the U-U scenario is presented firstly on the basis of the
M-M scenario model. The unmanned ship analyzed here is set to be at least at the AL-5, the lowest
level of fully autonomous ship according to Lloyd’s Register guidance 2016. In this future scenario,
the advantages of unmanned ships are maximized, and the impact of human factors is minimized
for the vast majority of commercial shipping activities. According to the known unmanned ship
R&D projects, the unmanned ship functions can be simply divided into three main parts: information
gathering through sensors, decision-making, and controlling. Figure 2 illustrates the main differences
between manned ships and unmanned ships in ship collision scenario. To facilitate the application of
HCL methodology, four basic assumptions are proposed, as follows:

(1) The risk perception system of the unmanned ship is a collection of modern sensor technologies.
For instance, the lidar and camera are often used to form the visual system of unmanned ships.
The FT model of OS alarm failure for collision risk is extended. The models of the lidar system
and camera system are appended in it according to the latest sensor application and unmanned
ship development. Due to the uncertainties in the development of machine vision systems, a new
BN is modeled to analyze the impact of external environment factors on sensor performance;
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(2) Currently, there is no industry consensus on the solutions for the communication between
unmanned ships or between manned ships and unmanned ships. In most of the current designs,
unmanned ships are able to perform reliable autonomous collision avoidance maneuvers without
communicating with the target ship. Therefore, it is assumed that there is no communication
between the unmanned ship and other encountered ships in a ship collision scenario in the
proposed model. The probability of the communication-related PE (PE 5\6\7 in Figure 1) is set to
a small value (i.e., 1 × 10−6), which naturally does not happen;

(3) The decision-making system is a software-only system, including the communication function
between OS and the shore-based center. All PEs related to decision-making in ESD
(PE 2\4\5\6\8\10\11 in Figure 1) are part of the decision system of the unmanned ship, and the
probability of these events is the probability of the software reliability of the unmanned ships.
The ESD’s PEs in which unmanned ships perform decision-making activities are converted from
BNs representing human factors to BNs representing software reliability. All the structure and
values of the software reliability are modeled according to the software industry practices;

(4) In fact, it is speculated that in the process of unmanned ship navigation, the most concerning risks
have changed from these “soft” factors to “hard” factors such as the reliability of sensors and
mechanical systems. The hardware configuration of unmanned ships has not yet reached maturity
in the industry, thus most of the currently unmanned ship R&D project designs look like the
traditional ships equipped with sensors and digital control equipment. Therefore, in this paper,
the same FT structure and parameters of propulsion and steering are adapted for mechanical
failure events (PE 7\9\12) of both manned and unmanned ships.

Figure 2. Main differences between a manned ship and unmanned ship in ship collision scenario.

Based on these assumptions, the ESD of the HCL model for the M-M scenario (Figure 1) can be
developed into Figure 3. The PE 1 OS alarm is linked with an extended FT (shown in Figure 4) that
includes the lidar and cameras, the most important hardware sensor system for unmanned ships.
As the sensors of the enhanced vision system are influenced by the uncertainties of the environment,
the basic events OSLidarSensor and OSCamera of the FT are linked to a new BN that is shown in
Figure 5. The PE 7\9\12 and their linked FTs remain the same as in the M-M scenario according to
assumptions (2) and (3). In U-U scenario, the PE 2 (OW Identifies Collision), PE 4 (OS Response Strategy
Decision), PE8 (OS Crew Response Action with Failed TS Communication), PE 10 (OS Response
Strategy Decision for Emergency) and PE 11 (OS Crew Response Action for Emergency) are linked with
the reliability of the software system instead of the human-related BNs in M-M scenario. Given the
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lack of the reference for the intelligent software system’s reliability assessment, an attempt is made in
Section 3.4 and a BN model of software reliability is made based on the analysis. Finally, the probability
of PE 13 Target Ship’s Measures is determined in the same way as in the M-M scenario.

Figure 3. ESD of U-U ship collision scenario.

Figure 4. FT of own-ship alarm failure for collision risk of unmanned ships.
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Figure 5. BN of sensor effectiveness linked with the basic events of FT alarm failure.

3.3. Fault Trees Model of U-U Scenario

The hardware factors related to PE 1 (OS Collision Alarm) of the ESD are extendedly modeled by
performing a functional decomposition of the risk detection system of unmanned ships. According to
the previous assumption, the FT model of alarm failure for unmanned ships is shown in Figure 4.

