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Abstract: Mangroves and salt marshes are among the most productive ecosystems in the global coastal
ocean. Mangroves store more carbon (739 Mg CORG ha−1) than salt marshes (334 Mg CORG ha−1),
but the latter sequester proportionally more (24%) net primary production (NPP) than mangroves
(12%). Mangroves exhibit greater rates of gross primary production (GPP), aboveground net primary
production (AGNPP) and plant respiration (RC), with higher PGPP/RC ratios, but salt marshes exhibit
greater rates of below-ground NPP (BGNPP). Mangroves have greater rates of subsurface DIC
production and, unlike salt marshes, exhibit active microbial decomposition to a soil depth of
1 m. Salt marshes release more CH4 from soil and creek waters and export more dissolved CH4,
but mangroves release more CO2 from tidal waters and export greater amounts of particulate organic
carbon (POC), dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), to adjacent
waters. Both ecosystems contribute only a small proportion of GPP, RE (ecosystem respiration)
and NEP (net ecosystem production) to the global coastal ocean due to their small global area,
but contribute 72% of air–sea CO2 exchange of the world’s wetlands and estuaries and contribute
34% of DIC export and 17% of DOC + POC export to the world’s coastal ocean. Thus, both wetland
ecosystems contribute disproportionately to carbon flow of the global coastal ocean.

Keywords: biogeochemistry; carbon; carbon balance; ecosystem; ecosystem processes; mangrove;
salt marsh; wetland

1. Introduction

Salt marshes and mangrove forests are intertidal ecosystems comparable sensu lato in that they
both occupy the coastal land–sea interface; the former mostly in sheltered temperate and high- latitude
coastlines, the latter along quiescent subtropical and tropical shores [1]. Both ecosystems are characterized
by a rich mixture of terrestrial and marine organisms, forming unique estuarine food webs, and play
an important role in linking food webs, inorganic and organic materials, and biogeochemical cycles
between the coast and adjacent coastal zone. Structurally simple compared to other ecosystems, salt
marshes and mangroves harbor few plant species, but they are functionally complex, having ecosystem
attributes analogous to those of other grasslands and forests, respectively, but also functioning in many
ways like other estuarine and coastal ecosystems [1–3].

Drivers such as salinity, geomorphology, and tidal regime impose structural and functional
constraints and foster adaptations and physiological mechanisms to help these wetland plants subsist
in waterlogged saline soils. Tides and waves (to a much lesser extent) are an auxiliary energy subsidy
that allows both ecosystems to store and transport newly fixed carbon, sediments, food and nutrients,
and to do the work of exporting wastes, heat, gases and solutes to the atmosphere and adjacent coastal
zone. This subsidized energy is used indirectly by organisms to shunt more of their own energy into
growth and reproduction, making tidal power one of the main drivers regulating these intertidal
systems [1]. Tidal circulation is complex, as marsh and forest topography and morphology and the
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tidal prism regulate the degree of mixing and trapping of water and suspended matter within adjacent
tidal waters and the wetland communities [1].

Food webs within these wetlands are composed of mixtures of terrestrial, estuarine and marine
fauna and flora that help to actively cycle nutrients and carbon. Plankton communities in adjacent
creeks and waterways are productive and abundant, and well-adapted to complex hydrology and
water chemistry. These opaque tidal waters host organisms ranging in size from viruses to reptiles,
such as alligators and crocodiles.

Salt marshes and mangrove forests are carbon-rich ecosystems that are perceived to play a role
in climate regulation, biogeochemical cycling, and in capturing and preserving large amounts of
carbon that counterbalance anthropogenic CO2 emissions [4–6]. It is unclear to what extent both
ecosystems constitute a significant carbon sink in the global coastal ocean, and whether restoring and
replanting new marshes and mangroves will assist in ameliorating climate change. Thus, an improved
understanding of carbon allocation and balance within these ecosystems is urgently needed. In this
synthesis, similarities and differences in carbon cycling in both ecosystems are identified to better
understand how they function, especially with regard to their role in carbon cycling in the global
coastal ocean.

