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Abstract: In this study, modified equivalent load method for welding distortion analysis is suggested
to improve its accuracy. To avoid the excessive computational time for welding distortion analysis of
large welded structures, shell element-based elastic analysis methods are widely used, applying the
inherent deformation approach. Equivalent nodal forces are commonly used in common FE (Finite
Element) codes to enter these inherent deformation values. However, the conventional method cannot
estimate precise longitudinal bending following the conventional equation. In this study, the problem
of the existing equivalent load method is analyzed by a case study, and the modified equivalent
load method that can estimate angular distortion, transverse shrinkage, and longitudinal bending
is presented based on the FEM principle. The results show that by applying the proposed method,
the shell element-based elastic FE approach for the welding distortion analysis can be achieved with
improved accuracy.
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1. Introduction

Welding distortion in large welded structures is a significant problem affecting many industries
worldwide. Large welded structures are composed of many subassemblies and parts that use various
types of joints. If welding distortions can be predicted in the design stage through computational
analysis, it is possible to mitigate them. However, it is time-consuming to simulate the thermomechanical
welding process owing to the complex interactions among the metallurgical, mechanical, thermal,
and fluid flows of the weld pool [1–3]. To accurately reflect all these effects, the welding analysis
may require several hours, even for small specimens. This approach is physically unfeasible for large
welded structures. As the results of the analysis are used for quality control, computational analyses of
large-scale welded structures should be performed quickly [4].

Elastic finite element (FE) analysis using the shell element model is an efficient approach to
simulate welding to predict distortions in large welded structures owing to its high computational
efficiency [5]. There are two representative methods to predict large welded structures by elastic FE
analysis using shell element model; inherent strain method and equivalent load method. Inherent strain
method using the elastic FE analysis with shell elements to predict welding distortions and residual
stress is feasible when the inherent strain value in the inherent strain zone is known [6]. An inherent
strain is the permanent deformation in the inherent strain zone [7,8]. The inherent strain method
has the advantage that both deformation and residual stress can be predicted at the same time.
However, since most of the common FE codes do not support direct loading of strain, it is hard to
follow the analysis procedure of the inherent strain method in the common FE codes. Meanwhile,
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the equivalent load method [9,10] is an experimental method that directly uses distortion data, which is
the inherent deformation from the test specimen. Mainly, four inherent deformations are measured;
angular deformation, longitudinal deformation, longitudinal bending and transverse deformation.
It calculates the equivalent nodal force and moments from the measured distortion data. These values
can directly enter the common FE code as an equivalent nodal load vector that generates the inherent
deformation. Equivalent load method directly uses the distortion data so it does not need long
computational time for the input variables extraction [11–13]. However, the conventional equivalent
load method equation cannot precisely predict the longitudinal bending distortion. In large welded
structures, it is difficult to ignore the effect of longitudinal bending distortion [14,15]. If the conventional
equivalent load method cannot precisely predict the longitudinal bending distortion, predicted accuracy
of the analysis can be low when it is applied to the multi-welded structures such as large welded
structures. Furthermore, considering that the allowable tolerance and quality standards for alignment
of hull structural parts are very high [16], improving the accuracy of the conventional equivalent load
method is requisite.

In this study, the problem of the existing equivalent load method is analyzed, and the modified
equivalent load method that can estimate angular distortion, transverse shrinkage, longitudinal bending
and longitudinal shrinkage is presented based on the FEM principle. The proposed method was
verified by conducting various case studies. The results show that by applying the proposed method,
the shell element-based elastic FE approach for the welding distortion analysis can be achieved with
improved accuracy.

2. Methods

2.1. Limitation of Conventional Equivalent Load Method

Three inherent deformations are longitudinal shrinkage, longitudinal bending distortion,
transverse shrinkage, and transverse bending distortion [17]. The equivalent loads which are used
for the elastic FE welding distortion analysis using shell elements can be directly calculated from
the experiment deformation measured data. According to the conventional equivalent load method
(Figure 1), the relation between the equivalent load (FT, FL, MT and ML) and the measured deformation
(δT, δL,θT and θL) can be expressed as follows:

FT = E · t ·
(

l2
l1

)
· δT (1)

FL = E · t ·
(

l1
l2

)
· δL (2)

MT =
E · t3

12(1− ν2)
·

(
l1
l2

)
· θT (3)

ML =
E · t3

12(1− ν2)
·

(
l1
l2

)
· θL (4)

where ML is the equivalent bending moment acting parallel to welding line (N/mm); MT is the
equivalent bending moment acting perpendicular to welding line (N/mm); FL is an equivalent load
acting parallel to welding line (N); FT is an equivalent load acting perpendicular to welding line (N);
l1 is the element length parallel to the welding line (mm), and l2 is the element length perpendicular to
the welding line (mm) [17].
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Figure 1. Analysis procedure of equivalent load method.

