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Abstract: Recent global climate change often leads to poleward expansions of habitat range of marine
organisms in response to increasing water temperature at high latitude. This study investigated
latitudinal distribution patterns of Turbo sazae from 2009 to 2018 along the southern and eastern coasts
of Korea to verify whether gradual increases in seawater temperature in the East Sea/Sea of Japan
(hereafter East/Japan Sea) accelerate changes in the geographic distribution of T. sazae. Between 2009
and 2018, underwater SCUBA surveys were conducted at 19 subtidal rocky shore habitats from the
southern and eastern coast of the Korean Peninsula, including Jeju Island. Additionally, long-term
seawater temperature records over the last 40 years (between 1980s and 2010s) from the East/Japan Sea
were analyzed to verify how changes of water temperature corresponded to geographical distributions
of T. sazae. The habitat range of T. sazae was found to have extended from latitude 34◦02′ N to latitude
37◦06′ N from 2009 to 2018. Although seawater temperature has gradually increased since the 1990s
in the East/Japan Sea, habitat expansion was particularly evident during the rapid rise of coastal
seawater temperature in the 2010s. Because the strong northward expansion of the Tsushima Current
can accelerate the rise of seawater temperature in the East/Japan Sea, studies of the effects of climate
change on marine ecosystems of the Korean Peninsula should include data from monitoring the
dynamics of the Tsushima Current.

Keywords: Turbo sazae; marine benthos; habitat expansion; biogeography; climate change; East/Japan
Sea; Tsushima current

1. Introduction

Since the mid-1970s, awareness of global climate change has increased, especially the impact
of worldwide increase in seawater temperatures on ecological functions of marine species [1–3].
Increase in water temperature strongly influences the distribution of marine organisms, causing range
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expansions or contractions, as well as local extinctions [4–6]. Understanding the dynamics of changes in
geographic range are fundamental for biogeography and defining ecological niche [7]. Among various
physicochemical factors influencing spatial distributing of marine organisms, water temperature is the
most critical in determining such changes [8–11].

Shifts in the distribution of marine organisms, mediated by climate change, have been well
established, especially in the Northern hemisphere [12–17]. Such shifts have been mostly in the form
of poleward expansion in response to ocean warming throughout marine ecosystem globally [18–24].
Mieszkowska et al. reported that southern trochid gastropod Phorcus lineatus has shown shift in
biogeographic distribution along a latitudinal gradient from low towards high latitude regions with
synchronous increasing in abundance throughout several decades in Northern Ireland, North Wales
and English Channel. The gastropod P. sauciatus has been newly colonized at northern shore
habitats, along the north-west Iberian Peninsula, in relation to increasing sea surface temperature [25].
Expansions and contractions of species are common in both marine and terrestrial systems, yet are
challenging to test [26,27]. Species’ shifts in distribution, however, are likely strongly influenced by
abiotic factors, especially water temperature, in conjunction with biotic causes, such as interactions
among sympatric species [5,28].

The seas around the Korean Peninsula are some of the most vulnerable to climate change, as they
currently show a rapid increase in seawater temperature [29]. Because Korean marine ecosystems
extend from sub-tropical to sub-arctic zones, a variety of marine organisms have likely shifted their
geographical distribution poleward in that country due to the recent global climate changes [30].
In particular, during the past half century, increases of nearly 1.7◦C in mean water temperature
have been reported in the East/Japan Sea, 1.4◦C in the Korea Strait and 0.3◦C in the Yellow Sea [31].
These increases were especially distinct during winter in the East/Japan sea [32]. Thus, biological and
ecological responses of marine organisms are expected to be substantial among marine ecosystems
in Korea.

The Korean top shell (Turbo sazae, Trochidae, H. Fukuda, 2017) is a sub-tropical marine gastropod
inhabiting rocky subtidal habitats of water temperature ranging from 20 to 25 ◦C, occurring along
the Kuroshio–Tsushima current regions of the northwestern Pacific [23,33–35]. Turbo sazae has long
been included as Turbo cornutus (Lightfoot, 1786). Fukuda [36] recently observed that T. cornutus
should be restricted to the species endemic to southern China and Taiwan, while the Japanese/Korean
Turbo should be a new species, T. sazae (H. Pukuda, 2017 nom. nov.) Historically, the distribution of
T. sazae in Korean waters was restricted mainly to the Jeju coast and secondarily to the Busan coast [37].
Recent oceanographic changes from shifts in climate, however, may have triggered a distributional shift,
as also shown by a majority of warm water species inhabiting temperate seas elsewhere. Most studies
have been focusing on Atlantic and tropical marine species, but only a few studies have documented
marine species inhabiting the northwestern Pacific [38].