2. Allocation of Carbon Stocks

Salt marshes and mangrove forests both store large quantities of organic carbon (CORG) in soils
and, to a lesser extent, in plant biomass (Figure 1). On average, soil CORG to a depth of 1 m comprises
77% and 95% of the total CORG stocks in mangrove forests and salt marshes, respectively.
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Figure 1. Median organic carbon stocks vested in above- and belowground plant biomass and in soils 
to a depth of 1 m in salt marshes and mangrove forests on a per hectare basis. Mean (±1 standard 
error) values and references are listed in Table 1. 

Carbon stocks in mangroves and salt marshes; above-ground biomass CORG accounts for 15% 
and 1% of total CORG in mangroves and salt marshes, respectively. Mangrove below-ground biomass 
CORG accounts for twice (8%) the total carbon stocks of salt marshes (4%). Total CORG stock in mangrove 
forests is twice as great as in salt marshes on a per hectare basis (Table 1). Globally, mangrove CORG 
stocks (6.17 Pg) are, on average, three times greater than salt marshes (1.84 Pg) due to greater stocks 
on both a per area basis and the fact that there are 1.5 times more mangrove forests than salt marshes 
worldwide (Table 1). Of course, carbon stocks vary greatly within both ecosystems as a function of 
ecosystem age, intertidal position, and species composition, as well as in terms of geographic, climatic 
and environmental factors. 

Figure 1. Median organic carbon stocks vested in above- and belowground plant biomass and in soils
to a depth of 1 m in salt marshes and mangrove forests on a per hectare basis. Mean (±1 standard error)
values and references are listed in Table 1.

Carbon stocks in mangroves and salt marshes; above-ground biomass CORG accounts for 15% and
1% of total CORG in mangroves and salt marshes, respectively. Mangrove below-ground biomass CORG

accounts for twice (8%) the total carbon stocks of salt marshes (4%). Total CORG stock in mangrove
forests is twice as great as in salt marshes on a per hectare basis (Table 1). Globally, mangrove CORG

stocks (6.17 Pg) are, on average, three times greater than salt marshes (1.84 Pg) due to greater stocks on
both a per area basis and the fact that there are 1.5 times more mangrove forests than salt marshes
worldwide (Table 1). Of course, carbon stocks vary greatly within both ecosystems as a function of
ecosystem age, intertidal position, and species composition, as well as in terms of geographic, climatic
and environmental factors.
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Table 1. Comparison of mean (±1 standard error, SE) carbon stocks between salt marsh and mangrove
ecosystems. Units = Mg CORG ha−1. Median values are in parentheses and in Figure 1. Mangrove data
from [6]. Salt marsh g dry weight (DW) biomass was converted to g CORG using percent CORG content
in roots + rhizomes (41.5 ± 1.2%) and shoots (38.5 ± 0.7%) of various species [7–15]. Salt marsh above-
and below ground biomass data (from [16–47] and earlier references within). Global mangrove area
(86,495 km2) from [48] and salt marsh global area (54,951 km2) from [49].

Component Mangrove Forests Salt Marshes

Aboveground biomass (AGB) 109.3 ± 5.0 (94.1) 4.3 ± 0.10 (2.4)
Belowground biomass (BGB) 80.9 ± 9.5 (34.2) 12.9 ± 1.2 (9.6)

Soil (0–1 m depth) 565.4 ± 25.7 (500.5) 317.2 ± 19.1 (282.2)
Total C stock (Mg Corg ha−1) 738.9 ± 27.9 (702.5) 334.4 ± 3.5 (294.2)

Global area (km2) 86,495 54,951
Global C stock (Pg Corg) 6.17 1.84

Median CORG content in salt marsh (5.8%) soils is greater than in mangrove soils (2.6%), but there
is a wide spread of values in both wetland types, varying from 0.1% to 30% [50,51]. The wide range of
soil CORG content undoubtedly reflects different geomorphological, climatic and environmental factors,
as well as ecosystem age, species composition and hydrology. Similarly, C/N ratios are highly variable
for the same reasons, varying within both marshes and mangroves, by 5/1 to 60/1 [50,51], respectively.