The failure events of ARPA failure and AIS failure are the same with the FT model of the
manned ship. The lidar failure and machine vision failure are both composed of hardware failure,
software algorithm failure and an AND gate. In practice, the uncertain environmental factors are one
of the important factors that affect the performances of environment perception sensors, such as lidar
and camera. To further determined the impact, sensor effectiveness is modeled with BN, which is
shown in Figure 5.

3.4. Bayes Networks Model of U-U Scenario

In the HCL methodology, the BN method is applied to quantitatively analyze the performance
influencing factor (PIF) for PEs with uncertainty factors. For each PE that requires BN modeling
analysis, the established BN model consists of one PE node and several PIF nodes. The PE node is the
analysis object, and the result of BN analysis is directly transmitted to ESD for calculating the probability
of the end state. The PIF nodes are the factors that affect the analysis object in the performance of ship
collision avoidance, including environmental factors, operator state factors, safety culture factors, and
so on. The interaction between these factors and PE is very complex and involves much uncertainty.
It is not possible and appropriative to use FT to model and analyze, while BN modeling is suitable
in this situation. For example, the software-related failure events, such as the reliability of the input
information and the decision complex, are among the most important contributors to a collision
accident. These two concepts, together with other concepts that affect software system reliability,
are analyzed and modeled later in detail in this section.

3.4.1. Bayes Network of Sensor Effective

Figure 5 illustrates the BN structure of sensor effectiveness, which is linked with the basic events
Lidar Sensor Failure and Camera Failure of the FT model in Figure 4. Only factors that affect the PE
node are analyzed in this BN, and the standard of the level setting of the BN’s nodes are based on the
degrees of impact. The descriptions, level labels and conditional probabilistic table (CPT) of the BN
model of sensor effectiveness are listed in Table 2. Lidar and camera are representative sensors for
unmanned ships to perceive the external environment. On the one hand, this kind of sensor needs to
keep sensitivity to the external environment. On the other hand, it needs to overcome the uncertainties
in the external environment. Therefore, the reliability of a sensor’s performance is affected by different
uncertain environment factors. For the lidar and camera, wind, wave and visibility are important
factors affecting sensor performance. Among them, wind and wave will interfere with lidar’s target
and obstacle recognition. Poor visibility conditions, such as rain, snow, fog and haze, will affect the
signal collection of sensors. Similarly, the camera is also influenced by these two factors. It should be
noted that the impact of illumination on the effectiveness of the sensor system is obviously less than
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that on the conventional manned ship. However, based on the research of the previous literature on
the impact of daylight on the sensor performance of the camera [32] and lidar [33], the illumination
condition is still an important factor.

Table 2. Descriptions, level labels and CPT of the BN model of sensor effectiveness.

Node Name Description Level Name Probability

Sensor Effective
Effective 0.66354

Ineffective 0.33646

visibility visibility condition Good 0.738
Bad 0.262

Daylight illumination condition
Daytime 0.4

Dawn and Dusk 0.2
Night 0.4

weather rain, fog, haze
Fine 0.7

Rainy 0.2
Fog Haze 0.1

wave followed by wind
0–3 m 0.7
3–10 m 0.2
>10 m 0.1

wind according to Beaufort
Wind Scale

Level 0–5 0.7
Level 6–9 0.2

Level 10–12 0.1

3.4.2. Bayes Network of Software Reliability

According to the current development information for unmanned ships, the decision-making
of unmanned ship also follows the same cognitive model as that of conventional ships, that is,
risk situation awareness, collision avoidance decision-making and control signal sending. Figure 6
illustrates the composition and structure of a typical unmanned ship’s intelligent software system [34].
The function module design, information processing and conversion of the system can be regarded
as the digital presentation of the human decision-making process. In the ship collision scenario, all
the functions are mobilized to deal with the collision risk. According to the research on the PIFs of
the human reliability model based on the human cognitive process [35,36], the PIFs of the unmanned
ship’s software can be obtained by analogy. The PIF of the unmanned ship’s software system is divided
into internal the PIF group and external PIF group, which are used to represent the influence of the
internal and external state of the intelligent decision-making system on its decision-making process.
The contents are listed in Table 3.