In studies on distribution patterns of marine organisms in relation to global climate change it
is primarily assumed that, (1) the species is easily detectable in the water column, (2) the range of
expansion is relatively small during a generation and (3) the distributions are consistently poleward,
due to a global warming effect [19,20]. Second, assumptions for marine organisms may include,
(1) the range of study area connected by one oceanic current, (2) there is no anthropogenic interference
on distribution and (3) distributions occur within obviously detectable spatial ranges (generally within
a latitude of 5◦).

The purpose of this study was to access the poleward habitat expansion of T. sazae due to climate
change, after observation of successful settlement in the temperate waters of the East/Japan Sea.
Our specific objectives were grounded on: (1) the water temperature in the East/Japan Sea has gradually
increased in parallel with recent climate change observations [31]; (2) the habitats of T. sazae are
exposed to the Tsushima oceanic current transporting marine organisms from Jeju Island, Korea, to the
East/Japan Sea [39]; and (3) T. sazae have a great potential for colonization of new habitats, due to
dispersal of their planktonic larvae [40]. To support our objectives, this study analyzed occurrence
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patterns from long-term surveys of T. sazae throughout subtidal habitats in various locations along the
path of the Tsushima Current.

2. Materials and Methods

2.1. Data Collection

The presence/absence data on the latitudinal position of T. sazae was collected from the surveys
conducted during spring (May) and summer (August) from 2009 to 2018 (excluding 2011, 2013 and 2014).
The occurrence of T. sazae was recorded at rocky subtidal habitats from 19 stations from SCUBA dives
between Jeju Island and the middle eastern coast of Korea (Figure 1). Two or three divers moved in a
zigzag pattern at 0.5 to 1 m above the bottom (depth between 3 and 20 m depending on depths of study
stations), recorded appearances of T. sazae on a plate, took photographs and collected some individuals
for wet laboratory analyses. Diving time per single observation was approximately 30 min and the
survey area at each station covered ca. 90 m2. If three or more specimens of T. sazae were recorded in
each survey occasion, it was regarded as an established settlement for the species. Individuals that
could be misidentified due to their uncommon appearance were closely looked, especially at their
appressorium shapes. The results of two surveys per year were aggregated to reflect occurrence by
year (Table 1). Because T. sazae has been reported from a number of previous works at Jeju Island,
observations reported in this study served only the purpose of confirming the ability of detecting that
organism employing the methods herein.
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Table 1. Station number and name, and occurrences of Turbo sazae recorded at each station between
2009 and 2018. Station numbering within the study area increase with their northward location.

Station Year

No. Name 2009 2010 2012 2015 2016 2017 2018

1 Gageodo • • •

2 Chujado • • •

3 Cheongsando • • •

4 Geomundo • •

5 Geumodo •

6 Mijodo •

7 Maemuldo • •

8 Jisimdo • •

9 Namuseom • •

10 Dongseom • •

11 Moondong • •

12 Jeongjadong •

13 Oryu • • •

14 Samjeong •

15 Bangeo • •

16 Chuksan • •

17 Geoil • •

18 Jukbyeon • •

19 Nagok •

2.2. Seawater Temperature

Coastal water temperature in the Korean Peninsula has been continuously analyzed by the OSTIA
(Operational Sea Surface Temperature and Sea Ice Analysis) since 1985 [41]. OSTIA provides daily
global scale of sea surface temperature and sea ice data in 0.05◦ lattice, which is reanalyzed for public
consumption from field observation of ICOADS (International Comprehensive Ocean-Atmosphere Data
Set; Worley et al., 2005), AVHRR (Advanced Very High Resolution Radiometer) data (http://www.nodc.
noaa.gov/SatelliteData/), and ATSR (Along-track Scanning Radiometer) data (http://neodc.nerc.ac.uk/).
The data from OSTIA between 1985 and 2018 have been used in this study to verify spatial and
temporal patterns of sea surface temperature.

