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Abstract: Fatigue is an important failure mode in offshore jacket platforms. To evaluate the fatigue
damage, these platforms are periodically inspected during their lifetime. Regarding fatigue damage,
the information from inspection consists of crack measurement. A Bayesian framework can be used
to update the probability distribution of the crack size. The main purpose of this study is to develop a
framework to update the probability distributions of all uncertain parameters involved in the fatigue
crack growth analysis. This methodology maximizes the benefit of the inspection results by updating
several uncertain parameters involved in the fracture mechanics approach. Two sets of cracks are
used to obtain the updated distributions for uncertain parameters; prior cracks and simulated reality
cracks. By comparing these cracks, the updated distributions for uncertain parameters are obtained.
The updated crack size distribution can be used to update the estimation of the probability of failure.
To demonstrate the developed framework, a tubular joint in a specific jacket platform is considered
and the framework is applied for that joint. The results of the developed methodology indicate that
the updated distributions of uncertain parameters shift towards the simulated reality distributions.

Keywords: fatigue crack size; offshore jacket platforms; tubular joint; fracture mechanic; uncertainty;
inspection results

1. Introduction

Offshore jacket platforms are commonly adopted structures for oil and gas production in
harsh environments. Jacket platforms are susceptible to fatigue damage due to three main reasons;
high-stress concentrations at the intersections, defects during the welding process, and cyclic wave
loading acting on the structure. As a result of the idealizations and approximations in the fatigue
analysis, the existence of many uncertainties in loads applied to such structures and the resistance of
the structure; a probabilistic approach for performing fatigue analysis is a rational and consistent basis
for the inclusion of uncertainties.

Fatigue damage accumulates during the structure’s lifetime as the crack size increases.
The accumulation of damage causes deterioration of the structural strength and increases the probability
of failure. To assess the state of damage, offshore platforms are periodically inspected. Regarding fatigue
damage, the information from inspection involves the detection and measurement of crack sizes.
After an inspection of a structure, the perception of structure condition can be improved. In general,
a Bayesian framework is used to update the probability distributions of the uncertainties such as crack
size. The purpose of updating is to incorporate the inspection results into an improved estimation of
the uncertain parameter. After updating the distribution of the crack size, it is possible to update the
estimation of the component probability of failure.
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Several studies have been performed to incorporate the inspection information to update the
fatigue crack size distribution. Heredia and Montes [1] developed a Bayesian framework for updating
the probability distribution of the crack size in tubular joints by using the information from inspection
reports. For this purpose, they introduced an error model, which was a logarithmic difference between
measured crack size and the predicted crack size. They used the fracture mechanics approach to predict
the crack size. The error model was assumed to have a normal distribution with known mean and
uncertain variance. Therefore, they considered a conjugate distribution for the error variance. Based on
these assumptions, they presented a closed-form expression to update the probability distribution of
crack size in a tubular joint [1].

Karandikar et al. [2], performed a Bayesian inference using a random walk method to predict
the remaining life of an aircraft fuselage panel subjected to repeated load cycles. They considered
the crack growth parameters and the initial crack size as uncertain parameters. They generated a
large number of random samples for the uncertain parameters to produce the fatigue crack growth
curve. The probability that each sample path is the true crack growth curve was assumed as the
inverse of the number of random samples, i.e., they considered a uniform distribution for the prior
estimation. The likelihood function was represented as a normal distribution to describe how likely it
was to present the fatigue crack growth curve accurately. Having obtained the prior and likelihood,
they obtained the posterior distribution of the fatigue crack size [2].

Peng et al. [3] proposed a Bayesian framework for probabilistic fatigue prognosis under cyclic
loading. An equivalent stress level model was considered for fatigue crack growth analysis.
They conducted fatigue tests by using pre-installed piezoelectric sensors to obtain experimental
data. Signal processing techniques were used to estimate the crack length. They assumed prior
distributions for initial crack size, stress intensity factor, and material property. They updated
these distributions by using the developed Bayesian framework by incorporating the laboratory test
results [3].

Carr et al. [4] developed a probabilistic model to predict the fatigue life of a tubular joint.
The inspection results were also taken into account in the analysis using the Bayesian methods.
They used the inspection results to gradually reduce all the initial uncertainties. The considered
uncertainties in their study were predicted fatigue lives of the joints, probability of detection curve,
and uncertainties in the S-N approach [4].