These calculated equivalent loads are applied as a nodal force adjacent to the weld line to simulate
the desired inherent deformation. The equivalent loads are directly calculated from the measured
distortion data of the welded specimen. However, the conventional equation does not consider the
effect of the Poisson’s ratio, so it cannot estimate the precise longitudinal inherent deformation values
and transverse inherent deformation values at the same time. Here is an example. Let us assume that
from the butt-welded specimen, measured inherent deformation values and the calculated equivalent
loads by Equations (1)–(4) follows Tables 1 and 2.

Table 1. Inherent deformation values and conditions for the case study.

longitudinal shrinkage (δL) [mm] 0.013705
Transverse Shrinkage (δT) [mm] 0.5

Transverse Angular distortion (θT) [rad] 0.025
Transverse deflection [mm] 7.5

Longitudinal Angular distortion (θL) [rad] 0.003
Longitudinal deflection [mm] 1.5

Elastic modulus [GPa] 200
Poisson’s ratio 0.3

Plate dimension (L ×W × t) [mm] 1000 × 600 × 10
Mesh size (l1 × l2) 20 × 20

Table 2. Equivalent loads for the case study.

Equivalent transverse bending moment (MT) [N/mm] 457,875.5
Equivalent longitudinal bending moment (ML) [N/mm] 54,945.1

Equivalent transverse shrinkage force (FT) [N] 1,000,000
Equivalent longitudinal shrinkage force (FL) [N] 27,410.4

All of the degree of freedom was fixed for the central node for the boundary condition of the
case study. The results show that predicted longitudinal deflection value (5.8 mm) shows high
error compared to the inherent deformation value (1.5 mm). Moreover, the longitudinal shrinkage
value shows a different tendency (Figure 2). In-plane inherent deformation values are shrinkage
values. However, simulation results show longitudinal expansion. Simulated longitudinal shrinkage
values are highly affected by the longitudinal constraint so it is represented as tendon force [18,19].
Predicted values vary according to the FE mesh so it is recommended to use coarse FE mesh in the
welding direction. However, showing the opposite tendency is not correct.
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Figure 3 shows the simulation results, applying equivalent load method for the case study
excluding the equivalent longitudinal bending moment and equivalent longitudinal shrinkage force,
(i.e., tendon force).
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The results show the longitudinal deflection value (4.27 mm) and longitudinal expansion,
even though equivalent longitudinal bending moment and tendon force was excluded. This is due to
the Poisson’s ratio effect and it should be corrected. Inherent strain theory research groups [7,8] have
already considered this effect when converting the inherent deformation to inherent strain. However,
conventional equivalent load method does not consider these effects so the predicted longitudinal
deformation values show low accuracy. Considering, the fundamental of the equivalent load method
is applying the equivalent nodal force values that can simulate the pre-estimated inherent deformation
values; the conventional equivalent load methods must be modified.

2.2. Modified Equivalent Load Method

Before describing the proposed method, we derive the modified equivalent force that generates
the inherent transverse shrinkage value that excludes longitudinal deformation (Figure 4). Because of
the effect of Poisson’s ratio, applying nodal force along only the transverse direction generates
displacements along the longitudinal direction.
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Figure 4. Displacement by equivalent force method.

Flat shell elements are considered in the proposed method, and are formulated through the
assembly of 2D plane stress elements and plate elements [20]. Let us consider the plane stress element
to derive a modified solution for the equivalent force method. Figure 5 shows the general four-node
quadrilateral element.
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Figure 5. General four-node quadrilateral element.

