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Abstract: In this paper, a new robust adaptive beamforming method is proposed in order to
improve the robustness against steering vector (SV) mismatches that arise from multiple types
of array errors. First, the sub-array technique is applied in order to obtain the decoupled
sample covariance matrix (DSCM), in which the auxiliary sensors are selected to decouple the
array. The decoupled interference-plus-noise covariance matrix (DINCM) is reconstructed with the
estimated interference SV and maximum eigenvalue of the DSCM. Furthermore, the desired signal
SV is estimated as the corresponding eigenvector determined by the correlation coefficients of the
assumed SV and eigenvectors. Finally, the optimal weighting vector is obtained by combining the
reconstructed DINCM and the estimated desired signal SV. Our simulation results show significant
signal-to-interference-plus-noise ratio (SINR) enhancement of the proposed method over existing
methods under multiple types of array errors.

Keywords: robust adaptive beamforming; steering vector mismatch; interference-plus-noise covariance
matrix; array errors

1. Introduction

Adaptive beamforming has gained attention as an effective technique in array signal processing,
due to its good target detection performance [1,2]. A Capon beamformer ensures the minimum output
power under the premise of distortion-free reception from the desired signal direction, which is
essentially equivalent to a minimum variance distortionless response (MVDR) beamformer [3,4],
which is an optimal spatial filter, since it maximizes the output signal-to-interference-plus-noise
ratio (SINR).

Although standard Capon beamformer is the theoretical optimal beamformer and has been
widely applied for its good interference suppression ability, its performance drops sharply when
there are mismatches between the assumed and real array model [5] due to various practical factors,
such as inaccurate sensor positions [1], inconsistency of channels [6,7], and mutual coupling of
antennas [8,9]. The above problems that are faced by the Capon beamformer are mainly divided into
two categories: the mismatch of the desired steering vector (SV) and the involvment of the desired
signal in the sample covariance matrix (SCM). The existence of the desired signal in the received
snapshots significantly degraded the performance of the Capon beamformer, since the desired signal
may be regarded as a interfernece and gets self-nulled [2]. The mismatch of the desired SV fails to
steering the mainlobe towards the desired signal and, therefore, distorts the desired signal.
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Numerous methods have been proposed to improve the robustness of Capon beamforming.
Aside from the advantages of the robustness of the beamformer, the drawbacks of these algorithms are
also obvious. The diagonal loading algorithm increases the robustness of the beamformer by adding a
diagonal matrix on the sample covariance matrix in order to increase the noise power [10,11]. However,
it is difficult to choose the appropriate diagonal loading factor. The eigenspace algorithm requires the
specific number of interferences and it is able to provide satisfactory performance at some situations,
but it is ineffective under low signal-to-noise ratio (SNR) conditions, since the desired signal subpace
is swapped with the noise subpace [12–14]. The use of uncertainty set (US) algorithm is limited, as the
size of the uncertain set is hard to determine and the desired signal is still involved in the SCM [15–24].
Interference-plus-noise covariance matrix (INCM) reconstruction-based algorithms have been shown
to obtain excellent beamforming performance when the array manifold is accurately known [25–27],
but they are not suitable for situations where an array of manifold mismatches exist [28].

The mutual coupling effect destorys the array structure in the SV and, therefore, affects the
traditional methods. Ye et al. proposed a method where the mutual coupling effect could be mitigated
by selecting middle array elements [9], but the presence of desired signal degrades its performance at
high SNRs. Recently, the researchers combined the middle subarray technique and covariance matrix
reconstruction technique in order to obtain the interfernce-noise covariance matrix in [29]. However,
it should be noted that the method is based on the accurately known array structure, which is to say,
the method is ineffective in the presence of other kinds of array errors, like sensor position errors
and the gain-phase errors, since the real array structure is unavailable. In this paper, we improve the
previous method in order to overcome the performance degradation tht arises from multiple types of
array errors. Specifically, in terms of modification, our contributions are as follows.

• The characteristics of three different array error types and their influence on the recieved data are
analyzed, a generalized signal model under the three kinds of errors is given.

• The middle array interference-plus-noise covariance matrix (INCM) is accurately reconstructed
with estimated interference SV and power, which not only handles the problem of multiple
types of array errors, but also mitigates the effect of the desired signal in the sample snapshots.
The interference SVs are correctly estimated using the robust Capon beamforming (RCB) principle,
as the SV mismatches that are due to the sensor position and gain-phase errors are relatively
small. Furthermore, the estimated interference SVs are combined with the maximum eigenvalue
of the decoupled sample covariance matrix (DSCM).

• The desired signal SV is estimated as the corresponding eigenvector of DSCM through the
correlated projection process. The correlation coefficient of the SV and eigenvectors reaches the
maximum when the eigenvector matches the SV.