It can be seen from Figure 6 that the performance of the unmanned ship’s software system is
restricted by various internal and external factors. External PIFs refer to various impact factors outside
the software system. Data reliability, environmental factors of navigation, and hardware factors will
all restrict the software system’s perception of the outside world, affect the ship’s hydrodynamic
performance, and finally effect the decision-making and control systems. Conditioning events and
hidden faults are inevitable, especially in sailing. Even though the software system should have a
response plan for the unpredictable hazards, unexpected or unknown disruptions are still one of the
most important factors causing navigation risks and accidents [18].
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Figure 6. The composition and structure of a typical unmanned ship’s software system [34].

In contrast to external PIF, internal PIF is a direct factor that affects the running state of the
software system. Some of these factors are due to defects in the software design and development
stage, and some are due to the complexity of the current situation, which exceeds the capacity of the
software system. The problems caused by software design defects are long-term and will affect the
entire life cycle of unmanned ships. The problems caused by the current situation are short-term and
will only have an impact in the current task. In this paper, the former type of internal PIFs is called
knowledge base factors, and the latter type is called working memory. Both concepts are borrowed
from cognition-based human reliability assessment methods [35]. In the software system reliability
analysis of unmanned ships, knowledge base factors are divided into four categories, namely, intelligent
decision algorithm, parameter system, intelligent level of software and input information of memory.
The analysis of working memory is more complicated. First of all, working memory is divided into
three parts: cognitive modes and tendencies, pressure load and perception and assessment according
to different aspects of influence. Then, each part is divided into several basic elements. A detailed
description of the PIF is given in Table 3.

Figure 7 illustrates the interaction among various PIFs and the influence of logic on the performance
of collision avoidance behavior at the cognitive and decision-making level of unmanned ships.
In Figure 7, external PIFs can affect the reliability of the software system only by activating internal
PIFs. The internal PIFs have a direct impact on the performance reliability of the intelligent system
under the joint action of external PIFs and input information. The internal PIF is mainly divided into
knowledge base and working memory. Knowledge base is predetermined storage information that
needs to be collected in decision-making process. Working memory contains a variety of dynamic
factors, together with real-time input information, affecting the current running state of the software.
Internal PIFs can affect decision performance in many aspects, including the timing of decision-making,
the efficiency of algorithm execution, the collaborative processing ability of different functions between
systems, and the collaboration between software and hardware systems.
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Table 3. Descriptions of the PIFs of an unmanned ship’s software system.

PIF Group PIF Classify Content and Description

External PIF Data Reliability The reliability of incoming data from sensor system, which may cause packet loss, incomplete data and
information lag.

Environment Factor
Environmental factors will affect the hydrodynamic characteristics of ships and affect the calculation difficulty
of the decision-making and control system. The uncertainty of environmental factors will directly affect the
accuracy of risk situation awareness.

Hardware Factor
The reliability of the sensor system will affect the situation awareness ability of the software system.
The reliability of the power and steering system affects the response to the decision of the software system, and
then affects the execution efficiency of the software control function.

Conditioning Events and Hidden Faults Conditioning events and hidden faults are inevitable, and the software system should have a response plan.

Internal PIF

Knowledge Base Predetermined storage information that needs to be collected in the decision-making process.

Intelligent Decision Algorithm It refers to the specific decision-making mode of the system. It is the basis of intelligent decision-making, which
directly affects the cognition and processing of the current scenario.

Parameter System It is matched with decision algorithm. Different parameter systems should be used in different situations and
different decision-making links, so as to ensure the optimal allocation of computing resources.

Intelligent Level of Software Refers to the overall functional level of the system. The higher the level of intelligence, the more complex
scenarios it can deal with.

Input Information of Memory The uncertainty of input information will affect the decision accuracy of the intelligent system to a great extent.

Working Memory All kinds of dynamic factors which can affect the current operation of the software.

Cognitive Modes and tendencies Refers to the cognitive style and processing tendency of ships in the current navigation situation.

Alertness
The ship’s alertness represents the basic cognition of the current encounter scenario. If it is not alert enough or
too vigilant, it will lead to cognitive imbalance of the scenario and make inappropriate decisions. In an
emergency, the system needs to set alertness to the highest level and put the current task at the highest priority.

Attention to Current Task
The decision-making system needs to deal with multiple tasks at the same time, and the attention to the current
task affects the decision priority of the ship for the current encounter scenario. In an emergency, the system
needs to set the attention to the current task to the highest priority, and give the current task the highest priority.

