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Abstract: In the current paper we are extending our earlier work on the assessment of a ship’s tendency
to capsize due to broaching-to in a stochastic seaway. Capturing, in a probabilistic context, interferences
between different phenomena occurring during ship operation in extreme seas is a challenging
task. Estimates of statistical correlations are deduced between high-run events, broaching-to and
capsize. A phenomenological approach is adopted in this study for the classification of the targeted
motions. Large scale simulations and a direct counting scheme are applied on the basis of a 4 degrees
of freedom (4DOF) mathematical model for the coupled surge–sway–yaw–roll (and rudder) motions.
Comparison with the results obtained from a previously used 3DOF model for the same scenarios
is carried out in order to investigate the effect of roll on high-run’s correlation with broaching-to.
Additionally, sensitivity studies are carried out in order to examine the effect of the commanded
heading angle, the rudder control gains and the threshold values defining excessive (unsafe) motions.
The concurrence level of the three processes considered here is found to be significantly affected by
the examined parameters. The paper includes a short review of effective methods for identifying ship
high-runs in following/quartering seas.
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1. Introduction

The development of probabilistic indices reflecting the safety level of a ship in relation to the
occurrence of dynamic instability in an irregular sea environment has been receiving significant
attention in recent years (see for example the collection of papers in [1] and the review paper of [2]).
Such assessments can be carried out at the design stage by considering the expected profile of
a ship’s operation with respect to her loading, speed and heading, and for a variety of weather
conditions (e.g., [3–5]). The recently developed by the International Maritime Organization (IMO)
“Second generation intact stability criteria” embody a regulatory perspective to the development of
such an assessment framework (e.g., [6–8]). However, dynamic stability assessments can also be used
for assisting decision-making concerning route selection and operability for existing ships, for given
weather forecasts (e.g., [9,10]).

In order to develop successful dynamic stability assessment methods one is required, in principle,
to have a good understanding of the physics of the phenomena involved. The one type of instability
that is considered as complex both in terms of modeling and exhibited dynamics, is broaching-to
(see for example [11,12]). It occurs in a following/quartering sea environment and is often preceded by
the occurrence of a phenomenon known as surf-riding where the ship is pushed by a wave to travel,
for several seconds, with the wave celerity. Broaching-to is dangerous since the final outcome can
be the vessel’s capsize [12]. The dynamics of the sequence from surf-riding to broaching-to and then
to capsize has been clarified in the last 30 years; however primarily within a framework of regular,
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or nearly regular, seas. On the other hand, recent research has indicated that, in a steep irregular
following/quartering seaway, additional possibilities of dynamic behavior can arise concerning the
ship surge motion dynamics which can bear qualitatively different effects on the other ship motions,
thus creating potential for new patterns of broaching-to and capsize. For this reason, the concept
of ship “high-run” was introduced recently as a generalization of surf-riding for a highly irregular
sea [13]. Besides the necessity to investigate these new patterns, by its stochastic nature the irregular
sea calls for a probabilistic evaluation of the strength of connection between high-run phenomena,
broaching-to and capsize.

Hence for the clarification of the high-runs and their connection with broaching-to and capsize,
two directions of research have emerged. The first approach is more rigorous from the dynamics
perspective as it employs methods of non-linear dynamics and unsupervised machine learning, for the
automated identification of different motion patterns and for the calculation of respective occurrence
indices [14]. The second approach targets a more phenomenological classification of the motions.
Empirical thresholds are used with respect to the realized speed and heading in order to separate the
different types of motion [15]. Through direct counting of time intervals this approach can yield cost
effective statistical estimates of the correlations of high runs with broaching-to. The main points of
these approaches are summarized in Section 2.

The current paper presents an investigation following the second approach. The phenomenological
identification of high-run events utilized in [15], where strong concurrence had been observed between
high-runs and significant yaw response intervals, led us to extend the previously used coupled
broaching-to model in order to include the roll motion. Statistical correlations could then be sought
between high runs, broaching-to and capsize. In particular, the key aim of this study is to examine if
(a) the introduction of roll motion affects the high-run and broaching-to statistics, and (b) whether
significant roll responses appear correlated with high-runs and large yaw deviations.