The main purpose of this study is to propose and demonstrate a framework for uncertainty
management of tubular joints under fatigue loading. The proposed framework is intended to combine
the prior assumptions with observations to improve the posterior estimates. In this study, instead of
real data, the simulated reality data is used since the real data is not usually sufficient to check the
behavior of the method.

It is worth mentioning that different recommendations introduce various prior distributions for
the uncertain parameters involved in the crack growth analysis. The suggested distributions are based
on the experimental tests. For example, DNV [5] suggests an exponential distribution for the initial
crack size, whereas JCSS [6] proposes a lognormal distribution. The initial crack size is an important
variable that affects the fatigue crack size of a structural component [5]. Therefore, it is crucial to select
an appropriate distribution for these uncertain parameters. The considered framework is developed to
improve the distributions of the uncertain parameters when new information becomes available as
well as updating the crack size distribution.

In this study, fatigue reliability analysis is performed based on the Fracture Mechanics (FM)
approach. Three different categories of uncertainties are updated using the proposed methodology
which are:

• Fatigue crack size;
• Probability of Detection (POD) curve;
• Uncertainties involved in the FM approach for predicting the fatigue crack size (e.g., initial crack

size, crack growth parameter, etc.).
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When additional information such as inspection results become available, the additional
information can be used to improve the previous estimates of the uncertain parameters. The framework
for updating the distribution of estimated parameters is called the Bayesian framework [7].
The distribution that describes the previous knowledge about the uncertain parameter is called
Prior distribution [8]. Due to the uncertainties in the fatigue phenomenon, the new information will be
used to improve the prior distributions of the uncertain parameters [2].

In the Bayesian framework, for updating the probability distributions of the uncertain parameters,
two sets of information are required; prior estimations and new information from the inspection
results [8]. In this study, the new information from the inspection results is used to generate the
simulated reality estimations. By comparing these two sets of information, the posterior distributions
of the uncertain parameters are achieved.

2. Prior Estimations

Prior distributions express one’s beliefs about the uncertain parameters before taking into
account the new data. The prior distributions can be assumed based on theoretical considerations,
expert opinions, past experiences, or data reported in the literature [2].

2.1. Predicted Crack Size Function

Field observations have shown that in tubular joint connections, small fatigue cracks initiate at
the weld toe at the hot spot location and gradually propagate around the intersection and through the
tubular wall [9]. Two general approaches are generally used for fatigue analysis: the S-N approach
and the FM approach. In this study, fatigue reliability analysis is performed based on the FM approach
since this approach relates the increase of crack size to the number of fatigue stress cycles [10]. In the
FM approach, the relationship between the crack growth rate and a stress parameter can be represented
by using the Paris law [10]:

da/dN = C × (∆ K)m (1)

where a represents the crack size, N is the number of load cycles, ∆K represents the stress intensity
factor range, C and m are the material parameters.

The stress intensity factor (SIF) is a function of applied stress, the size and shape of the crack,
and the geometry of the cracked component [11]. Therefore, finding an accurate solution for the
stress intensity factor is a difficult task [11]. Several studies have been performed to obtain the SIFs.
In general, the SIF can be obtained based on empirical methods [12] or it can be calculated by using
finite element methods [13,14].

Stress intensity range factor in the general case can be expressed as:

∆K = Y × S ×
√
πa (2)

where Y is a geometry function and S is the applied stress range.
By plugging Equation (2) into Equation (1) and integrating from initial crack size (a0) to current

crack size (at), the relation between crack size and the number of cycles for the propagation of a crack
can be obtained as: ∫ at

a0

da(
Y
√
πa

)m = C × (S)m
× N (3)

By integrating Equation (3), the current crack size can be predicted as;

at =
{
a

1 − m
2

0 +
(
1−

m
2

)
× Ym

× π
m
2 × C × N × Sm

} 1
1 − m

2 (4)

Equation (4) is valid when the applied stress range (S) has a constant value [11]. In reality, due to
the existence of several sea states, the platforms are exposed to several loading conditions. Therefore,
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the stress range in a tubular joint is not constant and it varies for each sea state condition. Since the
stress range is not constant in different sea states, (S)m can be expressed in terms of the expected value
of the stress range [5]. Therefore, Equation (4) is written as:

at =
{
a

1 − m
2

0 +
(
1−

m
2

)
× Ym

× π
m
2 × C × N × E[S m]

} 1
1 − m

2 (5)

where E[.] is the expected value operator.