3. Primary Production and Plant Respiration

Rates of gross and net primary production in salt marshes and mangrove forests are among the
highest for aquatic ecosystems and are within the range of rates for terrestrial grasslands and humid
forests [52]. Median rates of gross primary production (GPP), aboveground net primary production
(AGNPP) and canopy (plant) respiration (RC) are greater for mangroves than salt marshes (Figure 2),
although there is significant variation in rates reflecting species-specific differences in production
among salt marsh and mangrove plants; nutrient status; wetland age; and other factors such as soil
salinity, location, hydrology, intertidal position and temperature.
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Figure 2. Median rates of gross (GPP) and aboveground net (AGNPP) primary production and plant 
respiration for mangroves (green bars) and salt marshes (blue bars). Vertical line in each box denotes 
the median (values presented in each box), and the boxes encompass the 25th and 75th percentiles 
and the outer bars denote the 5th and 95th percentiles. Data from Table 2. 

Figure 2. Median rates of gross (GPP) and aboveground net (AGNPP) primary production and plant
respiration for mangroves (green bars) and salt marshes (blue bars). Vertical line in each box denotes
the median (values presented in each box), and the boxes encompass the 25th and 75th percentiles and
the outer bars denote the 5th and 95th percentiles. Data from Table 2.
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Table 2. Comparison of mean (±1SE) GPP and above- and belowground net (NPP) primary production,
canopy respiration (RC) and benthic microalgal GPP and NPP between salt marsh and mangrove
ecosystems. Units = Mg CORG ha−1 a−1. Median values are in parentheses. Mangrove data from [6,52,53].
Salt marsh g dry weight (DW) production converted to g CORG using percent CORG content in roots +

rhizomes (41.5 ± 1.2%) and shoots (38.5 ± 0.7%) of various species (references in Table 1). Salt marsh
above- and belowground production data from ([54–85] and earlier references within) and microalgal
production data from [86–93].

Component Mangrove Forests Salt Marshes

GPP 35.3 ± 6.0 (26.6) 17.7 ± 1.9 (16.6)
Aboveground NPP 13.2 ± 1.7 (9.0) 5.0 ± 0.3 (3.7)
Belowground NPP 5.2 ± 4.4 (5.1) 12.6 ± 1.1 (9.4)

RC 22.3 ± 4.9 (15.7) 8.4 ± 1.2 (6.4)
Microalgal GPP 4.4 ± 2.2 (3.3) 1.8 ± 0.8 (1.3)
Microalgal NPP 2.1 ± 0.7 (1.8) 1.5 ± 0.2 (1.1)

PGPP/RC 1.6 ± 0.1 (1.5) 1.0 ± 1.3 (1.0)

Rates of belowground root production (Table 2) are significantly greater in salt marshes (one-way
ANOVA on ranks; p < 0.05), although mangrove root production has most likely been greatly
underestimated due to problems with methodology and the lack of empirical measurements [53]. Rates
of benthic microalgal productivity in both salt marshes and mangroves (Table 2) are not significantly
different (one-way ANOVA on ranks; p > 0.05). PGPP/RC ratios are significantly greater in mangrove
forests than in salt marshes (one-way ANOVA on ranks; p < 0.001) and are equivalent to those estimated
for tropical terrestrial forests [52].

4. Soil Carbon Biogeochemistry

4.1. Soil-Air/Water Fluxes

Salt marsh and mangrove soils are waterlogged and saline and inundated for a part of every day.
Usually but not always composed of silt and clay particles, soil of both ecosystems is penetrated by
roots, rhizomes, and pieces of dead plant material. Having similar C and nutrient contents (Section 2),
it is not surprising that they have rates of soil respiration that are not significantly different (one-way
ANOVA on ranks; p > 0.05), except for significantly lower rates of oxygen uptake in mangrove soils
(Table 3); these oxygen fluxes are significantly lower than those of dissolved inorganic carbon (DIC)
and CO2 [94].