Because T. sazae mainly inhabits depths around 10 m [42], deeper isobath temperatures were
obtained from field observations gathered by the National Institute of Fisheries Science and provided
by the KODC (Korea Oceanography Data Center). Isobath data were used to confirm that long-term
sea surface temperature changes reflected temperature changes at deeper depths, where the target
species occurred. The relationships between sea surface temperatures and temperatures at the 10 m
isobath were analyzed seasonally by region (Figure 1) for each decade from 1985 to 2018, represented as
1980s, 1990s, 2000s and 2010s. The trends of seawater temperature were summarized over four
seasons, i.e., winter (January–March), spring (April–June), summer (July–September) and autumn
(October–December), according to general seasonal classification in Korean seas [43].

Due to heteroschedasticity of water temperature data, non-parametric tests were chosen for
analysis of temperature variation. The latitudinal variations of the 12 ◦C isothermal line in winter and
the 22 ◦C isothermal line in summer were analyzed, because those temperature lines were typical
isothermal lines showing considerable latitudinal fluctuations within the East/Japan Sea in each season.
A Kruskal–Wallis (K–W) test was used to examine the effects of shifts in the mean latitudinal position
of each 12 ◦C and the 22 ◦C isothermal line over four decades. Decade was considered a fixed
factor and mean latitude was a continuous variable. The values for the isothermal lines were chosen
based on characteristic seasonal sea surface temperatures for the study region. The 12 ◦C/winter
and 22 ◦C/summer combination was used as the categorical factors for the analysis. If the K–W test
revealed a significant difference between the four decades, the Mann–Whitney U test with a Bonferroni

http://www.nodc.noaa.gov/SatelliteData/
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adjustment was subsequently used to assess which pairs were responsible for the difference [44].
A significance level of 0.05 was used for K–W tests and 0.0083 (0.05/6 pair-wise groups) for Bonferroni
pair-wise comparisons. Data exploration and analyses were carried out using SYSTAT software
(Systat version 18. SPSS Inc., USA).

3. Results

3.1. Occurrence and Geographical Distribution of Turbo Sazae

The spatial occurrence patterns of T. sazae at 19 stations (except Jeju area) were different among
years (Table 1, Figure 2). During the first survey in 2009, T. sazae occurred only at station 1, with their
northern distribution boundary at 34◦02′ N. As soon as next year, the distribution expanded 104 km
poleward reaching the Busan Coast (station 9, 34◦58′ N). During both years, the occurrence of T. sazae
continued to be recorded around the Jeju Coast. In 2012, the distribution pushed northward to 36◦00′ N
(station 14). Following that year, the northern limit of T. sazae gradually extended to the Uljin Coast
(station 18, 37◦02′ N) until 2016, summing a linear distance of 116 km poleward since 2012. Since 2016,
new occurrences of T. sazae were recorded at the northernmost stations of this study (station between
15 and 19). In total, northward expansion of T. sazae during this study was of 3◦04′ latitude, 342 km
(Table 1, Figure 2).
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3.2. Variations of Seawater Temperatures

Correlation analysis between water temperature of sea surface and that of 10 m deep showed
significant relationships in winter, spring and autumn across each four decades at all three regions
(R2 > 0.9, p < 0.05; Figure 3), indicating strong tracing between sea surface temperature and temperatures
at the 10 m bathocline for the study area. Correlation analysis for the summer were significant at
the Southern (Region B, R2 = 0.45, p < 0.05) and Middle coasts (Region C, R2 = 0.72, p < 0.05) of the
East/Japan Sea, but not at southeastern region of southern sea (Region A).
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all relationships are statistically significant at p < 0.05, except Region A during summer.

Sea surface mean water temperatures tended to gradually increase in Korean seas with time,
displaying poleward shifts of isothermal lines (Figure 4). Although the 12 ◦C isothermal line varied
slightly in position from 1980s to 2010s during the winter, the lines were diagonal southwest to
northeast between 34◦ N and 36◦ N regardless of decades. While the 22 ◦C isothermal lines during the
summer showed distinct inter-decadal trends in its latitudinal position, gradually moving northward
from 39◦ N in 1980s to beyond 40◦ N in 2010s at the East/Japan Sea (Figure 4).