2.2. Finite Element Model of the Considered Platform

To demonstrate the developed methodology, a jacket offshore platform is considered. The platform
is a living quarter that is located in a water depth of 70 m. The supporting jacket is a four-legged steel
structure with four grouted piles. The legs are battered and supported laterally with X-shaped braces.
The topside mass is estimated as 2200 tonnes.

A three-dimensional finite element model of the platform is generated using SESAM software [15]
and global spectral fatigue analysis is performed using characteristic variables. The environmental
loading is modelled in terms of a set of stationary sea states, each sea state is characterized by a
significant wave height, a mean zero up-crossing period, wave direction, and a wave spectrum.

The software is capable to calculate the root mean square value of stress for each sea state (σ).
In the application of the offshore jacket structures, the wave loading is considered as a narrow-banded
Gaussian process [5]. For a narrow-banded Gaussian process, the stress ranges are Rayleigh distributed.
The mean value of the fatigue stress range for ith sea state equals to [16]:

E[∆Si
m] =

(
2
√

2
)m

σm
i × Γ

(
1+

m
2

)
(6)

Here, Γ is the Gamma function and σi is the root mean square value of stress for the ith sea state.
The total expected value of the stress range can be calculated as [16]:

E[∆Sm] =

Nsea∑
i=1

E[∆Si
m] × fi (7)

where Nsea is the number of sea states, and fi is the probability of occurrence of each sea state. It is the
fraction of time in which the ith sea state is observed.

Moreover, for a narrow-banded Gaussian process, the total number of stress cycles can be
estimated as [11]:

N = TS × υ0 (8)

where TS is time in year and υ0 is zero-up crossing frequency of the stress process. For the sake of
simplicity, the mean rate of zero-up crossings is taken as υ0 = 5 × 106 per year.

By plugging Equation (8) into Equation (5), the current crack size can be predicted as:

at =
{

a
1−m

2
0 +

(
1−

m
2

)
× Ym

× π
m
2 × C × (TS × ν0) × E[S m

]} 1
1−m

2 (9)

Equation (9) shows that the predicted crack size (at) is a function of several parameters such as
initial crack size (a0), material properties (C), geometry function (Y), and stress range (E[Sm]).

To apply the methodology described in this study, a sample joint is considered. The joint
under consideration is a tubular Y-joint in which the chord and brace diameters are 914 and
660 mm, respectively. Moreover, the chord and brace thicknesses are 25.4 and 19.2 mm, respectively.
Having obtained the root mean square value of stress for each sea state, the expected value of the stress
range for the considered joint is calculated as 180 MPa.
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2.3. Estimation of the Involved Uncertainties in Crack Size Prediction

Several uncertainties exist in the fatigue life prediction in tubular joints such as variation of
stress range, environmental parameters, and stress intensity factors. The following uncertainties are
considered in this paper:

(1) Initial crack size: Initial crack size is an important variable that affects the fatigue life of a tubular
joint. The initial crack size is not a well-known parameter and therefore there is uncertainty
associated with the modeling of this parameter [5].

(2) Crack growth parameter: Fatigue tests indicate a considerable amount of scatter in the obtained
fatigue capacities, which is as a result of material properties. There is always uncertainty in the
definition of reasonable distributions for the material parameters based on available laboratory
test results [5].

(3) Geometry function: Some empirical expressions for the geometry function are given by literature
for simple welded joints [12]. However, there is no analytical solution for the geometry function
for complex geometries such as tubular joints and the experimental data shows a scatter for the
geometry function [9].

(4) Stress range: The stress range spectrum is obtained by assuming relationships between wave
height and wave stress spectrums. Moreover, there are several uncertainties involved in the
global fatigue analysis (e.g., environmental parameters, hydrodynamic loads, etc.) [17]. Therefore,
the calculated stress range for the considered tubular joint is assumed as an uncertain parameter.

The considered uncertainties and their distributions involved in the calculation of fatigue damage
are presented in Table 1.

Table 1. Statistics of the uncertainties

Uncertain Parameter Type Mean Coefficient of Variation (COV)

Initial crack size, ap
0 , 1 (mm) Lognormal 0.4 [6] 0.35

Crack growth parameter, Cp, (m×
(
MPa×

√
m

)−3
) Lognormal 2.1 × 10−12 [18] 0.35

Stress range, Sp (MPa) Lognormal 180 0.35
Geometry function, Yp Lognormal 1 [9] 0.2
Material properties, m Fixed 3 [18] —

1 Superscript p indicates the prior distribution.

2.4. Probability of Failure Calculation

After predicting the crack size based on the FM approach, the probability of failure can be
calculated by using a limit state function. The limit state function represents the boundary between the
safe and unsafe performance of a system or a component [19].