Table 3. Comparison of mean (±1SE) rates of soil respiration, dissolved inorganic carbon (DIC)
production (to a depth of 1 m), CH4 release and Corg burial between mangrove and salt marsh
ecosystems. Units = Mg C ha−1 a−1. Soil respiration data averages measurements taken at the soil
surface during air exposure and tidal inundation and includes both gas (O2 and CO2) and solute
(dissolved oxygen (DO) and DIC) measurements together for salt marshes and separately for mangroves.
Mangrove oxygen and carbon fluxes are kept separate because of significant differences [94]. Median
values are in parentheses. Mangrove data from [94]. Burial rates for both ecosystems from [4].
Salt marsh data from [56,58,76,95–138].

Component Mangrove Forests Salt Marshes

Soil respiration 6.13 ± 0.62 (DIC, CO2); 3.88 ± 0.29 (DO, O2) 5.64 ± 0.63 (3.66)
Soil DIC production 18.27 ± 2.30 (15.5) 6.92 ± 1.61 (3.8)

Soil CH4 release 0.015 ± 0.006 (0.004) 0.142 ± 0.02 (0.07)
Corg burial 1.62 ± 0.67 (1.33) 3.82 ± 0.58 (1.84)

In contrast, rates of CH4 release are, on average, nine times greater from salt marsh soils than
from mangrove deposits (Table 3). Methanogenesis is not a large decomposition pathway in mangrove
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soils [50], probably due to the vertically depth-elongated zones of sulfate, iron and manganese
reduction, in which rates vary irregularly and even peak at various depths to 1 m [94]. In salt marsh
soils, rates of sulfate, iron, and manganese reduction decline over the upper 10–20 cm and presumably
methanogenesis then becomes the dominant diagenetic pathway in deeper soils [86]. Methanogenesis
in mangrove soils is ordinarily low, but high rates of methanogenic activity have been measured
in organically polluted mangroves, and otherwise competitive sulfate-reducing and methanogenic
bacteria can coexist if there is sufficient labile organic matter [50]. In salt marsh soils, measured CH4

production rates vary considerably depending on the dominance of sulfate and iron-reduction but are
often measurable in deep (30–100 cm) soils [86].

4.2. Soil DIC Production

In mangrove soils, respired carbon as DIC (and dissolved organic carbon (DOC) and CH4) is
produced to a depth of at least 1 m [94] and perhaps to greater depths considering that there is no
indication of a clear decline in production rates measured over surface−100 cm profiles [94]. These
continuously high rates are likely sustained by decomposition of deep roots, release of root exudates,
activities of deep-dwelling crabs and recycling of an extraordinarily large pool of dead roots and
subsurface bacterial biomass [1,52]. Due to a number of geophysical and geochemical factors [94], early
diagenesis of soil organic matter in mangroves is unlikely to be in steady-state, as it is in most subtidal
coastal and marine sediments [1]. This phenomenon results in a discrepancy between decomposition
processes in surface and subsurface soils, in which rates of respiration across the soil–water/air interface
are not directly linked to respiratory processes in deeper soil layers. As a result, rates of surface soil
respiration equate to only about one-third of subsurface respiration, as measured by DIC release from
incubated soils (Table 3). In salt marshes, in contrast, early diagenesis of organic matter is probably in
steady-state as surface respiration rates are equivalent to subsurface DIC production rates (Table 3).
Oxygen, carbon dioxide and DIC fluxes across the soil surface/air–water interface have long been
presumed to represent total carbon decomposition, assuming steady-state diffusion of gases and solutes
from within the entire soil profile [1]. As discussed in Section 6, it may be that subsurface and surface
respiration in soil marsh soils are similarly spatially separated, helping to account for export of DIC,
DOC and CH4.

4.3. CORG Burial in Soils

Rates of CORG burial in salt marsh soils are greater than rates in mangrove soils (Table 3), although
the differences are not significant (one-way ANOVA on ranks, p > 0.05). There are wide variations in
burial rates among locations, depending on a variety of factors, such as geomorphology, intertidal
position, climate, extent of terrestrial and marine input, habitat age, species composition and soil
texture [4,6]. Along with seagrasses, salt marshes and mangrove forests sequester more organic carbon
on a per area basis than all other terrestrial and marine ecosystems (see Table 3 in reference [6]).

