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Model description

A multivariate abundance model is developed to estimate the influences of environ-

mental predictors including management zoning and Degree Heating Weeks (DHW)

on changes in abundance of benthic groups across Karimumjawa National Park, In-

donesia.

We adopted the joint species modelling approach to tease apart effects of observed

environmental predictors on correlated multivariate responses (Warton et al., 2015;

Hui, 2016). Correlations are induced via latent variables to capture the residual vari-

ability not accounted by model predictors. Latent variables are unknown and estimated

by the model which allow to reduce the number of model parameters to be estimated

in a multivariate framework (Warton et al., 2015). Latent variables are seen as unmea-

sured environmental predictors, or as ordination scores, capturing the co-variation of

community abundance in a low-dimensional space after controlling for the observed

predictors.

This approach creates new opportunities to predict abundance and co-occurrence

patterns across many biological communities and understand drivers of changes at

broad spatial scales. Unlike many multivariate distance-based analyses, the joint mod-

elling approach accounts for the statistical properties of the data which can bring seri-

ous problems if ignored (Warton et al., 2012).

The abundance of benthic groups was characterized as relative counts for each sub-

transect i, benthic group j and time t. Counts were modelled using a negative binomial

distribution (NB) parameterized with a mean parameter (µi j) and an over-dispersion
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parameter (φ j) specific to the benthic group. These parameters were linked to environ-

mental and latent variables via a log-link (Eq. 1).

yi j ∼ NB(µi j, φ j)

log(µi j) = αi +β0 j +θi + xT
i β j + zT

i λ j

(1)

with β j and λ j are vectors of coefficients for each benthic group related to the

environmental and latent variables, respectively.

The environmental component, xT
i β j, is composed of three environmental predic-

tors and an intercept β j0 that accounts for differences in functional group abundance

(Eq. 2).

xT
i β j = β j0 +β j1Zoningi +β j2DHWi +β j3Yeari

(2)

The latent component, zT
i λ j, is composed of two correlated latent variables zT

i for-

mulated as random parameters and loading factors λ j (Eq. 3). In addition, subtransect-

level intercepts (αi) are modelled as a random effect (αi ∼ N(0, σ2)). The parameter

allows to include the compositional aspect of the data by standardizing all terms in the

model for the total number of counts (Hui et al., 2015) that summed to 50 as per the

photo-quadrat processing (González-Rivero et al., 2016). This parameter also include

the repeated measurements of subtransect between years.

zT
i λ j = zi1λ j1 + zi2λ j2

(3)
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The Bayesian aspect of the model obliges to indicate prior distributions on model

parameters. Co-occurrences were parameterized using multivariate normal distribu-

tions with mean equal to 0 and covariance c0I (Eq. 4).

zi1 ,zi2 ∼ N (0, I)

β j0 ,β j1 ,β j2 ,β j3 ,αi,λ j1 ,λ j2 ∼ N (0, c0I)

φ ∼ U (0, 10)

c0 = 10 (4)

Co-occurrence patterns of benthic groups were estimated from the residual corre-

lation from the covariance matrix. We interpreted these correlations as evidence of co-

occurrence related to interactions not explained by our observed environmental predic-

tors. Interactions due to shared responses to environmental predictors were estimated

by calculating the covariance between model estimates of environmental predictors.

Co-occurrence is expressed in terms of significant correlations varying between -1 and

1 where 95% credible intervals of their posterior distributions did not include zero. The

R package Boral was used to implement the multivariate abundance model (Hui, 2016).

The multivariate abundance model is fit on two different ecological grouping. The

first grouping includes five benthic categories (Hard coral, Soft coral, Algae, Inverte-

brates and Other) as presented in the main manuscript. The second grouping divides

the communities into 15 sub-groups based on morphological traits (Table S1).

Model selection

The best model formulation was selected from five models using the Watanabe–Akaike

information criterion (wAIC). Model formulation associated with the minimum value

of wAIC is kept. (Table S1).
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Table S1: Ranked model selection based on Conditional DIC values using the 5 benthic
groups as response variables.

Model Features WAIC Conditional
DIC

Model 4 Correlated responses, environmen-
tal predictors, repeated measure-
ments

30841.1 32624.2

Model 3 Correlated responses, environmen-
tal predictors

31276.6 31974.3

Model 1 Correlated responses 32646.5 32965.3

Model 2 Independent responses, environ-
mental predictors

35768.4 32758.8

Table S2: Ranked model selection based on WAIC values using the 15 sub-groups as
response variables.

Model Features WAIC Conditional
DIC

Model 4 Correlated responses, environmen-
tal predictors, repeated measure-
ments

63917.9 64698.9

Model 3 Correlated responses, environmen-
tal predictors

64395.1 66478.4

Model 1 Correlated responses 67901.1 65162.6

Model 2 Independent responses, environ-
mental predictors

70026.7 69105.5
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Model validation

Model validation was assessed by examining Bayesian posterior predictive distribu-

tions of the benthic groups (and sub-groups). The discrepancy distributions were es-

timated from the differences between posterior predictive distributions and observed

counts for each MCMC simulation (Figs. S1 and S2). These distributions were used

to compute posterior predictive p-values and root mean squared errors (RMSE, Tables

S3 and S4). These assessments can be compared to cross-correlation approaches typi-

cally used for model validation with the added benefit of being able to be implemented

directly from model outputs. Model goodness-of-fit was also diagnosed by plotting ob-

served values against discrepancy distributions, overall predicted versus observed data

and model residual distributions per functional group.

Five benthic groups

Table S3: Values of model-goodnesses-of-fit diagnostics.

Benthic group RMSE p-value

Hard coral 13.7 0.862

Soft coral 1.07 0.297

Algae 13.9 0.118

Invertebrates 0.808 0.881

Other 6.20 0.552

Fifteen benthic groups
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Table S4: Values of model-goodnesses-of-fit diagnostics.

Benthic sub-group RMSE p-value

ACR BRA 29.9 0.544

ACR TCD 29.3 0.591

BRA nACR 30.9 0.450

CCA 29.5 0.851

EAM 71.0 0.033

FLP 30.5 0.223

FREE 28.4 0.636

GORG 29.0 0.889

MACRO 29.1 0.673

MSE 31.5 0.183

MSEM 28.4 0.641

NON COLONIZABLE 34.7 0.294

NON HERM 28.6 0.721

OTH-SF 28.1 0.481

SPONG 28.1 0.557
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(a) Discrepancy distributions

(b) Overall model fit (c) Residual distributions

Figure S1: Model performance of benthic groups. (a) the distributions show differences
between predictions and observed data from MCMC simulations. Asterisks indicate
the average counts derived from the data.
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(a) Discrepancy distributions

(b) Overall model fit (c) Residual distributions

Figure S2: Model performance of benthic sub-groups. (a) the distributions show dif-
ferences between predictions and observed data from MCMC simulations. Asterisks
indicate the average counts derived from the data.
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