For an isotropic material, the stress–strain matrix D can be expressed as Equation (5):

D =
E

1− ν2


1 ν 0
ν 1 0
0 0 (1− ν)/2

 (5)

The element stiffness matrix of 2D plane stress element km is given by Equation (6):

km = t
∫
A

BTDBdA (6)

The strain/displacement matrix B is given by Equation (7):

B =


∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0
0 ∂N1

∂y 0 ∂N2
∂y 0 ∂N3

∂y 0 ∂N4
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

 (7)

where E, t, Ni, and ν are Young’s modulus, plate thickness, shape function, and Poisson’s ratio,
respectively. A square mesh of dimensions L× L (in mm) is considered in this study. In case of the
master domain of the four-node iso-parametric element shown in Figure 6, the shape functions at each
node are as follows:
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N1 =
1
4
(1− s)(1− t), N2 =

1
4
(1− s)(1 + t), N3 =

1
4
(1 + s)(1 + t), N4 =

1
4
(1 + s)(1− t) (8)

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 16 

 

where 
, , iE t N

, and   are Young’s modulus, plate thickness, shape function, and Poisson’s ratio, 

respectively. A square mesh of dimensions L L  (in mm) is considered in this study. In case of the 

master domain of the four-node iso-parametric element shown in Figure 6, the shape functions at 

each node are as follows: 

1 2 3 4

1 1 1 1
(1 )(1 ), (1 )(1 ), (1 )(1 ), (1 )(1 )

4 4 4 4
           N s t N s t N s t N s t

 

(8) 

 

Figure 6. Master domain of the four-node iso-parametric element. 

The numerically integrated 2D plane stress element stiffness matrix can be expressed as 

Equation (9): 

1 1

(det )
N N

T
m ij ij ij

i j

t w J
 

 k B DB  (9) 

For simplicity, one-point numerical integration is considered here, N = 1, where the weighting 

coefficient ijw
 is four and the point of integration is (0,0) in the local coordinates (s,t). The scalar 

(det )J
, which is the determinant of the Jacobian matrix, becomes

2 / 4L , where the Jacobian matrix 

can be expressed as Equation (10): 

x y

s s

x y

t t

  
  

  
  
   

J  (10) 

Then, the closed form of the 2D plane stress element stiffness matrix can be derived as Equation 

(11): 

2 2

( 3) (3 1)
, , ,

8(1 )8(1 ) 8(1 )

m

A C C B A C C B

C A B C C A B C

C B A C C B A C

B C C A B C C A

A C C B A C C B

C A B C C A B C

C B A C C B A C

B C C A B C C A

Et Et Et
where A B C

 

 

    
 

  
 
     
 

    
    
 
    
    
 
     

 
  

 

k
 (11) 

Figure 6. Master domain of the four-node iso-parametric element.

The numerically integrated 2D plane stress element stiffness matrix can be expressed as
Equation (9):

km = t
N∑

i=1

N∑
j=1

wi j(detJ)i jB
TDBi j (9)

For simplicity, one-point numerical integration is considered here, N = 1, where the weighting
coefficient wi j is four and the point of integration is (0,0) in the local coordinates (s,t). The scalar (detJ),
which is the determinant of the Jacobian matrix, becomes L2/4, where the Jacobian matrix can be
expressed as Equation (10):

J =

 ∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

 (10)

Then, the closed form of the 2D plane stress element stiffness matrix can be derived as Equation (11):

km =



−A C −C B A −C C −B
C −A −B C C A B −C
−C −B −A −C −C B A C
B C −C −A −B −C C A
A −C C −B −A C −C B
−C A B −C C −A −B C
C B A C −C −B −A −C
−B −C C A B C −C −A


where, A =

Et(ν−3)
8(1−ν2)

, B =
Et(3ν−1)
8(1−ν2)

, C = Et
8(1−ν)

(11)

Let us consider a mesh system with four square elements and nine nodes (Figure 7). Based on
the derived plane stress element stiffness matrix, the system’s stiffness matrix can be derived. Then,
the force vector term that generates only transverse shrinkage (δT) can be derived as Equation (12):

UT =
[
δT 0 0 0 −δT 0 · · · δT 0 0 0 −δT 0

]
FT =

[
Fx1 Fy1 Fx2 Fy2 Fx3 Fy3 · · · Fx9 Fy9

] (12)
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The force vector term that generates transverse shrinkage (δT) can be derived as Equation (13).
Each term represents the equivalent nodal loads used to generate only transverse shrinkage in Figure 8.