5. Carbon Biogeochemistry in Tidal Waters

5.1. CO2 and CH4 Emissions

Rates of CO2 emissions from mangrove and salt marsh tidal waters (Table 4) are equivalent
(one-way ANOVA on ranks; p < 0.05), but rates of CH4 emissions (Table 4) are significantly greater
from salt marsh waters (one-way ANOVA on ranks; p < 0.05), probably reflecting the higher rates of
methanogenesis in marsh soils (Table 3).
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Table 4. Comparison of mean (±1SE) rates of water–air CO2 and CH4 emissions between mangrove and
salt marsh ecosystems, including open water estuaries containing mangrove and salt marsh habitats.
Units = Mg C ha−1 a−1. Median values are in parentheses. Mangrove data from [94,139]. Salt marsh
data from [139–152] and references within.

Component Mangrove Forests Salt Marshes

Water-air CO2 release 3.35 ± 0.35 (2.19) 2.981 ± 0.33 (1.55)
Water-air CH4 release 0.0116 ± 0.003 (0.01) 0.104 ± 0.047 (0.006)

5.2. Carbon Export

Rates of particulate organic carbon (POC) export to adjacent tidal waters are three times greater
(one-way ANOVA on ranks, p < 0.05) in mangroves than in salt marshes (Table 5). Similarly, DOC
export is more than twice the rate in mangroves than in salt marshes (Table 5); DIC export is nearly
three times greater in mangroves than in salt marshes (Table 5). However, export of dissolved CH4 is
four times greater in salt marshes than in mangroves; methanogenesis is likely to be greater in deeper
salt marsh soils than in mangroves, as reflected in the higher rates of CH4 release from soils and tidal
waters (Tables 3 and 4). The greater rates of organic carbon export from mangroves probably reflect the
higher rates of primary production, litter production and soil mineralization in deep soils. Monsoonal
rainfall in the tropics may facilitate greater export during the wet season.

Table 5. Comparison of mean (±1SE) rates of particulate organic carbon (POC), dissolved organic
carbon (DOC), DIC and CH4 export from mangrove and salt marsh ecosystems to adjacent tidal waters.
Units = Mg C ha−1 a−1. Median values are in parentheses. Mangrove data from [52,94,153–158]. Salt
marsh data from [75,91,140,144,159–187].

Export Component Mangrove Forests Salt Marshes

POC 1.73 ± 0.23 (1.76) 0.60 ± 0.11 (0.31)
DOC 5.90 ± 1.95 (1.43) 2.55 ± 0.55 (1.33)
DIC 14.34 ± 2.26 (10.82) 5.28 ± 1.212 (3.995)
CH4 0.0277 ± 0.0135 (0.026) 0.109 ± 0.0786 (0.0081)