Different criteria such as crack size criterion and equivalent fatigue strength criterion have been
suggested to describe the fatigue limit state of the tubular joints with cracks [20]. In the crack size
criterion, failure occurs, as soon as the crack propagation size is bigger than a critical value, whereas,
in the equivalent fatigue strength criterion, failure happens when the stress intensity factor in the crack
tip is greater than the fracture toughness. In this study, the crack size is treated as a failure criterion for
the reliability calculations. Therefore, the fatigue limit state function is described as [20]:

g = ac − at (10)

where ac is the critical crack size. The critical crack size can be defined based on serviceability
criteria (e.g., through the thickness crack or economic repair limits) or ultimate collapse criteria
(e.g., unstable fracture) [5]. Critical crack size can be assumed as the wall thickness for reliability
analysis [5,20].

In this study, Monte-Carlo simulation is used to obtain the probability of failure. To obtain the
reliability using Monte-Carlo simulation, the following steps are considered [21]:
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1. a large number of samples for each uncertain parameter is generated based on the distribution
provided in Table 1;

2. The limit state function (Equation (10)) is evaluated for each set of samples (trials);
3. The probability of failure is estimated as:

Pf �
nf

Ntrial
(11)

where nf is the number of trials at which the limit state function less than or equal to zero
(i.e., crack size exceeds the critical size) and Ntrial is the total number of trials.

2.5. Prior Distribution of the Crack Size

One of the purposes of this study is to update the crack size distribution when new inspection
data is available. The first step of updating is to select an appropriate prior distribution of crack size.
The prior crack size distribution can be assumed based on theoretical considerations, expert opinions,
past experiences, or data provided in the literature [2]. However, the suggested crack size distribution
is based on limited experimental tests.

In this study, a sampling method is proposed to obtain the crack size distribution. For this purpose,
a large number of samples, Np is generated by using random numbers obtained from the distributions
of the uncertain parameters.

For each set of generated samples, the prior crack size is calculated by using Equation (9).
For example for the kth sample, the prior crack size (ap

k) is calculated as:

ap
k =

{(
ap

0k

)1−m
2 +

(
1−

m
2

)
×(Y p

k

)m
× π

m
2 × Cp

k × (Ts × ν0) × E[(S p
k

)m
]

} 1
1− m

2 (12)

where k = 1, 2, . . . , Np. Here, the number of samples is considered as Np = 105. A large value of
samples improves the probability that all relevant combinations of these random variables are included.
A Python code is written to obtain the crack size distribution by generating random samples for each
uncertain parameter [22].

Figure 1 shows the normalized histogram of the predicted crack sizes after five years (Ts = 5)
based on the generated samples, which is used as a prior distribution for the crack size.
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2.6. Estimation of Probability of Detection (POD)

Several fatigue cracks usually exist in a welded connection such as a tubular joint in the offshore
platforms. Not all of these existing cracks can be detectable. The probability of detection of a crack
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depends on the resolution of the inspection technique. There is a wide variety of NDT techniques
for finding cracks [23]. The probability of detection (POD), varies with crack size and the applied
inspection technique. The probability of detection of a crack is usually given by [23]:

POD (a) = 1− e −
a

amd (13)

where amd, is the mean detectable size and it depends on the resolution of the inspection technique [23].
Figure 2 shows the POD curves for different mean detectable sizes.
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In general, amd is an uncertain value, therefore in this study, a lognormal distribution (LN) is
assigned to the prior estimation of the mean detectable size as:

ap
md ∼ LN (3mm, COV = 0 .5) (14)

Here, a large COV is considered for amd to have the prior as non-informative as possible.
Non-informative priors are intended to let the data (observations) dominate the posterior distribution;
thus, they contain little substantive information about the parameter of interest [24]. To find out which
prior crack can be detected, Np random values of ap

md are selected based on the defined distribution.