The weighting vector is finally derived when combining the reconstructed middle array INCM
and estimated desired signal SV. The proposed method is able to deal with multiple types of array
errors and obtain superior SINR improvement. Throughout this paper, the superscripts T and H
represent transpose and conjugate transpose, respectively. The notation E [·] denotes the expectation
operator and I stands for the unit matrix. � is the Hadamard product. [·]−1 represents the matrix
inversion operator.

2. Problem Formulation

2.1. Array Signal Model

Consider that there are M + 1 narrowband signals {sm(k)}M
m=0 that impinge on the uniform linear

array (ULA) of N array elements and they are uncorrelated with each other. That is to say,

E
[
sisH

j

]
= 0, i 6= j (1)
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Assume that these signals arrive at the array with directions-of-arrivals (DOAs) {θm}M
m=0 and

power
{

σ2
m
}M

m=0. Let s0(k) represent the desired signal and the {sm(k)}M
m=1 are the interferences that

are radiated by the farfield jammer devices. The received data in the k-th snapshot can be expressed as

x(k) = AS(k) + n(k) = s0(k)a(θ0) +
M

∑
m=1

sm(k)a(θm) + n(k), (2)

where S(k) = [s0(k), s1(k), . . . , sM(k)]T denotes the echo signal vector and n(k) is an N× 1 additive white
Gaussian noise vector with power σ2

n. The noise component is normal white Gaussian in the receiving
channels, its model is assumed to be the same with traditional beamforming methods, since we mainly
focus on the array errors in this paper. Further, A = [a(θ0), a(θ1), . . . , a(θM)] stands for the steering
matrix of the array, in which the m-th element is specifically given by a(θm) = [1, b(θm), . . . , b(θm)N−1]T,
where b(θm) = exp(j2πd sin θm/λ), λ is the signal wavelength and d is the inter-element spacing.
The N× 1 weighting vector of the well-known Capon beamformer is given as:

w =
R−1

I+na(θ1)

aH(θ1)R−1
I+na(θ1)

, (3)

where RI+n = ∑M
m=1 σ2

ma(θm)aH(θm) + σ2
n IN is the INCM. In practice, the exact RI+n is usually

replaced by the sample covariance matrix (SCM), as R̂x , (1/K)∑K
k=1 x(k)xH(k), with K being the

number of snapshots.

2.2. Array Error Model Analysis

In practice, array model errors essentially result in the mismatch of SV and they degrade the
performance of traditional array signal processing algorithms, as shown in Figure 1. Under array
errors, the ideal signal model Equation (2) is re-expressed as

x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)
(4)

where Ã , f (A, Ξ) is the actual steering matrix and Ξ is the matrix that identifies the array error.
The new array structure is with the steering matrix Ã containing its array characteristics. In this section,
the influences of three array error types are analyzed.

2.2.1. Mutual Coupling

Mutual coupling is an electromagnetic feature, where each sensor interacts with its neighbouring
elements [8,9]. Let us define the mutual coupling length as P; that is, when considering the i-th
element of the array, it couples with the (i− P + 1)th, . . . ,(i− 1)th, (i + 1)th, . . . ,(i + P− 1)th elements.
The mutual coupling effect of the array can be expressed as a M×M symmetric Toeplitz matrix, as

ΞMC =



1 c1 · · · cP−1 · · · 0

c1 1 c1 · · · . . . 0
... c1 1

. . . · · · cP−1

cP−1 · · · . . . . . . c1
...

0
. . . · · · c1 1 c1

0 · · · cP−1 · · · c1 1


N×N

(5)
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where cp is the mutual coupling coefficient between the i-th and (i± p)th sensor. When the mutual
coupling effect exists in the receiving array, Equation (4) is actually written as

x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)

=s0(k) · (ΞMC · a(θ0)) +
M

∑
m=0

sm(k) · (ΞMC · a(θm)) + n(k)

(6)

2 N1

Mutual Coupling

3

…...

Sensor position error

Incident signal

Received signal

Incident signal

Received signal

 1w  2w  3w  w N

…...

Mutual Coupling



Figure 1. Receiving array in the presence of array errors.

2.2.2. Sensor Position Error

Realistic phenomena [1], such as sensor installation errors, measurement errors, and the instability
of the antenna platform, inevitably induce sensor position errors. In general, the array element position
error can be expressed, in matrix form, as

ΞSP = [∆a{1}, ∆a{2}, . . . , ∆a{M}] =


∆a{1}1 ∆a{1}2 · · · ∆a{1}M

∆a{2}1 ∆a{2}2 · · · ∆a{2}M
...

...
...

...