6. Whole-Ecosystem Carbon Mass Balance

Sufficient data exist to construct carbon mass balance models of mangrove (Figure 3) and salt
marsh (Figure 4) ecosystems. The salt marsh model is derived from the data in this review, while
the mangrove mass balance is derived from [94], revised and updated from an earlier iteration [188].
This revised mangrove model shows that about 63% of GPP is respired by the forest canopy. The salt
marsh budget indicates that about 47% of GPP is respired by salt marsh plants. Mangrove NPP
is vested nearly equally in litter, wood and belowground roots, with about 40% of litter exported
to adjacent tidal waters; salt marsh NPP is vested mostly in belowground roots (72%). Unlike in
the mangrove mass balance, salt marsh below- and aboveground NPP are inexplicably greater than
GPP, implying that either below- and/or aboveground production are overestimates or that GPP is
underestimated by about 30%. The standard deviation of the salt marsh GPP data is 73% of the
mean with a range of 45 Mg C ha−1 a−1 (GPP mean = 17.7 Mg C ha−1 a−1), suggesting that these
data have a wide margin of error. Pre-eddy covariance data [143] estimate GPP, plant R and NPP
for salt marshes of 112, 10.7 and 11.5 Tg C a−1, respectively, which nearly balance assuming that the
estimate for root production (69 Tg C a−1) is correct. However, plant R would be too low, equating to
only 9.5% of GPP, resulting in an extraordinarily high PGPP/RC ratio of 10.5; both values are highly
unlikely compared to those estimated for other vegetated ecosystems [1]. In both ecosystems, most
roots produced (90% for mangroves, 78% for salt marshes) are shunted into the soil CORG pool for
eventual decomposition; the remainder is buried (estimates from [189]). The balance of buried carbon
is derived equally from litter and the soil pool. About 12% of mangrove NPP and 22% of marsh NPP is
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eventually sequestered in soils, supporting the estimate that salt marshes sequester proportionally
more CORG in soils than mangroves.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 7 of 21 
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Figure 3. Mass balance of mean carbon flow through the world’s mangrove forests. Units are Tg C a−1.
The budget assumes a global mangrove area of 86,495 km2 [94]. Solid blue arrows depict mean values
based on empirical data (see text for explanation and references). Dashed red arrows represent mean
values estimated indirectly by difference. The CORG pool (both live and dead roots and other organic
matter) in soils to a depth of 1 m is presented in a box in the forest floor with units of Tg CORG.
Abbreviations: GPP = gross primary production; NPP = net primary production; RA = algal production
at soil surface and aboveground biomass; Rc = canopy respiration; RS = soil respiration at soil surface;
RWATER = waterway respiration; POC = particulate organic carbon derived from litter and exported
to tidal waters; DIC = dissolved inorganic carbon; DOC = dissolved organic carbon; CH4 = methane;
EDOC = exchangeable dissolved organic carbon.

CORG decomposition in mangrove soils to a depth of 1 m (158 Tg C yr−1) is greater than NPP
(114 Tg C a−1), implying that (1) the measurements of below-ground microbial decomposition are
overestimates (due to methodological shortcomings; variable incubation times, etc.); (2) other sources of
allochthonous carbon, such as marine and terrestrial inputs are required to balance carbon flow; and/or
(3) centuries-old CORG is also being mineralized, such as CORG buried prior to when the mangroves
inhabited the unvegetated mudflat. As the export of DIC, DOC and CH4 from mangrove subsurface
soils to adjacent tidal waters (175 Tg C a−1) is within the error estimate of the measured rates of
total soil CORG mineralization (158 Tg C a−1), it is likely that allochthonous sources of carbon are
important in mangrove carbon flow, such as imports from adjacent seagrass beds and coastal plankton.
Additionally, the budget does not account for carbon fixed by benthic cyanobacterial mats and other
nitrogen-fixing biota on the forest floor, roots and rhizomes, tree stems, litter and downed wood; these
are very productive assemblages but too patchy in distribution to extrapolate beyond a square meter.
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Further, buried CORG is likely to be a source of respired carbon since measurements of isotopes in
a subtropical Australian mangrove indicate that carbon deposited centuries ago is still susceptible
to decomposition and subsequent tidal export [190]. Incubation experiments with coastal wetlands
have also indicated the potential for sea-level rise to increase remineralization of previously buried
carbon [191].
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Figure 4. Mass balance of mean carbon flow through the world’s salt marshes. Units are Tg C a−1.
The budget assumes a global salt marsh area of 54,951 km2 [49]. Solid blue arrows depict mean values
based on empirical data (see text for explanation and references). Dashed red arrows represent mean
values estimated indirectly by difference. The CORG pool (both live and dead roots and other organic
matter) in soils to a depth of 1 m is presented in a box in the marsh floor with units of Tg CORG.
Abbreviations: GPP = gross primary production; NPP = net primary production; RA = algal production
at soil surface and aboveground biomass; Rc = canopy respiration; RS = soil respiration at soil surface;
RWATER = waterway respiration; POC = particulate organic carbon derived from litter and exported to
tidal waters; DIC = dissolved inorganic carbon; DOC = dissolved organic carbon; CH4 = methane.