Attention to Surrounding Environment
Attention to the surrounding environment affects the priority given by the ship to dealing with the
environmental factors of the current encounter scenario. In harsh environment, it is necessary to use a more
complex control system mode.

Pressure Load Pressure load affects how well the system performs in the current task.
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Table 3. Cont.

PIF Group PIF Classify Content and Description

Time Constrained Load Collision avoidance decision-making is highly related to the time of taking measures. The more urgent the
situation, the higher the time constraint load, especially in the case of emergency collision avoidance.

Task Related Load The urgency of the collision avoidance situation has great influence on the difficulty of the collision avoidance
decision, and the more urgent the situation, the higher the requirement of the collision avoidance decision.

Information Load The collision avoidance decision needs to consider a lot of internal and external information, but the system’s
ability to use information is limited, and more information will aggravate the information load.

Perception and Assessment Perception and evaluation of current navigation situation.

Perception Threshold Perception threshold is the starting point of situation awareness. Only when the current navigation risk is large
enough can it be triggered.

Decision Complexity Decision complexity has a great influence on the software efficiency of the decision-making and control system,
which will directly affect the effect of collision avoidance.

Sense of Responsibility In the collision avoidance scenario, the responsibilities of the encountered ships are not the same.
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The PIF’s influence on software reliability is also an uncertain process, so a BN is applied to
model and analyze the uncertain influence. The BN model of software reliability is shown in Figure 8.
The detailed description of each node and the classification setting of CPT are listed in Table 4. As the
research on the software reliability of intelligent ships is in the initial stage, the establishment of the BN
model and the selection of the probability value mainly depend on the research reports of unmanned
ship projects and related papers.

The software system is the core of the unmanned ship system, and it plays different roles in different
scenarios. In Section 2, ESD is divided into three main situations, namely normal, communication
failure and emergency response situations. In these three situations, the problems that an unmanned
ship needs to face and the urgency of the problems are different. Therefore, although the BN model’s
structure is the same, the CPT of the BN model is different according to different situations, as is
depicted in Figure 9. Appendix A lists the CPT settings of the BN model of software reliability in this
paper under different situations.

(1) The work of software in the initial stage of ESD belongs to the normal situation. This is because it
is impossible to judge the current situation before determining the risk. Therefore, when dealing
with the work of PE 2/3/4, the CPT of the normal situation is applied in the BN model of
software reliability.

(2) Compared with the normal situation, when the communication fails, the unmanned ship needs
to predict the collision avoidance intention of the target ship more and predict the content of the
decision. Although there are special countermeasures in previous studies [27], this is still not easy.
Therefore, the software system uses a different combination of CPTs from the normal situation
when dealing with PE 8.

(3) The emergency response situation is an urgent situation. In an emergency response situation,
the distance between the encountering ships is relatively short, and the process of decision-making
and control is complicated. The time load of the software system is also at a high level. Therefore,
another set of CPT values is applied in the emergency situation.
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Figure 8. BN of sensor effectiveness linked with the basic events of FT alarm failure.

Figure 9. BN of software reliability linked with PE under different conditions use different CPTs.
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Table 4. Descriptions and level labels of the BN model of sensor effectiveness.

Node Name Description Level Name

Software Reliability The reliability of the intelligent software system Effective\Ineffective
Data Reliability Data reliability of the external PIF Reliable\Unreliable

Environment Environment factors can influence the Good\Medium\Severe
Hardware hardware factor of the external PIF Good\Medium\Poor

Condition& Hidden Faults Conditioning events and hidden faults of external PIF High-risk\Medium-risk\Low-risk

Knowledge Base Internal PIF, for predetermined storage information that
needs to be collected in decision-making Advantage\Disadvantage

Working Memory Internal PIF, for all kinds of dynamic factors Advantage\Disadvantage
IntelAlg Intelligent decision algorithm of knowledge base Suitable\Unsuitable

Parameters System Parameters system of knowledge base Suitable\Unsuitable

Intelligent Level Intelligent level of software of knowledge base Intelligent Level1\Intelligent Level
2\Intelligent Level 3

Historical Input Historical input information of memory of knowledge base Reliable\Unreliable
Cog&Tend Cognitive modes and tendencies of working memory Advantage\Disadvantage