Latitudinal shifts for the 22 ◦C isothermal line during summer were significantly different among
the four decades (Kruskall–Wallis: H = 65.214, df = 3, p < 0.05; Figure 5). The Mann–Whitney
U tests with the Bonferroni correction for multiple comparisons showed that there were no significant
differences in mean position between the 1980 and 1990 decades, and between the 1990 and 2000
decades (p > 0.05). Mean position was different between comparisons of 2010s versus other decades
(p < 0.05), showing that 2010 had an unusually high shift in the 22 ◦C isothermal line during the
summer for the study area. No significant differences were observed for the 12 ◦C isothermal positions
in the winter among decades (Kruskall–Wallis: H = 0.272, df = 3, p > 0.05).
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4. Discussion

Recent global climate change has resulted in dramatic shifts in geographic distributions of tropical
species into temperate waters [7]. Poleward expansions of distribution ranges for marine organisms
have been observed for many marine flora and fauna, including seaweeds [45,46], zooplanktons [47,48],
intertidal invertebrates [49–51], corals [52,53] and fishes [19,54]. Within gastropods, northward
expansions of Gibbula umbilicalis in the Atlantic Ocean have been observed to be as much as
85 km, coupled with extended spawning periods, in response to long-term increases in seawater
temperature [55]. Although changes in species distributions (both, expansions and contractions) occur
naturally [26], it recently became more apparent and significant due to the acceleration of climate
change and anthropogenic effects [56–58].

Water temperature in the southern and eastern seas of the Korean Peninsula show distinct seasonal
patterns, with strong inter-annual trends [3,59]. Such temperature patterns are primarily affected by
warm water masses from the East China Sea [3]. Long-term variation in seawater temperature is the
greatest at the surface, with decreasing effects with depth [60]. Despite this effect, water temperature at
the preferred depth of T. sazae (10 m) closely follows the trends observed at the surface. It is also worth
mentioning that the depth of the mixed layer within the study area varied with season, becoming deeper
during the winter and more superficial during the summer. The mixed layer, however, never intruded
on depth less than 10 m [61], making sea surface temperatures in the study area a viable surrogate for
reflecting temperatures at the depth of T. sazae habitats.

Turbo sazae is a warm water species, mainly distributed in coastal habitats (mainly algal beds with
hard substrate) along the Kuroshio-Tsushima current system [37,42]. The Tsushima Current branches
off the Kuroshio Current as it enters the East/Japan Sea through the Korea Strait. The Tsushima Current
has a substantial influence on the several marine ecosystems along its path [62]. The influence of
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the Tsushima Current on coastal marine ecosystem of Korea has gradually increased, mostly due to
increases in water temperature [63] particularly evident in the East/Japan Sea, as compared with the
adjacent southern seas and Yellow Sea [64,65]. The recent poleward expansion of T. sazae occurrence,
as well as those observed for the majority of Korean warm water fishes, may be linked to the evident
northward extension of the Tsushima warm current into the East/Japan Sea [30]. Further evidence of
the Tsushima Current northward expansion was provided by the analysis above for the isothermal
lines. Both, the 12 ◦C isothermal line during the winter and the 22 ◦C during the summer have moved
north since the 1990s, possibly facilitating the distributional shift of T. sazae. Such sustained long-term
changes of the physical environment have had observable effects on changes in habitat locations,
including spawning and fishing grounds of major fisheries resources [66,67]. Because of the greater
extent of water temperate increases in Korean seas influenced by the Tsushima Current relative to other
seas worldwide [29], distributional shifts and expansions of Korean marine organisms may accelerate
in near future. Therefore, future detailed monitoring of organism occurrences and water temperatures
are required for detection and mitigation of climate change impacts on marine ecosystems.

When warm water marine benthos are introduced in or invade a colder habitat, the species
needs to acclimate to colder temperatures during their ontogeny. Such process, however, may require
considerable time [68], keeping distribution shifts from occurring in shorter periods (within one or two
years). The northern range limit of T. sazae was at 35◦ N in 2010, but expanded beyond the 37◦ N line
in 2016, a 124 km northward expansion during only six years. Given the maximum recorded speed
of the Tsushima Current (42.3 km/d), in theory transportation of T. sazae larvae from Jeju island to
the northmost site in this study (500 km) would be 11.8 days. The successful settlement of T. sazae at
northmost site, however, did not occur until approximately 10 years. Two factors may, therefore, be at
play in the observed expansion of T. sazae habitat in the study area. One may conclude that adequate
temperatures for adult survival may not have occurred until later years or that larval mortality in earlier
years might have precluded early settlement [69]. Meso-scale distributional shifts of marine organisms
are not limited to T. sazae, but also observed in various marine benthos worldwide. The Atlantic
gastropod Gibbula umbilicalis extended its distribution 141 km northward over the past 20 years, with an
estimated additional 243 km northward to be observed in the near future [70]. This study, therefore,
may serve as an additional warning for the strength of impacts stemming from global climate change.