The mathematical model has remained, in principle, quite simple, since the objective was to seek
these connections at a basic modeling level. As described in Section 3, it is comprised of kinematic
equations for the coupled motions in surge, sway, yaw and roll while the vessel is forced to follow
the wave contour in heave and pitch, maintaining vertical equilibrium. Thrust and resistance are
implemented using polynomial expressions. The maneuvering hull reaction and rudder forces are
provided by linear hydrodynamic derivatives and are supplemented by a proportional-differential (PD)
controller for the rudder angle. The incident wave loads are calculated via the numerical integration of
the associated pressure on flat triangular panels on which the hull has been discretized. The calculation
accounts for the instantaneous wetted surface as it occurs from the equilibrium of the hull on the wave
profile at every time step.

In Section 4, we present the calculation process for the identification of the targeted responses,
specifically high-runs and excessive yaw and roll. Furthermore, we examine the effect of several
parameters, such as the commanded heading angle and the magnitude of the rudder control gains,
which were shown in [15] to significantly affect the derived statistical indices. A sensitivity analysis of
the threshold values that characterize excessive yaw and roll response is also presented in Section 4,
while the addition of the roll motion also incorporates the effect of the ship’s loading condition through
the KG value. Finally, Section 5 discusses the key results of the study.

The novelty of the current work is the statistical account of the interferences between different
phenomena (high-run, broaching-to and capsize) that could occur during ship operation in extreme
following/quartering seas. It can be useful in a practical context of assessment towards the quantification
of a ship’s tendency for capsize due to broaching-to.

2. Review of Methods of Identification of Ship High-Run Incidents in Irregular Seas

The concept of ship high-run has been proposed as a generalization of surf-riding, in order to
reflect abnormal high-speed behavior of ships in irregular following/quartering seas. More specifically,
whilst surf-riding is basically the capture and “push forward” of a ship by a single steep wave, a
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high-run represents a fluctuating high-speed motion influenced by a sequence of waves. Even though
several waves are involved, in a high-run incident the mean speed is found consistently well above
the nominal speed corresponding to the propeller’s setting. A simple phenomenological approach
towards determining high-run incidents and deducing the time intervals of their realization, is via
setting-up a suitable speed crossing problem. The main challenge is however to properly define the
velocity thresholds delimiting these high-run intervals. Beyond simple phenomenology, “smarter”
methods have also been proposed. An alternative approach is to continually calculate the instantaneous
(time-varying) celerity of the wave corresponding to the origin of the ship system of axes [16], and then,
to determine all time intervals when the speed has exceeded the corresponding instantaneous celerity
value. In a third approach, the identification of high-runs is set up as a data clustering problem,
searching for sets of trajectories in the system’s phase space with the characteristics of high-run [14].
This method relies on a more detailed analysis of system dynamics. These techniques are discussed
further in the next section.

2.1. Method Based on the Up-Crossing of the Instantaneous Wave Celerity

Whilst this method seems to stem, in the first instance, from the phenomenological concept of the
high-run definition, it couples into the calculation of the so-called instantaneous wave celerity. The role
of wave celerity as a threshold for surf-riding in regular waves is well-known [17]. However, in an
irregular sea environment the definition of celerity is debatable. It is possible to define celerity as the
speed of propagation of a suitable local property of the wave profile [16]; then celerity can be calculated
via a computational scheme accruing directly from this definition. However, it is also possible to
calculate celerity by use of the concept of instantaneous frequency. This is basically the derivative of
the phase of the “analytic signal”, which in our case is the wave elevation [18,19]. The dependence on
instantaneous celerity entails, for the problem of surf-riding, a simultaneous treatment of the records
of ship velocity and wave profile. Up-crossing of the instantaneous wave celerity should initiate a
high-run. Unfortunately, the instantaneous celerity suffers from frequent jumps to infinity which,
whilst usually not having true physical significance for high-run occurrences, they tend nevertheless
to create ambiguities in the calculation process [16]. It has been proposed, as a means towards
overcoming this, to either use a local celerity value (instead of the instantaneous one), based on the
point of maximum wave slope nearest to the ship [18] or to simply employ the wave celerity that
corresponds to the peak frequency of the assumed wave spectrum [13,15]. The latter is a constant value.
Comparable statistical results have been derived in sensitivity studies, where detailed investigations on
the choice and suitability of possible up-crossing and down-crossing thresholds were carried out [13].