2.7. Obtaining the Detected Cracks

In previous sections, Np simulations are performed for the crack size (ap) and also for the mean
detectable size (ap

md). Therefore, for each crack size, a corresponding value of mean detectable size is
available. In general, tiny cracks cannot be detected by using any NDT techniques. A criterion should
be defined to show which prior crack size (with the corresponding ap

md) is detectable and which one is
missed. The proposed criterion is described below:

(1) For each set of
(
ap, ap

md

)
j
, j = 1, 2, . . . , Np; (PODp)j is calculated using Equation (13).

(2) 105 random numbers are chosen from a uniform distribution between [0, 1], i.e.,:
(3) (Chancep)j = Random number, j = 1, 2, . . . , 105.

(4) A prior crack size is assumed as a detected crack size
(
adet_p

)
j
if:

a. (Chancep)j ≤ (PODp)j j = 1, 2, . . . , 105

(5) Otherwise, the simulated prior crack size is assumed as a missed one.
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Figure 3 shows the detected and missed cracks based on the defined criterion. As the figure
shows, the majority of the missed cracks are tiny defects, which are quite impossible to detect using
NDT techniques.
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3. Simulated Reality Estimations

It was demonstrated that the predicted crack size in a particular joint is a function of initial crack
size, crack growth parameter, stress range, and geometry function. The assumed distributions of these
input variables have a great impact on the crack size distribution [5,25]. Therefore, it is crucial to
choose the most credible distributions for these parameters.

The accuracy of the reliability analysis results is dependent on the assumed distributions [25].
It was mentioned that the different recommended practices introduced various prior distributions
for the uncertain parameters. However, these distributions are obtained based on experimental tests.
Therefore, they are not representative of the real distributions. For example, the crack growth parameter
is normally estimated by fitting fatigue test data measured under controlled, laboratory-environment
conditions which are different from actual conditions in offshore platforms [2].

Since the real distributions for these uncertain parameters are unknown, in this study, an approach
which is called the simulated reality distributions approach is used to obtain the real distributions.
This approach is based on the concept of the equivalent initial flaw size.

3.1. Concept of Equivalent Initial Flaw Size

In the reliability analysis of aircraft structures, the initial crack size distribution plays a critical
role in the distribution of the crack size [26]. To obtain the initial crack size distribution, Gray and
Rudd [26] introduced the concept of equivalent initial flaw size (EIFS). This concept was developed for
probabilistic risk analysis of aircraft by Yang and Manning [27].

The EIFS distribution is usually obtained by back extrapolating of the observed crack size to its
corresponding size at time zero. This involves fitting a crack growth model to the crack size. Therefore,
the EIFS is an artificial crack size [26] and for an observed crack size, the EIFS is not unique, i.e., for the
same observed crack sizes, different EIFS values can be achieved by using different crack growth
models [26]. Despite this shortcoming, the concept of the EIFS has been used to quantify the initial
crack size distributions, due to its consistency with the crack growth to calculate the crack size at a
given time [26].

For a given set of crack sizes (for a particular joint at different times), the equivalent initial flaw
size (EIFS) distributions with the corresponding crack growth curves can be obtained as follows:

(1) A specific crack size is selected as a baseline crack size (aBCS).
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(2) For a given set of crack sizes, the crack sizes that are bigger than the baseline crack size are
regressed using the crack growth curve. Moreover, the crack sizes that are smaller than the
baseline crack size are grown using the crack growth curve.

(3) A probability density function (PDF) is assigned to the time that cracks reach the size of aBCS.
(4) The time distribution of the baseline crack size is transferred to an initial crack size with a

cumulative probability of (1 − FT(t)).
(5) Finally, an appropriate distribution for the equivalent initial flaw size (EIFS) is obtained.
(6) Figure 4 illustrates the method for obtaining EIFS distribution.
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Figure 4. Obtaining the equivalent initial flaw size (EIFS) distribution.

The EIFS distribution is determined by regressing the observed crack sizes from inspection results
back to the beginning of its fatigue life [27]. However, to obtain a suitable distribution, a sufficient
number of data points are required, although the inspection data can be very limited and expensive to
obtain. Therefore, the quality of the EIFS distribution depends on the number of available inspection
results [27].

In the literature, the EIFS approach was considered to obtain the initial crack size distribution of
aircraft. However, for the reliability analysis of offshore platforms, the distribution of the crack size
at any given time depends on several uncertain parameters as presented in Equation (9). Therefore,
in this study, the EIFS approach is extended for obtaining the equivalent distribution for all uncertain
parameters affecting the crack size in a tubular joint.