In both ecosystems, pCO2 and pCH4 supersaturation of adjacent tidal waters leads to significant
CO2 and CH4 release to the atmosphere. The mean rates of total soil mineralization imply that the
turnover time of the entire soil CORG pool (including dead and live roots) is in the order of 25 years for
mangroves and 20 years for salt marshes, which is in agreement with the fact that mangrove roots
decompose more slowly than marsh plant roots [189] and that most mangrove and salt marsh soil
organic matter is composed of higher plant-derived material high in lignocellulose and hemicellulose
that decomposes slowly [189].

Mangrove discharge of dissolved carbon contributes nearly 60% of DIC and 27% of DOC export
from the world’s tropical rivers to the coastal ocean, based on comparison with the river export data in
Huang et al. [192]. Salt marshes and mangrove forests each inhabit only about 0.3% of global coastal
ocean area, but, respectively, contribute 17% and 55% for a combined contribution of 72% of air–sea
CO2 exchange from the world’s wetlands and estuaries [193]. Salt marshes and mangrove ecosystems,
respectively, export 6% and 28% of DIC export and 4% and 13% of DOC + POC export to the world’s
coastal ocean [194]. Thus, both wetland ecosystems contribute disproportionately to carbon flow in
the global coastal ocean.
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As defined in [53], net ecosystem production (NEP) can be derived by subtracting all respiratory
losses (ecosystem respiration, RE = RC + RS + RWATER + RMICROALGAE) from all salt marsh/mangrove,
benthic algal and plankton gross primary production (GPP). NEP is 54 Tg C a−1 for mangroves and
21 Tg C a−1 for salt marshes (Table 6). Both ecosystems contribute only a small proportion of GPP
and RE to the global coastal ocean due to their small global area, but mangroves are more productive
in terms of NEP on a per area basis than the other coastal habitats (Table 6). Macroalgae contribute
nearly 94% of NEP to total NEP (2217 Tg C a−1), the latter derived by summing the NEP of the global
benthic coastal ocean (−165 Tg C a−1) and all the other habitats (2382 Tg C a−1). Seagrass meadows
also contribute a larger share to total NEP (4.5%) than either mangroves (2.4%) or salt marshes (1.0%)
due to their larger global area. On a per area basis, mangroves produce and respire more carbon than
the other coastal habitats. Coral reefs are on average less productive in terms of GPP than their coastal
ocean counterparts but have roughly equivalent global NEP to seagrasses. All vegetated ecosystems
are net autotrophic (PGPP/RE = 1.09–1.37), with macroalgae being the most autotrophic; the global
coastal ocean is net heterotrophic (PGPP/RE = 0.98).

Table 6. Contribution of salt marshes and mangroves to carbon balance in the global coastal ocean
compared with other marine ecosystems. Global seagrass area from [195], macroalgae area from [196]
and area of other ecosystems from [188], except the global coastal ocean [194], which encompasses
estuaries, other wetlands, and continental shelves. Seagrass data [188] updated from [197–210] and
macroalgae data from [211–236]. Plankton GPP and R in salt marshes from [237] and in mangroves
from [52]. All other data from [188], except global coastal ocean data from [194]. Percentage
contributions of salt marsh and mangrove NEP are based on comparison with sum of all ecosystem
NEP plus the negative global coastal ocean NEP (= 2217 Tg C a−1). Percentage contributions of salt
marsh and mangrove RC and GPP are based on comparison only with global coastal ocean RE and GPP.
Abbreviations and units: RE (g C m−2 a−1) = ecosystem respiration (RC + RS+ RWATER + RMICROALGAE);
GPP (g C m−2 a−1) = gross primary production; NEP (g C m−2 a−1) = net ecosystem production.
Units = area (1010 m2); global RE, global GPP and global NEP (Tg C a−1)

Ecosystem Area RE
Global

RE
GPP Global

GPP
Mean

PGPP/RE
NEP Global

NEP

Salt marsh 5.5 1727 95 2109 116 1.22 382 21
Mangrove 8.6 3558 306 4186 360 1.18 628 54
Seagrass 16.0 2133 342 2752 441 1.29 619 99

Macroalgae 354.0 1572 5565 2159 7643 1.37 587 2078
Coral reef 60.0 1572 943 1720 1032 1.09 148 84

Global coastal ocean 2750 1034 28,435 1028 28,270 0.98 −6 −165
Salt marsh contribution 0.20% - 0.33% - 0.47% - - 1.0%
Mangrove contribution 0.31% - 1.08% - 1.27% - - 2.4%

The sum of plant respiration, surface and subsurface soil respiration, and respiration in tidal
waterways equates to about 82% of salt marsh and 85% of mangrove GPP (Table 6). The remaining
carbon, including that fixed by algae, is stored in vegetation and soil and, to a smaller but vital extent,
is probably lost to fisheries, food webs, birds, and other organisms, including humans.