2.2. Clustering Method

In this approach, a trajectory clustering technique is applied in order to qualitatively capture
different types of ship motion phase space trajectories, for extreme sea scenarios. The method does not
depend on the phenomenology of the problem. It involves the calculation of finite time coherent sets
in the phase space, via which the phase space is divided into regions associated with qualitatively
different motions (“clusters”); namely ordinary oscillatory motions and high-runs. By monitoring the
time evolution of these clusters, a rigorous scheme for the calculation of the probability of high-runs
is deduced with no need of setting any kind of speed threshold [14]. This method, whilst the most
rigorous in terms of system dynamics, is also computationally the most heavy.

In the longer term, all these methods will be applied, in a comparative sense, towards calculating
the probability of broaching-to and capsize associated with high-run incidents. In the present paper
however, which presents our first step in this direction, statistics of broaching-to and capsize will be
estimated using a threshold-based approach.

3. Mathematical Model

The mathematical model is an extension of the simple surge–sway–yaw model presented in [15].
In the current version however, the roll mode has been introduced in order to make it possible to also
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estimate capsize statistics. Moreover, in [15] the incident wave load calculations were carried out by
involving large interpolation tables of RAO and phase shifts and were determined for a large combined
range of wave length and heading angles. These tables were populated by performing hydrodynamic
pre-calculations with a strip-wise method, i.e., utilizing several hull waterlines up to the design draft.
This offered significant computational speed but in terms of a wetted hull it limited our calculations to
the still calm sea waterline threshold. The calculations have now been improved by integrating the
associated pressure up to the instantaneous curvy waterline and by introducing a new geometrical
discretization of the hull, using flat triangular panels; calculations of the hydrostatic loads are carried
out similarly. The additional computational cost due to the submergence test of each hull panel during
every time instant, was overcome by applying parallel computing techniques.

Other features of the model were, however, kept intact, despite their great simplicity;
namely, the rudimentary rudder model and the linear hydrodynamic reaction terms, as this better fitted
our research strategy. Likewise, the PD controller for the rudder and the thrust resistance polynomial
expressions were retained. In particular, the intention is to later carry out a detailed investigation of
the effect of the rudder model on the statistics of broaching-to and capsize. As usual, two different
coordinate systems are used (Figure 1): an earth-fixed, non-rotating system; and a body-fixed system
with its origin located amidships, at the point where the centerplane and the waterplane intersect.
The systems are in accordance with the right-hand rule, with the “X” axis pointing positive forward,
having on its left the positive “Y” axis, while the positive “Z” axis points upwards.
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The layout of the mathematical model is the following, as presented in Equations (1) to (4) ([15,20]).
Several maneuvering hull reaction terms that are calculated on a still-water basis are involved with
the kinematics.

Surge
(
m−X .

u

) .
u−m v r−m xG r2 + m xG p r = Thr(u) −Res(u)

+XR + F1,FK(ξ, η, ζ,ϕ,θ,ψ) + F1,HS(ξ, η, ζ,ϕ,θ,ψ) −mg sinθ

(1)

Sway
(
m−Y .

v

) .
v−Yvv +

(
m xG −Y .

r

) .
r−Yrr−m zG

.
p + m u r =

YR + F2,FK(ξ, η, ζ,ϕ,θ,ψ) + F2,HS(ξ, η, ζ,ϕ,θ,ψ) −mg sinϕ

(2)

Roll
(
IX −K .

p

) .
p−m zG

.
v−m xG zG

.
r + YH zH + Kp p−m zG u r =

KR + F4,FK(ξ, η, ζ,ϕ,θ,ψ) + F4,HS(ξ, η, ζ,ϕ,θ,ψ) + mg zG sinϕ

(3)

Yaw

(
m xG −N .

v

) .
v−Nvv +

(
IZ −N .

r

) .
r−Nrr−m xG zG

.
p + m xG u r =

NR + F6,FK(ξ, η, ζ,ϕ,θ,ψ) + F6,HS(ξ, η, ζ,ϕ,θ,ψ)
(4)

For relatively long, following/quartering sea waves the frequency of encounter remains low and
equilibrium in pitch and heave (i.e., the so-called wave contouring condition) can be approximately
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presumed. Whilst, for a general irregular sea one could challenge this assumption, here it is a
convenient one because it allows evaluating the effects of roll on the basis of comparable models.
Hence, the calculation of heave and pitch motions is reduced to determining the ship’s attitude relative
to the wave profile, at each time step. Also, for calculating the ship’s longitudinal and lateral distance
from the fixed origin (ξ(t), η(t)), the following two kinematic relations, Equations (5) and (6) can be
applied (small effects introduced by the rotations ϕ and θ are considered as negligible). The equations
of motion are solved using the 4th order Runge-Kutta integrator. Lastly, due to the very small values
of pitch rotation, the effect of the ship’s weight projection onto the surge mode was also considered
as negligible:

.
ξ = u cosψ− v sinψ (5)
.
η = u sinψ+ v cosψ (6)

For the surge mode, thrust and resistance are expressed in the usual polynomial form as follows,
which disregards the wave effect [19].