Fx1 =
EδTt

2(1− ν2)
, Fx2 =

EδTt
(1− ν2)

, Fy1 =
EνδTt

2(1− ν2)
, Fy2 =

EνδTt
(1− ν2)

(13)
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The same procedure can be applied to other mesh systems with square elements. The modified
solution for the equivalent force method can be derived as shown in Equation (13) and Figure 9. Due to
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A simple case study was performed for verification. The conditions and input values are described
in Table 3.
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Table 3. Conditions for the case study.

Thickness [mm] 10 Fx1 [N] 1,098,901
Elastic modulus [GPa] 200 Fx2 [N] 2,197,802

Shrinkage [mm] 1.0 Fy1 [N] 329,670
Poisson ratio 0.3 Fy2 [N] 659,340

The results show that the derived equation can simulate only transverse shrinkage without
incurring longitudinal shrinkage (Figure 10).
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contour plot.

The terms of the bending moment in the global force vector can be obtained following the equations
governing the plate elements. The bending strain/displacement matrix Bb is given by Equation (14):

Bb =


0 0 ∂N1

∂x · · ·

0 −
∂N1
∂y 0 · · ·

0 −
∂N1
∂x

∂N1
∂y · · ·

0 0 ∂N4
∂x

0 −
∂N4
∂y 0

0 −
∂N4
∂x

∂N4
∂y

 (14)

The element stiffness matrix of plate element kb is given by Equation (15):

kb =
t3

12

∫
A

Bb
TDBbdA (15)

The numerically integrated plate element stiffness matrix can be expressed as Equation (16):

kb =
t3

12

N∑
i=1

N∑
j=1

wi j(detJ)i jBb
TDBbi j (16)

For simplicity, one-point numerical integration is considered here, and then the closed form of the
plate element stiffness matrix can be derived as Equation (17).

kb =



0 0 0 0 0 0 0 0 0 0 0 0
0 −A −B 0 −B −C 0 A B 0 B C
0 −B −A 0 C B 0 B A 0 −C −B
0 0 0 0 0 0 0 0 0 0 0 0
0 −B C 0 −A B 0 B −C 0 A −B
0 −C B 0 B −A 0 C −B 0 −B A
0 0 0 0 0 0 0 0 0 0 0 0
0 A B 0 B C 0 −A −B 0 −B −C
0 B A 0 −C −B 0 −B −A 0 C B
0 0 0 0 0 0 0 0 0 0 0 0
0 B −C 0 A −B 0 −B C 0 −A B
0 C −B 0 −B A 0 −C B 0 B −A


where, A =

Et3(ν−3)
96(v2−1) , B = Et3

96(v−1) , C =
Et3(3ν−1)
96(v2−1)

(17)
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Let us consider a mesh system with four square elements with unit size and nine nodes. Based on
the derived plate element stiffness matrix, the system’s stiffness matrix can be derived. Then, the force
vector term that generates only transverse bending (θT) can be derived as Equation (18):

UT =
[
θT −θT 0 0 0 0 θT θT 0 · · · θT θT 0

]
MT =

[
0 Mx1 My1 0 Mx2 My2 · · 0 Mx9 My9

] (18)

Each term represents the equivalent nodal loads used to generate pure bending in Figure 11.
The same procedure can be applied to other mesh systems with square elements:

Mx1 =
θEt3

24(1− ν2)
, Mx2 =

θEt3

12(1− ν2)
, My1 =

θνEt3

24(1− ν2)
, My2 =

θνEt3

12(1− ν2)
(19)
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For verification, modified equivalent load excluding longitudinal equivalent loads were applied
to the previous case study. Table 4 shows the modified equivalent load terms. Figure 12 shows the
result of the case study. The results show the modified terms eliminates the Poisson’s ratio effect and
can predict only transverse deformations.

Table 4. Modified equivalent loads for the case study.