Pressure Load Pressure load of working memory Low\Medium\High
Prece&Assess Perception and assessment of working memory Positive\Negative

Alertness Alertness of the software towards the current situation High Alert\Medium Alert\Low Alert

Att Cur Task Attention to current task High Attention\Medium
Attention\Low Attention

Att Envi Attention to surrounding environment High Attention\Medium
Attention\Low Attention

Time Load Time-constrained load of pressure load Low\Medium\High
Task Load Task-related load of pressure load Low\Medium\High

Information Load Information load of pressure load Low\Medium\High
Perception Threshold Perception threshold towards the current situation Positive\Negative
Decision Complexity Decision complexity towards the current situation Positive\Negative

Sense of Responsibility Sense of responsibility towards the current situation Positive\Negative

4. HCL Model for Ship Collision Risk Analyses of the Hybrid Scenarios

4.1. Differences between U-M Scenario and M-U Scenario

In the future scenario, unmanned ships and manned ships should have significant signs on their
appearance, such as hanging a flag or spraying painted signs marking the intelligent level of the own
ship, AIS, GPS signals, etc. In this way, it is convenient to confirm each other’s identity for the first
time in the encountered situation. In the hybrid scenario, the difference between M-U and U-M is
the position of the unmanned ship and the manned ship. Considering the natural advantages of
the unmanned ship compared with the manned ship in risk discovery, decision-making and ship
maneuvering, unmanned ships should take active measures to avoid collision earlier and more actively.
In this case, the unmanned ship is the main participant of the whole scenario, which is the U-M
scenario. The manned ship only needs to cooperate with the avoidance or take no measures to go
straight like the stand-on ship in the M-M scenario. The M-U scenario is the opposite. Due to various
reasons, the manned ship becomes the main decision-maker and action-taker of the encounter scenario,
while the unmanned ship is in a passive position.

4.2. HCL Model for Hybrid Scenarios

Although the normal operating procedures of unmanned ships have not yet been defined,
the unmanned ships cannot be modeled in the same way as the manned ships due to the lack of an
onboard crew. This difference becomes even more clear in hybrid scenarios. Moreover, the following
points of ship collision accidents can be inferred:

(1) The communication between manned and unmanned ships is no longer effective. Among the
50 accident reports, at least 15 cases mentioned communication problems between involved
ships. Communication problems were the main reasons for the accident in eight cases [24].
This illustrates that even in the current M-M scenario, communication is a non-negligible factor
that causes accidents. In the hybrid scenario, this phenomenon will become even more apparent.
Even if there was a simple way to express and communicate decisions instantaneously between
the two ships in the future, it is expected that this information exchange will be very limited
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compared to the open communication channels between captains available nowadays. Therefore,
in the ESD of the hybrid scenario, communication is set to a very low probability value in the
U-U scenario;

(2) The ship collision avoidance hybrid scenario differs if modeled from the perspective of an
unmanned ship or the perspective of a manned ship. Although the same logical sequence of
events is followed in these two sub-cases, the probabilities of end states will vary depending on the
type of OS. Thus, during the actual modeling process, the hybrid scenario can be subdivided into
two categories depending on whether the OS is a manned ship or an unmanned ship. When the
OS is a manned ship (the M-U scenario), the model can be regarded as a continuation of the
M-M scenario, except that the relevant parameters of the PE 13 (target ship measure) are from
the U-U scenario. When the OS is an unmanned ship (the U-M scenario), the model is built in a
similar way. The ESDs of the hybrid scenarios developed using these two assumptions are given
in Figure 10;

(3) According to Figure 10, all BN models and FT models come from the M-M scenario in the M-U
scenario. In contrast, when building the U-M scenario, all BN models and FT models come from
the U-U scenario. This part follows the same modeling idea as the U-U scenario. In the U-U
scenario, the FT model of the steering system is also directly adopted from the M-M scenario.

Figure 10. The processes of ESD modeling of the hybrid scenarios.

5. Results and Analysis of Risk Analysis of Ship Collision Accident Scenarios

Risk Results of the HCL Model for Unmanned Ships

In the previous research [24], the conventional ship collision scenarios are modeled with the
Trilith software, which is specially developed for HCl analysis. The software is developed with
a cross-platform computational engine, and a cross-compatible command-line tool is applied to
quantitative analysis of the time-dependent HCL model with uncertainty factors. The main functions
of the Trilith software include risk scenario modeling, analysis tools and other applications. Once the
HCL model has been built, the analysis tools can be used to assist analysts to output the minimum cut
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set of each end state in the ESDs, the results of sub-models, and to measure the importance of events or
elements by setting specific situations.