3.2. Simulated Reality Distributions for Uncertain Parameters

Fatigue inspection results only include information about the crack sizes. Since the inspection
cannot provide any explicit information about the other uncertain parameters, the distributions of
these parameters are unknown. For this purpose, the concept of equivalent distributions is used for
predicting the distribution of these parameters in the simulated reality.

To demonstrate the considered approach, it is assumed that five inspection results are available
for the considered tubular joint at different years. Table 2 shows the assumed inspection results.
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Table 2. Assumed inspection results for the considered tubular joint

Inspection No. Inspection Year Measured Crack Size (mm)

1 3 1.2
2 4 2.2
3 5 4.1
4 6 6.3
5 7 9.6

To obtain the simulated reality distribution for the initial crack size, the baseline crack size is
selected as aBCS = 4 mm. For the given crack sizes inTable 2, the crack sizes that are bigger than the
4 mm are regressed and the crack sizes that are smaller than the 4 mm are grown using the crack
growth curve. Table 3 shows the time to reach to 4 mm for each crack.

Table 3. Crack growth/regression.

Inspection No. Year in Service Crack Size (mm) aBCS (mm) Time to Reach to the aBCS (Year)

1 3 1.2

4

5.9
2 4 2.2 7.5
3 5 4.1 4.8
4 6 6.3 3.4
5 7 9.6 2.9

The mean value and standard deviation of the last column in Table 3 are calculated equal to
4.9 mm and 1.87 mm. Therefore, the following lognormal distribution is considered for the distribution
of the time that crack reaches to baseline crack size:

TS∼ LN (4 .9 years, COV =
1.87
4.9

= 0 .38) (15)

To obtain the simulated reality distribution for the initial crack size, the mean values of the crack
growth parameter, stress range, and the geometry function are selected. A large number of random
samples are generated for time (TS) based on Equation (15) and for each sample, the corresponding
initial crack size is obtained by using Equation (9).

Figure 5 shows how the equivalent initial crack size distribution is obtained by using the proposed
approach for three randomly-generated times, schematically.
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Having obtained the initial crack size for each sample, the best distribution is fitted for the
equivalent initial crack size histogram. Figure 6 illustrates the obtained equivalent initial crack size
distribution for the considered tubular joint.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 20 
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The same approach is utilized to derive the equivalent distribution for the crack growth parameter
(C). Again, a large number of randomly generated samples for time (TS) is selected based on the
lognormal distribution. To obtain the simulated reality distribution for the crack growth parameter,
the mean values of the crack initial crack size, stress range, and the geometry function are selected.
Figure 7 shows how the equivalent crack growth parameter distribution is obtained by using the
proposed approach.
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Figure 7. Obtaining the equivalent crack growth parameter distribution.

Having obtained the crack growth parameter value for each sample, the best distribution is fitted
for the equivalent crack growth parameter distribution. Figure 8 illustrates the obtained equivalent
crack growth parameter distribution for the considered tubular joint.
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A similar approach is employed to obtain the equivalent distribution for the stress range and the
geometry function. Figures 9 and 10 show the obtained equivalent distributions for the stress range
and the geometry function, respectively.
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Table 4 summarizes the obtained equivalent distributions for the uncertain parameters which are
assumed as the real distributions. Since these distributions are achieved based on sampling methods,
in this paper, they are called simulated reality distributions.

Table 4. Simulated reality distributions for the uncertain parameters

Uncertain Parameter Type Mean Coefficient of Variation (COV)

Initial crack size, ar
0, 1 (mm) Lognormal 0.48 0.21

Crack growth parameter, Cr, (m×
(
MPa×

√
m

)−3
) Lognormal 2.4 × 10−12 0.18

Stress range, Sr (MPa) Lognormal 210 0.2
Geometry function, Yr Lognormal 1 0.12

1 Superscript r indicates the simulated reality distribution.

3.3. Simulated Reality Distribution for Crack Size

Having obtained the simulated reality distributions for the input variables, the simulated reality
distribution of the crack size can be obtained. Again, a sampling method is used to obtain the simulated
reality distribution for the crack sizes after five years. For this purpose, Nr = 1000 random numbers
are generated for each input variable based on their distributions presented in Table 4. For each set
of samples (e.g., for the kth sample set: ar

0k, Cr
k, Sr

k and Yr
k), the crack size (ar

k) is calculated based on
Equation (9). Figure 11 shows the normalized histogram of the simulated reality crack sizes after five
years which is used as a simulated reality distribution for the crack size.
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It is noted that, in practice, only few inspection results are available for each tubular joint due
to the expensive cost of the inspection. In the proposed sampling method, instead of using a few
inspection results, a large number of artificial crack sizes that are generated based on inspection results
are used. These generated cracks can be used for improving the distribution of uncertain parameters.