Equivalent transverse bending moment (Mx1 ) [N/mm] 228,937.8
Equivalent transverse bending moment (Mx2 ) [N/mm] 457,875.5
Equivalent transverse bending moment

(
My1 ) [N/mm] 68,681.33

Equivalent transverse bending moment
(
My2 ) [N/mm] 137,362.7

Equivalent transverse shrinkage force (Fx1 ) [N] 549,451
Equivalent transverse shrinkage force (Fx2 ) [N] 1,098,902
Equivalent transverse shrinkage force

(
Fy1 ) [N] 164,835.3

Equivalent transverse shrinkage force
(
Fy2 ) [N] 329,670.6
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Figure 13 shows the result of case study applying modified equivalent load including all
loads. When, applying modified equivalent load method, it is possible to predict longitudinal
angular deflection and transverse deflections, at the same time, with increased accuracy (Table 5).
The longitudinal shrinkage value varies with the pre-estimated inherent deformation value however
since the values are highly affected by the longitudinal constraint, it is affected by the FE mesh in the
welding direction [21]. When conventional method was applied, it showed the opposite tendency,
however when the modified equivalent load method was applied it showed the corrected tendency.
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Table 5. Result comparison between conventional equivalent load method and modified equivalent
load method.

Pre-estimated Inherent
Deformation Value

Simulated Value
Applying Conventional
Equivalent Load Method

Simulated Value
Applying Modified

Equivalent Load Method

Longitudinal shrinkage (δL) [mm] 0.01370 −0.52 0.04
Transverse shrinkage (δT) [mm] 0.50 0.97 0.50

Transverse deflection [mm] 7.50 7.80 7.39
Longitudinal deflection [mm] 1.50 5.80 1.54

3. Case Study for the Welded Structure

3.1. Purpose and Assumtions

The purpose of this case study is to verify the modified equivalent load method by performing
analysis on a multi-welded structure. The main novelty of the modified equivalent load method is
to eliminate the longitudinal deformations when using only the transverse inherent deformations.
Therefore, only the transverse inherent deformations were used when applying the analysis methods.
The longitudinal welding distortions are greatly affected by the length of the welded structure. In order
to reduce these effects, a welded structure having a size of 600 mm (width) × 500 mm (length)
was considered.

3.2. Experiment Procedure and Input Variables Calculation

The case study was conducted for the welded structure. The experimental model consisted of a
10-mm-thick multi-pass butt-welded joint and two fillet-welded joints. The experimental model and
its result are shown in Figure 14. Table 6 shows the details of the joint and welding conditions for each
welding type.
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Table 6. Joint details and welding conditions.

Type Material Welding
Process

Joint Details
Welding Condition

Pass No. Ampere
(A)

Voltage
(V)

Speed
(cm/min)

Butt AH32 FCAW
Groove angle

(◦)
Root gap

(mm) 1st 150 25 27

40 4 2nd 165 30 24

Fillet AH32 FCAW
Leg length (mm)

1st 160 25 305

Inherent deformation data were collected by laser scanning device from the fillet-welded specimen
and butt-welded specimen. The joint details and welding conditions for the test specimens were same
with the experimental model. Figure 15 shows the results of the unit welded specimens.
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Based on the measured distortion (Table 7), the input variables for the conventional equivalent
load method and the modified equivalent load method were estimated as shown in Tables 8 and 9.
Equivalent load for the transverse angular distortions were calculated based on the measured data at
the middle of the specimen.

Table 7. Inherent deformation values and conditions for the welded structure.

Category Butt-Welded Joint Fillet-Welded Joint

Transverse Shrinkage (δT) [mm] 0.82 0.22

Transverse Angular distortion (θT) [rad] 0.032 0.017

Elastic modulus [GPa] 200

Poisson’s ratio 0.3
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Table 8. Input variables for the conventional equivalent load method.

Category Butt-Welded Joint Fillet-Welded Joint

Equivalent transverse bending moment (MT) [N/mm] 580,817 305,250

Equivalent transverse shrinkage force (FT) [N] 1,640,000 440,000

Table 9. Input variables for the modified equivalent load method.