Thr(u) = τ̃0n2 + τ̃1n u + τ̃2u2 (7)

Res(u) = r1u + r2 u2 + r3 u3 (8)

As already said, hull hydrodynamic reactions for sway and yaw were linearized. Thus, we should
be able to capture only the tendency for deviating from the commanded course but not the accurate
motion pattern. The horizontal hull maneuvering force YH (e.g., [21]), also inducing a rolling moment
(YH zH) (e.g., [22]), is then:

YH = Y .
v

.
v + Yvv + Y .

r
.
r + Yrr (9)

In the context of linearized horizontal-plane dynamics, and with the earlier comment, rudder forces
are expressed as follows (e.g., [21,22]):

YR = Yδδ (10)

NR = Nδδ (11)

KR = −YRzR (12)

The longitudinal component XR will typically be several orders of magnitude smaller than the
rest of the right-hand-side terms of the surge equation and may thus be neglected. Lastly, a simple
proportional-differential (PD) model of rudder control is assumed,

δ
(
ψ,

.
ψ
)
= −k1(ψ−ψr) − k2

.
ψ (13)

At the right-hand-sides of the Equations (1) to (4) also appear the hydrostatic loads and
Froude-Krylov wave excitations, which are functions of ship position, heading and attitude relative
to the wave. In order to calculate these terms, the hull is discretized into flat triangular panels, each
of which is characterized by its area and its centroid position as expressed in the body fixed system
(see Figure 2). The local normal vector is

→
nP and the moment arm is

→
r P ×

→
nP, where

→
r P =

{
xP, yP, zP

}
is

the vector from the origin of the body fixed coordinate system to the panel centroid. The coordinates of
the latter are transformed suitably for the relative position of the hull

{
ξ, η, ζ

}
in the earth fixed system

using Equation (14), where the standard transformation matrix [T] is involved (e.g., [20]).
ξP

ηP

ζP

 = [T(ϕ,θ,ψ)]3x3


xP

yP

zP

+


ξ
η
ζ

 (14)
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The local water elevation is expressed as a sum of harmonic wave components, according to
the random phase model, as in Equation (15). A submergence test for each panel is then performed{
ζ0(ξP, ηP, t) − ζP

}
, taking into account its location relative to the encountered wave profile (e.g., [23]).

ζ0(ξP, ηP, t) =
∑

j

{
A j cos

(
k jξP cosµ+ k jηP sinµ−ω jt + ε j

)}
(15)

The instantaneous values of hydrostatic force and moment are obtained by numerical integration
of Equations (16) and (17) for the static pressure acting on the submerged panels (e.g., [24]),

→

F i,HS = −ρ·g·
x

S

(ζ− ζP)·
→
nP ds, i = 1, 2 (16)

→

F i,HS = −ρ·g·
x

S

(ζ− ζP)·
(
→
r P ×

→
nP

)
ds, i = 4&6 (17)

The calculation of the Froude-Krylov loads is carried out in a similar manner, by numerical
integration of the unit potential ϕ0 on every immersed panel of the hull up to the instantaneous wavy
free surface, applying Equation (18) for surge and sway, and Equation (19) for roll and yaw(e.g., [23]),

→

F i,FK = −ρ g
∑

j

A j

x

S

[
ek jζP cos

(
k jξP cosµ+ k jηP sinµ−ω jt + ε j

)]
·
→
nP ds

 (18)

→

F i,FK = −ρ g
∑

j

A j

x

S

[
ek jζP cos

(
k jξP cosµ+ k jηP sinµ−ω jt + ε j

)]·(→r P ×
→
nP

)
ds (19)

We have considered the tumblehome hull from the ONR topside series, with LOA = 154 m,
B = 18.8 m and T = 5.5 m [25]. The hull was divided into zones, each of which was discretized using
triangular panels of zone-specific panel sizing. The densest paneling was applied on a vertical zone
extending ± 2 m equilaterally off the design waterline. The significant wave height and peak period
were set at HS = 6 m and TP = 9.5 s, respectively, while 16 discrete components spanning a band
of ωP/2, centered at the peak frequency value ωP, were considered (Figure 3). Selected results from
simulations performed for the case of a JONSWAP spectrum can be seen in Figures 4–6. The nominal
speed was set at 12.0 m/s and the rudder gain values were K1 = 1.5 , K2 = 1 s−1, while ψr = 7.5

◦

or ψr = 15
◦

was used. The instantaneous celerity curve is indicatively superimposed over the surge
velocity curve.