7. Data Refinements and Future Needs

Both carbon budgets reveal some important shortcomings in the databases. For both ecosystems,
there is a need for more or greater

• Clarity of their global area, as areal estimates vary greatly;
• Estimates of ecosystem GPP, NPP and R, using eddy covariance technology;
• Estimates of belowground root production;
• Quantification and extrapolation of algal mat production and carbon fixation of nitrogen fixers on

tree stems, downed wood and plant debris (litter; leaves);
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• Quantification of allochthonous inputs from marine and terrestrial sources, such as adjacent
seagrass beds, other estuary producers and advection from offshore;

• Estimates of DIC, DOC and CH4 exchange between these wetlands and adjacent waters;
• Estimates of CO2 and CH4 release from associated tidal creeks and waterways;
• Estimates of benthic microalgal GPP;
• Estimates of soil C stocks and fluxes deeper than 50 cm, especially in salt marshes;
• Reconciling rates of soil respiration at the surface and in subsurface deposits and their linkage;
• Quantification of groundwater export of dissolved carbon in relation to porewater advection of

mineralized carbon within deep mangrove and marsh soils;
• Quantification of the fate of roots and their productivity;
• Understanding of CORG differences between within-site and between-site locations (e.g., differences

with intertidal position);
• Clarification of links among roots, litter and the soil CORG pool in relation to mineralization rates;
• Clarification of the contributions of litter, dead plants, wood and the soil CORG pool to carbon burial.

These are just some of the high priority shortcomings and needs to construct more accurate and
balanced carbon budgets for these two ecosystems.

The impact of climate change will likely have a large impact on ecosystem C fluxes and stocks.
For instance, sea-level rise will result in die-off of established plant communities with an increase
in export and burial of plant debris; burial rates will concomitantly increase. It has already been
observed that the encroachment of mangroves into salt marshes has resulted in an increase in storage
of CORG [238,239]. Increases in temperature and atmospheric carbon dioxide concentrations will likely
result in increased mangrove and salt marsh productivity and respiration [240–242], altering the carbon
balance of these ecosystems.

8. Summary and Conclusions

Mangroves and salt marshes are important storage sites for organic carbon and are among the
most productive ecosystems on Earth. Mangroves store, on average, twice as much CORG as salt
marshes, although marshes have greater rates of CORG burial. Mangroves exhibit greater rates of
GPP, aboveground NPP, and canopy respiration with higher PGPP/RC ratios, whereas salt marshes
exhibit greater rates of belowground root production. Mangroves have greater rates of subsurface
DIC production and, unlike salt marshes, exhibit active microbial diagenesis to a soil depth of 1 m.
Salt marshes exhibit greater rates of soil CH4 release and greater export of dissolved CH4, reflecting
greater rates of subsurface methanogenesis, as competing sulfate reducers decline in activity below
about the 20–50 cm soil horizon. Mangroves release greater amounts of CO2 from tidal waters to the
atmosphere and greater amounts of POC, DOC and DIC export to adjacent waters. Mangrove net
ecosystem production (628 g C m−2 a−1) is greater than in salt marshes (382 g C m−2 a−1).

Both ecosystems contribute only a small proportion of GPP and RE (ecosystem respiration) to the
global coastal ocean due to their small global area, but contribute 72% of the air–sea CO2 exchange of
the world’s estuaries, 34% of the DIC export and 17% of DOC + POC export to the world’s coastal
ocean. Thus, both wetland ecosystems contribute disproportionately to carbon flow in the global
coastal ocean.
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