Category Butt-Welded Joint Fillet-Welded Joint

Equivalent transverse bending moment (Mx1 ) [N/mm] 290,409 152,625
Equivalent transverse bending moment (Mx2 ) [N/mm] 580,817 305,250
Equivalent transverse bending moment

(
My1 ) [N/mm] 87,123 45,788

Equivalent transverse bending moment
(
My2 ) [N/mm] 174,245 91,575

Equivalent transverse shrinkage force (Fx1 ) [N] 901,099 241,758
Equivalent transverse shrinkage force (Fx2 ) [N] 1,802,198 483,516
Equivalent transverse shrinkage force

(
Fy1 ) [N] 270,330 72,527

Equivalent transverse shrinkage force
(
Fy2 ) [N] 540,659 145,055

Similarly, the measurement of the experimental model was also performed through a laser scanning
device. The bottom surface was scanned for the experimental model. After acquiring point cloud data,
data alignment was performed, and coordinate values of specific points were extracted to calculate the
overall out-of-plane distortion value. Figure 16 describes the workflow of the out-of-plane distortion
measurement. Measured data of the experimental model are given in Table 10. The coordinate of
center location is (300,250) in the XY plane for the measured data.
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Table 10. Measured data of the experimental model.

Point NO. X (Width Direction) [mm] Y (Length Direction) [mm] Z (Out-of-Plane Direction) [mm]

1 10 10 0.4

2 10 250 0.4

3 10 490 1.6

4 290 10 12.7

5 290 250 12.9

6 290 490 13.2

7 310 10 13.1

8 310 250 12.4

9 310 490 13.1

10 590 10 1.9

11 590 250 1

12 590 490 1.9
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3.3. Welding Distortion Analysis and Comparison of Various Methods

For the welding distortion analysis, common FE code ABAQUS was used. Shell elements S4R,
which are 4-node doubly curved thin shell, reduced integration, were applied for the analysis. The mesh
sizes for the analysis were set to 50 mm and 25 mm. Every element’s aspect ratio was equal to 1. All of
the degrees of freedom were fixed for the central node for the boundary condition of the analysis
model. Figure 17 shows the displacement contour plot of various methods.
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Figure 17. Displacement contour plot of various methods: (a) conventional equivalent load method
(mesh size: 50 mm); (b) modified equivalent load method (mesh size: 50 mm); (c) conventional
equivalent load method (mesh size: 25 mm); (d) modified equivalent load method (mesh size: 25 mm).

Finally, Figure 18 presents a comparison between the conventional equivalent load method,
modified equivalent load method and the experimental result. The amount of transverse angular
distortions along the outer line in the longitudinal direction of the welded structure are plotted. Firstly,
the experiment results show the difference in the distortion value according to the measured location is
relatively small. This means that the longitudinal angular distortion is small. The longitudinal angular
distortion pattern in the experiment result shows a ‘convex shape’ which means that plate surface is
curved outward. However, the result of the conventional equivalent load method shows a ‘concave
shape’ which means that the plate surface is curved inward. This means that the conventional load
method has a numerical error when it comes to estimating the longitudinal distortions. In contrast,
the modified equivalent load method shows constant distortion value along the measured location.
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The equivalent load method is a methodology that predicts the distortion of the welded structure
using the inherent deformation data of the unit specimens. This means that when only the transverse
inherent deformations are considered, the welded structure should also show only the transverse
distortions. From that point of view, it is obvious that the modified equivalent load method has
improved accuracy. Moreover, the modified equivalent load method is more effective than the
conventional equivalent load method, as the result is closest to the experimental data.

4. Summary

In this study, the problem of the conventional equivalent load method for welding distortion
analysis was analyzed by means of a case study. Modified equivalent load that generates only transverse
inherent deformation terms was derived based on the FEM principle. The modified equivalent load
method was verified by comparing with the results of a conventional equivalent load method and
pre-estimated inherent deformation value. The modified equivalent load method can predict the overall
angular deformation of the welded structure with improved accuracy compared to the conventional
method, even with using the identical inherent deformation data. The results show that by applying
the modified equivalent load method, the accuracy of the simulation can be improved.

The limitation of this work is that the proposed method yields a difference of approximately 10%
from the experiment results of the multi-welded structure. This is because when applying an elastic FE
approach, such as the equivalent load method, it is difficult to precisely reflect the complicated effect of
residual stress that occurs in the multi-welded structure. In the future, we will consider the residual
stress effect in the equivalent load method in order to improve the accuracy of the simulation.
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