The presented time series in Figure 4 are derived from an “average” performed simulation,
i.e., a simulation where the vessel sustained the hydrodynamic excitations and reacted with motions
of smaller or larger magnitude, that were not, however, framed within a scenario of controllability
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loss. Such an event, in fact a broaching-to event, is presented in Figure 5, where at around 2000 s the
ship suffers from a yaw and roll motion of severe magnitude. Another interesting case is presented in
Figure 6, where the vessel attains parametric type responses with significant coupled sway–yaw–roll
oscillations that exceed our defined thresholds of capsize criteria.
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4. Statistics of Surf-Riding, Broaching-To and Capsize

4.1. Key Points of Calculation and Presentation

The mathematical model of the previous section was used for collecting statistics through a large
number of systematic simulations. The main purpose was to quantify the correlation between ship
“high-runs” and critical exceedances in yaw and in roll. Ship motion time-records were checked for
concurrence of time segments of high-run, large yaw deviation from the commanded heading, and a
large increase of the roll angle. Furthermore, sensitivity studies concerning the effect of the commanded
heading and the controller’s gains and the value of the vertical position of the center of gravity (KG)
are part of the investigation. We distinguish three processes as follows:

4.1.1. Process A: Surge with High-Runs

The identification of high-runs is carried out by utilizing the velocity crossing method that
was described in Section 2. Specifically, we select as the up-crossing velocity the wave celerity that
corresponds to the peak frequency of the wave spectrum, while ship’s nominal speed is chosen as the
down-crossing velocity threshold. These velocity limits were also utilized in [15].

4.1.2. Process B: Yaw with Broaching-To

Given the commanded heading, we determined the time intervals when the yaw angle response
exceeded the set limit of permissible yaw angle deviation. In addition, we identified “hard” broaching-to
events, i.e. cases where unimpeded yaw turn, with up to at least 90◦ heading error, developed despite
the steering effort, with no return of the ship close to the commanded heading. In these cases,
the simulation was ended and a new one was initiated.

4.1.3. Process C: Roll with Critical Exceedances (“Capsizes”)

Exceedances of a predefined roll angle threshold were sought. As a capsize event was identified
as any exceedance of the 50◦ roll angle. Like before, exceedance led to termination of the simulation
and initiation of a new run. Figure 7 provides a schematic definition of these 3 processes.

We calculated several quantities per realization, as follows:

Process A

• Mean duration of high-run events.
• The ratio of the aggregate time of high-run to the total simulation time of each realization.

Process B

• The largest observed yaw angle during a full run.
• The number of exceedances of the yaw angle threshold.
• The mean duration of the yaw exceedance events.
• The time-ratio of yaw angle exceedance, which is derived by the summation of the times of

exceedance to the total simulation time of each realization.

For the time-ratio calculation, we targeted two types of yaw angle exceedance: in the first,
events are counted on the condition that they occur when a high-run is in progress. In the second all
exceedances are counted irrespectively of whether they coincide with a high-run incident. We call the
first a “conditional” broaching-to scenario and the second an “unconditional” one.

Process C

• The largest observed roll angle during a full run.
• The time-ratio of roll angle exceedance, similarly to the calculation scheme of yaw angle exceedance.
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For the time-ratio calculation we considered:

• Unconditional occurrences, where any type of roll angle exceedance is taken into account.
• Occurrences conditioned upon a high-run incident.
• Occurrences conditioned upon a yaw angle exceedance.

In order to quantify the level of concurrence of the above processes, the next three indices
are estimated:

• Index of time concurrence of yaw exceedance and high-run.
• Index of time concurrence of roll exceedance and high-run.
• Index of time concurrence of roll exceedance and yaw exceedance.