The four main models of ship collision avoidance scenarios have been quantified using Trilith to
obtain all the risk metrics. The probability values of all the end state events of all the scenarios are
listed in Table 5, and the fractions of the three different end-state types (i.e., Collision due to Human
Error, Collision due to Software Failure, Collision due to Mechanical Failure, and Safe) to the sum of all
ends states for each scenario are shown in a bar chart, as shown in Figure 11.

Table 5. Probability values of all end state events of all scenarios.

End State End State Type
Probability of Different Scenario

M-M M-U U-M U-U

E1 Safe 0.1236 1.91 × 10−11 4.97 × 10−11 4.97 × 10−11

E2 Collision due to Mechanical Failure 0.0051 7.88 × 10−13 4.86 × 10−13 4.86 × 10−13

E3 Collision due to Human Error 0.0700 1.08 × 10−11 \ \

E3 Collision due to Software Failure \ \ 1.20 × 10−11 1.20 × 10−11

E4 Safe 0.0713 0.2019 0.4734 0.4734
E5 Collision due to Mechanical Failure 0.0066 0.0188 0.0046 0.0046
E6 Collision due to Human Error 0.0305 0.0864 \ \

E6 Collision due to Software Failure \ \ 0.1442 0.1442
E7 Safe 0.1611 0.1104 0.1703 0.0966
E8 Collision due to Mechanical Failure 0.0230 0.0158 0.0017 0.0009
E9 Collision due to Human Error 0.1277 0.0875 \ \

E9 Collision due to Software Failure \ \ 0.0736 0.0418
E10 Collision due to Human Error 0.3444 0.2359 \ \

E10 Collision due to Software Failure \ \ 0.1052 0.0596
E11 Safe 0.0366 0.2433 0.0269 0.1788

Safe 0.3926 0.5556 0.6707 0.7488
Collision due to Mechanical Failure 0.0349 0.0346 0.0063 0.0056

Collision due to Human Error 0.5725 0.4098 \ \

Collision due to Software Failure \ \ 0.3230 0.2456

Figure 11. Results of different end states of four scenarios.

The following conclusions can be drawn from Figure 11 and Table 5:

(1) The collisions caused by human factors account for 90.93% of the total in the traditional collision
avoidance scenario (M-M scenario). Considering that the industry consensus is that 75–96% of
marine accidents are human factor-related [37,38], this result is reasonable. Compared with the
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M-M scenario, it can be seen that the safe end states of other ship collision avoidance scenarios
have been effectively improved with the introduction of unmanned ships. This phenomenon
is still apparent, even in the hybrid scenarios (M-U and U-M scenario). In the U-U scenario,
the probability of successful and safe collision avoidance increases to more than 70%;

(2) Even if the unmanned ships are independent of each other and do not exchange any information,
their deployment significantly improves the safety of the ship collision avoidance scenarios
compared to traditional ships. This is mainly due to the hardware and software being more
reliable than the crew.

6. Discussion and Conclusions

This paper presents the qualitative and quantitative analysis of collision scenarios of manned
and unmanned ships based on the previous study [24]. By using the HCL methodology to model
different ship collision scenarios, the goal of this research was to assess whether the introduction of
unmanned ships would make a difference in the occurrence rate of ship collision accidents. The scope
of the study is limited to conventional traffic safety hazards—all known (e.g., piracy, terrorism) or
unknown (e.g., hacking, remote hijacking) intentional damage to the vessel is not taken into account.
Based on the above reasons, the analysis of this article is not comprehensive. Moreover, the available
information of the unmanned ships, including normal operation mode and related navigation rules,
are so limited that detailed qualitative and quantitative results are currently impossible. Another issue
that affects the completeness of the results is that the existing reliability analysis methods are designed
for the use of manned ships that do not depend on a lot of software.

It is generally known that the introduction of the unmanned ships will bring about disruptive
changes to the entire shipping industry, and the existing methods for software reliability analysis
will also have to face profound changes. Although different scenarios are analyzed on the base of
the most basic logical similarities and consider the changes involved as comprehensively as possible,
such defects are also unavoidable. Based on this, the results of this study should be rather seen
as a useful attempt to study this issue and an introduction to further discussion, both qualitatively
and quantitatively.