3.4. Simulated Reality Distribution for POD Curve

It was mentioned that the probability of detection of a crack depends on the resolution of the
inspection technique. Here, a lognormal distribution with a mean value of 2 mm and coefficient of
variation (COV) of 0.2 is considered for the simulated reality distribution of the mean detectable size as:

ar
md∼ LN (2 mm, COV = 0 .2) (16)

To find out which simulated reality crack can be detected, Nr random values of ar
md are selected

based on the defined lognormal distribution in Equation (16).
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3.5. Obtaining the Detected Simulated Reality Cracks

In previous sections, 1000 crack sizes (ar) and 1000 mean detectable size (ar
md) are generated.

Therefore, for each crack size, a corresponding value of mean detectable size is available. Some of the
generated cracks in the sampling method are tiny. Therefore, they cannot be detected by using any
NDT techniques. This approach is intended to use those cracks that can be detected.

The same criterion as in Section 2.7 is used to decide which crack size (with the corresponding
ar

md) is detectable and which one is missed. Figure 12 shows both detected and missed cracks.
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4. Posterior Distributions of the Uncertain Parameters

Now, there are two sets of cracks; detected prior cracks and detected simulated reality cracks.
To obtain the posterior distribution, each detected prior crack is compared with the simulated reality
cracks to determine if the detected prior crack is compatible with reality. If the prior crack is ‘close’ to
the simulated reality crack, that prior crack is assumed as a compatible simulation. The prior crack is
considered as a compatible simulation if the following condition is satisfied:

|

(
adet_p

)
i
−

(
adet_r

)
j
| < T ×

(
adet_p

)
i
+

(
adet_r

)
j

2
(17)

with
i = 1, 2, . . . , zp and j = 1, 2, . . . , zr (18)

where adet_p and adet_r represent the detected prior crack size and detected simulated reality crack size,
respectively. The parameters zp and zr represent the number of detected prior crack and simulated
reality cracks, respectively.

To quantify the word ‘close’, the parameter T is considered to represent the acceptable tolerance.
If a small value is selected for tolerance, the difference between the prior crack and the simulated reality
crack should be small. On the other hand, big value for tolerance allows a bigger difference between
prior and the simulated reality cracks. Figure 13 shows the acceptable range for a prior crack for two
different tolerances. To demonstrate the methodology, in this study, the parameter T is assumed equals
to 0.2.
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Based on the compatibility definition in Equation (17), many prior simulations may not match
any real case. However, some prior simulations may match several real cases. By using Equation (17),
the prior cracks are split into two categories; compatible priors and incompatible priors. For obtaining
the posterior distribution, the incompatible prior simulations are removed and the compatible prior
simulations are considered as the posterior cracks. In fact, by implementing this approach, the new
data (which are simulated reality cracks) is utilized to improve the prior cracks and to obtain the
posterior distribution of the crack sizes.

4.1. Updating the Crack Size Distribution

Figure 14 shows the posterior distribution of crack sizes that are obtained based on the compatible
priors. Although both detected prior cracks and detected simulated reality cracks affect the posterior
distribution shape, it is observed that the posterior distribution has moved towards the simulated
reality distribution.
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It is also observed that the posterior distribution is narrower than the prior distribution. Therefore,
the uncertainty of the posterior distribution for the crack size is reduced in comparison with the prior
distribution. In fact, by implementing the inspection results, the posterior distribution for the crack
size becomes less uncertain than the prior knowledge.

4.2. Updating the POD Curve

By removing the incompatible prior cracks, the posterior POD curve can be achieved. Figure 15a
shows compatible prior simulation results and the fitted distribution. As can be seen from Figure 15b
the posterior POD has moved towards the simulated reality data.
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4.3. Updating the Distributions of Other Uncertain Parameters

If a specific detected prior crack, adet_p
j is incompatible, it means that the combination of the

corresponding input variables (ap
0j, Cp

j , Yp
j and Sp

j ) are not producing an acceptable prior crack size.