The sea state is represented by a JONSWAP spectrum, considering however only a frequency
band around the spectrum’s peak period, in order to introduce a “narrow-band” condition. Table 1
presents the values of the parameters that define what will be called “the main scenario” of the present
investigation. For the presentation of the key statistical information, as derived by the 500 realizations
per scenario, we select the whisker-box type of diagram. This is a convenient type of graph in descriptive
statistics for the graphical comparison of distributions, based mainly on their quartiles. Specifically,
according to Figure 8, the lower line of the box corresponds to the 1st quartile (or the 25th percentile),



J. Mar. Sci. Eng. 2020, 8, 846 11 of 19

while the upper line of the box corresponds to the 3rd quartile (or the 75th percentile). Furthermore,
the median is also included in the graph, whereas in the following graphs we have also included the
mean value.

Table 1. Parameters of the base scenario.

Parameter Value

Nominal ship speed Unom (m/s) 12
Initial ship speed Uo (m/s) 10

Number of wave realizations N 500
Significant wave height HS (m) 6

Wave peak period Tp (s) 9.5
Frequency range dω (rad/s) 0.331
Total simulation time tsim (s) 2400

Commanded heading ψr (deg) 7.5
Proportional and differential gain K1, K2

(
s−1

)
(1.5, 1)

Exceedance thresholds (deg) Yaw angle: 7.5
Roll angle: 15
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Figure 8. Sample graph presentation targeting the key statistical information.

The distances between the different parts of the box provide indications of the dispersion and
skewness of the distribution as do L-estimators such as the interquartile range (IRQ = Q3 −Q1).
Moreover, the plot contains horizontal lines (the “fences”) surrounding the box where the upper line
corresponds to the maximum value (100% percentile) and the lower line corresponds to the minimum
(0% percentile).

4.2. Key Points of Calculation and Presentation

4.2.1. Effect of Commanded Heading

As in the case where a 3DOF model was used [15], it is expected that the commanded heading
will significantly affect both the occurrence of high-run and yaw-exceedance events. Figure 8 presents
the time-ratios of these processes for the two models for the two examined commanded headings.
Concerning the high-run time-ratio, the difference between the two models is more pronounced for the
7.5◦ heading scenario, where the 4DOF model presents a lower tendency for high-runs. Furthermore,
the expected decrease when the heading is increased is more pronounced for the 3DOF model. On the
other hand, the 4DOF model presents a higher ratio of exceedance of the yaw angle threshold for
the 15◦ heading than those of the 3DOF, while the results are comparable for the 2 models when the
heading is 7.5◦. In addition, Figure 9 includes the time-ratio of exceedance of the roll threshold, where a
slight increase occurs for the higher heading scenario.
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We further examine the difference in the occurrence of yaw exceedance between the 2 models
by calculating the frequency and duration of these events (Figure 10). For the 15◦ heading, the yaw
exceedances of the 4DOF model occur much more frequently but with lower mean duration compared
with the respective ones of the 3DOF model. One more difference between the 2 models is that for the
4DOF model the exceedance duration is larger for the 7.5◦ heading. The longer exceedance durations
observed in the 3DOF seem to result with higher yaw angles achieved, as Figure 11 shows. The yaw
and roll angles are significantly increased for the higher heading scenario (15◦). However, while the
mean yaw angle values between the 3DOF and 4DOF models are comparable, the 3DOF model resulted
in higher values for the higher percentiles. For example, the 3rd quartile values are 77 deg. and 60 deg.
for the 3DOF and 4DOF models, respectively. Therefore, the addition of the rolling motion seems
to decrease the yaw exceedance duration and the amplitude of the yaw response, but increase the
frequency of threshold exceedances.
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Figure 11. Effect of the commanded heading on the maximum yaw and roll angle achieved. For the
4DOF model, KG = 6.5 m.

One of our main aims in this study is to examine whether the examined processes are correlated
with each other. Specifically, by utilizing the concurrence index as defined previously, we aim at
quantifying the ratio of the roll exceedances that occur during significant yaw deviations or during
high-runs. Additionally, we examine whether yaw deviations from the commanded heading are related
with high-runs occurrences. Such an analysis was carried out also for the 3DOF model as shown in
Figure 12, where high concurrence of yaw exceedances and high-run events had been found out for
both headings.
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However, a decrease of such concurrence is observed when the heading is increased in both
models. The 4DOF model presents lower concurrence between high-run and yaw exceedance from
that of the 3DOF model. Especially, the decrease is more pronounced (about 40%) for the higher
heading than that for the 7.5◦ heading (30%). Therefore, it seems that the addition of the rolling motion
weakens the concurrence level between high-runs and yaw. On the other hand, the large majority of
the excessive rolling (above 75%) occurs while yaw angle exceeds the predefined threshold levels (7.5◦).
Moreover, as it is expected, the concurrence between roll and high-runs is not affected by the heading
angle. Of course, this analysis depends on the threshold values whose exceedance characterizes the
significant yawing and rolling and thus, the next sub-section examines this effect.