The results supported by the existing literature indicate that a huge challenge will gradually
emerge with the introduction of unmanned ships, especially from the perspective of safety. On the one
hand, damage assessment and control is believed to be one of the greatest difficulties for unmanned
ships—there will be an alarming scenario that humans will no longer be present at the scene of the
accident and mitigate the consequences in the critical moments after the accident. The main reason for
deploying unmanned ships is preventing accidents rather than offsetting their consequences. On the
other hand, the analysis results of this paper show that even if there is no communication between
ships involved in the scenarios, unmanned ships still have the potential to effectively reduce the risk of
ship collision accidents. Qualitative research on other accidents has also reached similar conclusions.

Efficiency and safety are the eternal themes of water transportation. They are among the top
priorities of the maritime industry in terms of safeguarding human life. However, the potential
consequences of maritime disasters can be enormous and multifaceted and, at most of the time, full
of various uncertainties. This requires the on-site emergency crew to adapt to different problems.
On the other hand, emergency management after an accident is crucial in accident rescue, as well as
in reducing the spread of consequences. It is difficult for even experienced staff to take appropriate
actions to offset its range, regardless of the performance of unmanned ships.

Nevertheless, unmanned merchant ships are on the way, despite various social, legal, and
technological concerns. It is necessary to gather more information on the normal operating conditions
of these ships and to obtain a complete picture of the safety of unmanned ships, which in turn requires
the assessment of the accident consequences too. Most importantly, all the anticipated hazards must be
predicted, and their magnitude evaluated. Only in this way can the safety level and hidden danger
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associated with unmanned ships be adequately assessed. The research in this article is just the first
step in this long process.
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Appendix A

Table A1. Conditional probabilistic tables of bayesian network model of software reliability in different situations.

Node Name Description
Conditional Probabilistic Tables

Level Name In Normal
Scenario

Communication
Failure

In Emergency
Case

Software
Reliability

The reliability of the intelligent software system.
Effective 0.8067 0.76819771675 0.7002

Ineffective 0.1933 0.23180228325 0.2998

Data Reliability The reliability of incoming data from sensor system, which may cause packet loss, incomplete data
and information lag.

Reliable 0.85 0.7 0.6

Unreliable 0.15 0.3 0.4

Environment
Environmental factors will affect the hydrodynamic characteristics of ships and affect the calculation
difficulty of the decision-making and control system. The uncertainty of environmental factors will
directly affect the accuracy of risk situation awareness.

Good 0.7 0.6 0.5

Medium 0.2 0.3 0.3

Severe 0.1 0.1 0.2

Hardware
The reliability of the sensor system will affect the situation awareness ability of the software system.
The reliability of the power and steering system affects the response to the decision of the software
system, and then affects the execution efficiency of the software control function.

Good 0.85 0.7 0.5

Medium 0.1 0.2 0.3

Poor 0.05 0.1 0.2

Condition&
Hidden Faults

Conditioning events and hidden faults are inevitable, and the software system should have a
response plan.

High-risk 0.7 0.6 0.6

Medium-risk 0.2 0.3 0.25

Low-risk 0.1 0.1 0.15

Knowledge Base Predetermined storage information that needs to be collected in decision-making process.
Advantage 0.8282 0.7748 0.6504

Disadvantage 0.1718 0.2252 0.3496

Working
Memory

All kinds of dynamic factors which can affect the current operation of software.
Advantage 0.9103 0.8324 0.7014

Disadvantage 0.0897 0.1676 0.2986

IntelAlg
Intelligent decision algorithm of knowledge base. It refers to the specific decision-making mode of
the system. It is the basis of intelligent decision-making, which directly affects the cognition and
processing of the current scenario.

Suitable 0.8 0.8 0.7

Unsuitable 0.2 0.2 0.3

Parameters
System

Parameters system of knowledge base. It is matched with the decision algorithm. Different
parameter systems should be used in different situations and different decision-making links, so as
to ensure the optimal allocation of computing resources.

Suitable 0.88 0.86 0.66

Unsuitable 0.12 0.14 0.34
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Table A1. Cont.