Therefore, these values (ap
0j, Cp

j , Yp
j and Sp

j ) are removed from the initial set of prior simulations.
On the other hand, if a simulated prior crack is a compatible crack size with the simulated
reality, the corresponding input variables are appropriate values and they are kept to use for the
posterior distributions.

Figures 16–19 show the posterior distributions for the uncertain input variables. Similar to
Figure 14, the posterior distributions of the uncertain parameters have moved towards the simulated
reality distribution. For example, in Figure 17, when the crack growth parameter is around 2 × 10−12,
the posterior distribution is ascending and the prior distribution is descending. The figure illustrates
that the posterior distribution tends to shift towards the simulated reality distribution.
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It is found in Figure 14, that the uncertainty of the posterior crack size distribution decreases. 
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5. Conclusions 

In this study, a methodology is presented to update the probability distribution of uncertain 
parameters when new information (inspection results) becomes available. Such information can be 
used to update the probability distributions of the uncertain parameters. Crack size, POD curve, 
initial crack size, crack growth parameter, stress range, and geometry function are considered as 
uncertain parameters. 

The fatigue probability of failure of tubular joints depends on the crack size distribution. Since 
the crack size is a function of several parameters, the distributions of these parameters affect the crack 
size distribution. Different studies suggest various distributions for these parameters. Therefore, the 
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Moreover, in these figures, the most probable amount of the random variable (mode value) is
shifted towards the mode value of the simulated reality distributions. It is worth mentioning that the
shape of the posterior distribution is affected by both prior and simulated reality distributions.
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The updated distributions can be used as the prior distributions for the next updating process
when new inspection results are available. Therefore, for the next updating process, instead of using
generalized distributions provided by recommended practices, more realistic distributions can be
selected as prior distributions.

It is found in Figure 14, that the uncertainty of the posterior crack size distribution decreases.
However, it is observed that the uncertainty of the posterior distributions of the other parameters
increases due to the involved uncertainties in both prior and simulated reality distributions. The reason
is that the inspection results include only the crack size information and they do not provide any
explicit information about the other parameters.

Although the uncertainty of the posterior distributions of the input variables increases, the prior
distributions of the input variables are modified based on the real situation of the considered tubular
joint. It was mentioned that the prior distributions are based on experimental tests that are different
from the real condition of the platform. Therefore, for the next updating process (when these posterior
distributions are considered as the prior distributions for updating), the prior distributions are more
reliable than the introduced distributions in the recommended practices and the uncertainties will be
gradually reduced during the next updating process.

5. Conclusions

In this study, a methodology is presented to update the probability distribution of uncertain
parameters when new information (inspection results) becomes available. Such information can be
used to update the probability distributions of the uncertain parameters. Crack size, POD curve,
initial crack size, crack growth parameter, stress range, and geometry function are considered as
uncertain parameters.

The fatigue probability of failure of tubular joints depends on the crack size distribution. Since the
crack size is a function of several parameters, the distributions of these parameters affect the crack
size distribution. Different studies suggest various distributions for these parameters. Therefore,
the selection of the appropriate prior distributions is crucial and sometimes difficult. In this study,
a framework is developed to improve the prior knowledge about the uncertain parameters. Moreover,
the framework is capable to update the crack size distribution and the probability of failure.

The proposed methodology utilizes the simulated reality data to understand how the prior
assumptions combine with observations to improve the posterior estimates from the Bayesian procedure.
In this study, simulated reality data is used, rather than real data, because there will not usually be
sufficient real data to check the behavior of the method.

The sampling method is used to generate the prior distribution of crack sizes. A large number of
random numbers for each input variable are generated based on their distributions. The crack size is
then calculated for each set of randomly generated samples. Moreover, to obtain the simulated reality
distributions of the input variables, the concept of equivalent initial flaw size distribution is utilized.
For obtaining the posterior distribution, the concept of compatibility is defined. For this purpose,
each detected prior crack is compared with each simulated reality crack. If the prior crack is close to
the simulated reality, it is assumed as a compatible prior otherwise it is considered as an incompatible
prior. The posterior distribution is then achieved by removing the incompatible priors and fitting the
best distribution to the compatible priors.

The results of this updating method show that the posterior distributions of uncertain parameters
shift toward to the simulated reality distribution. It is also shown that the uncertainty of the posterior
crack size distribution decreases whereas the uncertainty of input variables increases since the
inspection results include only data about the crack size and do not provide any information about the
input variables.

The updated distributions will be used as the prior distributions for the next updating process
when new inspection results are available.
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