4.2.2. Effect of the Set Thresholds

We examine how the limiting thresholds affect the statistical values derived and, in particular,
their effect on the concurrence of the three targeted processes. Figure 13 presents the yaw angle
exceedances, including the conditional ones. The variation of threshold limits significantly affects both
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the exceedance time itself (being reduced as the threshold value is increased), and the strength of
correlation. Therefore, the stricter the definition of the response corresponding to extreme yawing,
the higher the concurrence of yaw exceedances with high runs. Similar trends are shown in Figure 14
regarding the time-ratio of roll exceedance. The level of its concurrence with yaw exceedance is greater
when that roll limiting threshold is increased, while the roll concurrence with the high-runs is not
affected. It shall be noted that for this analysis we select a higher KG value in order to derive significant
ratios of roll exceedance within the range of threshold angles examined.
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4.2.3. Effect of the PD Control Parameters

The next sensitivity study concerns the influence of rudder control gains and specifically the
influence of the proportional one. The commanded heading angle was set at 15◦ in order to focus
on large responses. The proportional gain was increased to K1 = 2.5, while the differential gain was
kept at its initial value, K2 = 1s−1. Figure 15 presents the results of the time-ratios for the two models.
Concerning the high-runs, the effect of the increase of the proportional gain is more apparent for
the 3DOF model where the time of high-runs is decreased, whereas for the 4DOF model there is no
significant change. On the other hand, the time of excessive yawing is reduced for both models but
again the 3DOF model presents greater sensitivity. Roll exceedance seems to not be significantly affected.
Regarding the maximum angles achieved (Figure 16), the increase of the proportional gain resulted
in a significant decrease of the yaw angle for the 3DOF model, a behavior that is not repeated by the
4DOF model. The maximum roll angle, as in the case of the time-ratio, does not present sensitivity in
the change of the proportional gain.
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For further examination of the difference between the two models concerning the effect of the
control gains, Figure 17 presents the probability density functions of the mean yaw exceedance duration
and the number of exceedances per unit time. From the first measure and the 3DOF model, there is
an obvious decrease of the mean duration as the proportional gain increases. However, such a level
of decrease in mean duration does not occur for the 4DOF model. It can also be concluded that the
large yaw angles derived by the 3DOF model for the lower set of control gains was the result of the
high mean duration of the yaw exceedance, thus there is available time for large deviations to develop.
On the contrary, the results of the 4DOF model do not deviate significantly with a change of gain
value, even though an expected decrease in both exceedance duration and its frequency of occurrence
is observed.

4.2.4. Effect of the KG

The assumed value of the vertical position of the center of gravity, KG, is expected to affect the
roll statistics. Figure 18 presents the results for the maximum yaw and roll angle achieved for a range
of KG values. For the roll angles, there is a steady increasing trend as the vessel’s KG was increased
while the maximum yaw angle did not show sensitivity. Notably, for KG = 7.5 m the mean value
of maximum roll angles (from all realizations) was approximately 50◦. It means that capsize due to
the exceedance of the critical roll angle threshold occurred in almost every realization. It shall be
remembered that loss events are characterized as events where, either capsize due to exceedance of the
threshold limit of roll angle (50◦), or “hard” broaching-to due to yaw angle exceedance of 90◦ from the
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Regarding the effect on the concurrence index, according to Figure 19, the occurrences of roll
exceedance for the larger values of KG are, in their majority, not strongly correlated with significant
yaw motion (less than 40%). This trend is reversed for the lower values of KG, where roll exceedance
occurs in most cases within yaw exceedances (above 80%). On the other hand, the concurrence with
high-run appears to not be greatly affected by KG, as indices of 55–65% were estimated in the examined
KG range. Moreover, the concurrence index of yaw exceedance and high-run is slightly better for the
lower KG values (about 70%) and decreases for the higher ones.
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5. Concluding Remarks

A mathematical model for studying the interaction between high-runs, broaching to and
excessive rolling motion has been developed. The model accounts for the surge–sway–yaw–roll
and rudder motions of a naval ship in following/quartering and it represents an expansion of our earlier
surge–sway–yaw and rudder model. In addition, the hydrostatic and Froude-Krylov hydrodynamic
loads are now calculated up to the instantaneous wave surface during every time step. This differs from
our previous model where the incident wave loads were utilized via RAO and phase shift pre-calculated
tables, and for the hull excitation corresponding to submergence up to the still water level.