Node Name Description
Conditional Probabilistic Tables

Level Name In Normal
Scenario

Communication
Failure

In Emergency
Case

Intelligent Level Intelligent level of software of knowledge base. Refers to the overall functional level of the system.
The higher the level of intelligence, the better it can deal with more complex scenarios.

Intelligent
Level1 0.88 0.86 0.66

Intelligent Level
2 0.0625 0.075 0.22

Intelligent Level
3 0.0575 0.0645 0.12

Historical Input Historical input information of memory of knowledge base. The uncertainty of input information
will affect the decision accuracy of the intelligent system to a great extent.

Reliable 0.865 0.76 0.61

Unreliable 0.135 0.24 0.39

Cog&Tend Cognitive modes and tendencies of working memory. Refers to the cognitive style and processing
tendency of ships to the current navigation situation.

Advantage 0.9285 0.8928 0.7894

Disadvantage 0.0715 0.1072 0.2106

Pressure Load Pressure load of working memory affects how well the system performs in the current task.

Low 0.9158 0.8532 0.7805

Medium 0.0589 0.0943 0.0909

High 0.0253 0.0525 0.1286

Prece&Assess
Perception and assessment of working memory refers the perception and evaluation of the current
navigation situation.

Positive 0.915 0.83 0.88

Negative 0.085 0.17 0.12

Alertness

Alertness of the software towards the current situation. The ship’s alertness represents the basic
cognition of the current encounter scenario. If it is not alert enough or too vigilant, it will lead to the
cognitive imbalance of the scenario and it will make inappropriate decisions. In an emergency, the
system needs to set alertness to the highest level and put the current task at the highest priority.

High Alert 0.86 0.85 0.69

Medium Alert 0.075 0.08 0.205

Low Alert 0.0645 0.07 0.105

Att Cur Task

Attention to current task. The decision-making system needs to deal with multiple tasks at the same
time, and the attention paid to the current task affects the decision priority of the ship for the current
encounter scenario. In an emergency, the system needs to set the attention to the current task to the
highest priority and give the current task the highest priority.

High Attention 0.86 0.85 0.69

Medium
Attention 0.075 0.08 0.205

Low Attention 0.0645 0.07 0.105

Att Envi
Attention to surrounding environment. Attention to surrounding environment affects the priority of
the ship in terms of dealing with the environmental factors of the current encounter scenario. In a
harsh environment, it is necessary to use a more complex control system mode.

High Attention 0.88 0.85 0.66

Medium
Attention 0.065 0.08 0.22

Low Attention 0.055 0.07 0.12
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Table A1. Cont.

Node Name Description
Conditional Probabilistic Tables

Level Name In Normal
Scenario

Communication
Failure

In Emergency
Case

Time Load
Time-constrained load of pressure load. Collision avoidance decision-making is highly related to the
time of taking measures. The more urgent the situation, the higher the time constraint load,
especially in the case of emergency collision avoidance.

Low 0.8 0.7 0.3

Medium 0.1 0.2 0.5

High 0.1 0.1 0.2

Task Load
Task-related load of pressure load. The urgency of the collision avoidance situation has great
influence on the difficulty of the collision avoidance decision, and the more urgent the situation, the
higher the requirement of collision avoidance decision.

Low 0.86 0.75 0.69

Medium 0.089 0.145 0.205

High 0.051 0.105 0.105

Information
Load

Information load of pressure load. Collision avoidance decisions need to consider a lot of internal
and external information, but the system’s ability to use information is limited, and more
information will aggravate the information load.

Low 0.785 0.74 0.72

Medium 0.115 0.145 0.19

High 0.1 0.115 0.09

Perception
Threshold

Perception threshold towards the current situation. Perception threshold is the starting point of
situation awareness. Only when the current navigation risk is large enough can it be triggered.

Positive 0.9 0.8 0.8

Negative 0.1 0.2 0.2

Decision
Complexity

Decision complexity in relation to the current situation. Decision complexity has a great influence on
the software efficiency of the decision-making and control system, which will directly affect the effect
of collision avoidance.

Positive 0.9 0.8 0.8

Negative 0.1 0.2 0.2

Sense of
Responsibility

Sense of responsibility towards the current situation. In the collision avoidance scenario, the
responsibilities of the encountered ships are not the same.

Positive 0.9 0.8 0.8

Negative 0.1 0.2 0.2
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