The stress to marine species from temperature changes is greater for larvae or juveniles than for
adults (e.g. [71] in Uca sp.). Turbo sazae is warm-season spawning gastropod and their larvae hatch out
under the temperature range between 20 and 25 ◦C [33,35] in which correspond with recent pattern of
sea surface temperature in the southern and eastern waters of Koreas. In addition, Kim [72] suggested
that the growth rate of juvenile T. sazae was higher under heated seawater (24±0.5 ◦C) than in natural
coastal water temperature (13 to 18 ◦C) of Jeju island, Korea. Therefore, the recent trend of seawater
temperature, especially during summer is probably favorable for their northward spawning and early
survivals of juveniles. Successful settling requires that recruitment to younger stages should exceed
mortalities during those stages, allowing the populations to increase and become established [6].
Mieszkowska et al. [17] reported the range limits of Osilinus lineatus inhabiting the coastal sea in Britain
extended up to 55 km northward between the 1980s and 2000s, suggesting increased recruitment
success of their larvae to the new habitat. Although geographical extension of the species’ distribution
is dependent on recruitment successes [17], settlement of planktonic larvae is critical for sessile species
and closely linked to favorable environmental conditions, especially temperature. If larval dispersal
is not hindered by physical conditions, such as barring oceanic fronts or sub-optimal temporary
temperature changes, habitat expansion will correspond to changes of sea and air temperatures,
allowing populations to establish in new habitats [6].

Another possible factor facilitating the expansion of habitat, particularly for T. sazae, is the
presence of stopover habitats. Since successful colonization of marine organisms at new habitats occur
over a period of time (e.g. decadal time scale), several habitats may play critical roles as “stepping
stones” providing favorable environmental conditions in a limited space. Such habitats may include
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locations of thermal discharge from nuclear power plants or any anthropogenic activity leading to
localized warm water habitats. Stepping stone marine habitats often harbor several sub-tropical
marine organisms which are absent or scarce in colder, temperate habitats of the East/Japan Sea [73].
East/Japan Sea stepping-stone habitats may reach temperatures of over 4 ◦C higher than adjacent
unaffected areas [73,74]. Planktonic larvae of T. sazae may occasionally get entrained around thermal
discharging area during their northward transportation by the Tsushima Current, forming new
communities, which in turn are a source for larvae moving poleward. The mechanism operation
within the influence of thermal discharges, however, needs further investigation as to the dynamics of
settlement and population development of T. sazae. As settling of T. sazae larvae is influenced by the
coralline algae Marginisporum crassissma on the hard bottoms [75], it’s role in population establishment
needs further investigation, especially because of the scarce abundance of the algae in the East/Japan
Sea [76–78].

Changes in organism distribution may be categorized as “range shift” [13] or “range extension
or expansion” [17]. Because of the historical occurrence of T. sazae in Jeju Island [33] (2018, M.H.Son
personal observation) and the recent distributional extension from Jeju Island to the northmost station
of this study, the latter type of distribution change is a more adequate pattern for T. sazae.

This study assessed the effects of recent increases in water temperature in Korean seas have led
to changes of geographical distribution of T. sazae during the 10 years following SCUBA surveys in
conjunction with long-term records of water temperature. Results from this study revealed that the
distributional range of T. sazae was mainly concentrated to the water adjacent Jeju Island and Busan
(~35◦ N) at the end of 2000s and expanded to 37◦06′ N ten years later (see Figure 2). The observed
distributional range expansion strongly parallels the northern shifts of both, the 12 ◦C and the 22 ◦C
isothermal lines during the recent past. This study, therefore, showed the intimate relationship of
the Tsushima Current in determining shifts in habitats of T. sazae. The influence of this current in
determining expansions and shifts of habitats for other ecologically and economically important marine
species should, therefore, not be diminished and strongly considered in further studies.
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