This model was used for deriving statistical estimates of high-run, broaching-to and capsize,
via direct counting schemes (based on 7500 runs of 40 min duration each), aimed at quantifying the
level of concurrence between these three processes. Furthermore, several sensitivity studies were
carried out in order to examine the effect of the commanded heading, the rudder control gains and
the threshold limits that define excessive motion. It was derived that the greater the set threshold
angle (both for yaw and for roll), the greater is the index of concurrence with high-run. On the other
hand, by increasing the angle of the commanded heading, is the propensity for excessive roll response,
within intervals of significant yawing motion is higher. It was also observed that the addition of the
rolling motion in the 4DOF model decreased the yaw exceedance duration and the amplitude of yaw
response, but resulted in an increase in the frequency of threshold exceedances.

The increase of the proportional gain resulted in reducing the high-runs and yaw exceedance
ratio, but not with the same intensity as revealed by the respective results of the 3DOF model.
The maximum yaw angle achieved according to the 4DOF model was not affected by the increase
of the proportional gain. However, for the 3DOF model, a significantly lower yaw response was
observed, due to the decrease of both the exceedances per unit time and their durations. Concerning loss
events due to broaching-to, they occurred only for the lower KG values examined and with a much
smaller frequency than capsizes due to exceedance of the critical roll angle. For the higher KG values
examined, capsize events were observed more frequently, however, they were unrelated to the
broaching-to occurrences.
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Nomenclature

A j amplitude of wave component j (m) S ship wetted surface
(
m2

)
Fi,FK Froude-Krylov loads on mode i (N or N·m) u surge velocity (m/s)
Fi,HS hydrostatic loads on mode i (N or N·m) v sway velocity (m/s)
g gravity acceleration

(
m/s2

)
xG longitudinal center of gravity (m)

GM metacentric height (m) X .
u surge added mass (kg)

IX roll moment of inertia
(
kg·m2

)
Y .

v acceleration coefficient for sway due to sway acceleration (kg)

IZ yaw moment of inertia
(
kg·m2

)
Y .

r acceleration coefficient for sway due to yaw acceleration (kg·m)

k j wave number of wave component j (1/m) Yv velocity coefficient for sway due to sway velocity (kg/s)
K .

p added roll moment of inertia
(
kg·m2

)
Yr velocity coefficient for sway due to yaw velocity (kg·m/s)

Kp roll damping
(
kg·m2/s

)
YR rudder hydrodynamic reaction in sway (N)

KR rudder induced roll moment
(
kg·m2/s2

)
zG vertical center of gravity (m)

m ship mass (kg) zH vertical moment arm of hull hydrodynamic force (m)
→
n P normal vector of panel P zR vertical moment arm of rudder hydrodynamic force (m)

n propeller revolutions (rps) δ rudder angle

N .
v

acceleration coefficient for yaw due to sway
acceleration (kg·m)

ε j random phase shift of wave component j

N .
r

acceleration coefficient for yaw due to yaw
acceleration

(
kg·m2

) ζ local water elevation (m)

Nv
velocity coefficient for yaw due to sway
velocity (kg·m/s)

η ordinate of ship’s position in earth fixed frame (m)

Nr
velocity coefficient for yaw due to yaw velocity(
kg·m2/s

) µ wave direction

NR rudder induced yaw moment
(
kg·m2/s2

)
ξ abscissa of ship’s position in earth fixed frame (m)

p roll angular velocity (1/s) ρ water density
(
kg/m3

)
r yaw angular velocity (1/s) ϕ roll angle
→
r P

vector pointing from origin of body fixed
system to centroid of panel P

ψ yaw angle

Res(u) ship resistance (N) ψr commanded heading
Thr(u) propeller thrust (N) ω j wave frequency corresponding to wave component j (1/s)
t time (s)
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