∆a{N}
1 ∆a{N}

2 · · · ∆a{N}
M

 (7)

where ∆a{m} = [∆a{1}m , ∆a{2}m , . . . , ∆a{N}
m ]T stands for the array mismatch vector for the signal from

direction θm. Specifically, its n-th element can be expressed as ∆a{n}m = exp(j2π sin θm∆dn/λ),
where ∆dn = ∑n−1

i=0 di − (n− 1)d, with d0 set to 0 and where di represents the real spacing between
the i-th sensor and the (i + 1)th sensor. When the sensor position errors exist in the receiving array,
Equation (4) is actually written as
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x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)

=s0(k) ·
(

∆a{0} � a(θ0)
)
+

M

∑
m=0

sm(k) ·
(

∆a{m} � a(θm)
)
+ n(k)

(8)

2.2.3. Gain-Phase Error in Channel

Because of variations in time and temperature, the gain-phase characteristics of the receiving
sensors change accordingly [6,7]. The gain-phase error can be characterized, by a diagonal matrix, as

ΞGP =


γ1 0 · · · 0
0 γ2 · · · 0

0 0
. . . 0

0 0 · · · γN

 (9)

where γn = αn exp(jβn), and αn and βn are the additional gain-phase errors of the n-th channel.
When the gain-phase error exists in the receiving array, Equation (4) is actually written as

x̃(k) =ÃS(k) + n(k)

=s0(k)ã(θ0) +
M

∑
m=1

sm(k)ã(θm) + n(k)

=s0(k) · (ΞGP · a(θ0)) +
M

∑
m=0

sm(k) · (ΞGP · a(θm)) + n(k)

(10)

When all three kinds of errors detailed above exist in the array, the actual steering matrix Ã can
be calculated, as

f (A, Ξ) = ΞMC · ΞGP · (ΞSP � A) . (11)

From the above analysis, it can be seen that SV mismatches are due to the array errors,
which severely degrade the performance of beamforming methods. Furthermore, the SV mismatches
that arise from mutual coupling are far larger than those of sensor position and gain-phase errors.

3. Proposed Robust Adaptive Beamforming Method

In this section, we propose a new beamforming method to effectively suppress the interferences
and noise in the presence of multiple types of array errors. The DINCM is accurately reconstructed
based on the constructed DSCM, together with the estimated desired signal SV, in order to form the
proposed beamformer. The detailed procedures are as follows:

3.1. DSCM Construction Based on Sub-Array

When the three types of array errors that are introduced above coexist in the array, then the actual
steering matrix Ã can be calculated as f (A, Ξ) = ΞMC · ΞGP · (ΞSP � A). To begin with, the actual
received data Equation (4) can be further modified as

x̃(k) =ÃS(k) + n(k)

=ΞMC Ã′S(k) + n(k)
(12)

where Ã′ = ΞGP · (ΞSP � A). The signal expression in Equation (12) can be viewed as
an array with mutual coupling, with ideal steering matrix Ã′ = [ã′(θ0), ã′(θ1), . . . , ã′(θM)].
Its elements have the form ã′(θm) = [∆b{1}(θm), ∆b{2}(θm) · b(θm), . . . , ∆b{N}(θm) · b(θm)N−1]T ,
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where ∆b{n}(θm) = αn · ∆a{n}m · exp(jβn). In order to mitigate the mutual coupling effect in the array
Υ̃′, the N − 2P + 2 sensors in the middle are chosen as the sub-array. In this sense, the P− 1 sensors in
the front and end are used as auxiliary sensors [9]. For convenience, we use N′ to represent N− 2P + 2
in the rest of this paper. Therefore, the data of the sub-array is selected as

x̄(k) = Γx̃(k) = ΓΞMC Ã′S(k) + Γn(k), (13)

where Γ = [O IN′ O] is the selective matrix, O is an N′× (P− 1) matrix with all elements being zero.
If we use Ã′′ to denote ΓΞMC Ã′, then Ã′′ = [ã′′(θ0), ã′′(θ1), . . . , ã′′(θM)], in which ã′′(θm) is expressed
as ã′′(θm) = g(θm) · [∆b{1}(θm), ∆b{2}(θm) · b(θm), . . . , ∆b{N′}(θm) · b(θm)N′−1]T , where g(θm) = 1 +

∑P−1
i=1 ci+1

(
b′(θm)

−i + b′(θm)
i
)

and b′(θm) = ∆b{2}(θm) · b(θm). It can be shown that the mutual
coupling effect in the data is eliminated by multiplying the original data with the selection matrix.
Therefore, the DSCM is constructed, as ˆ̄Rx , (1/K)∑K

k=1 x̄(k)x̄H(k).

3.2. Accurate DINCM Reconstruction

In [29], the researchers simply utilize the Capon spectrum to integrate in the interference region
to reconstruct the INCM. However, this method is ineffective and it suffers severe performance
degradation when multiple types of array errors exist, as shown in the simualtion part. To effectively
form deep nulls in the interferences and noise, in this paper, we shall show how the DINCM is
reconstructed in a improved way in order to achieve robustness to multiple type of errors. To begin
with, the Capon spatial spectrum [30] is utilized to obtain an approximate estimate of the interference
DOAs. The expression is given as

P̂Capon(θ) =
1

āH(θ) ˆ̄R−1
x ā(θ)

, (14)

where ā(θm) = [1, b(θm), . . . , b(θm)N′−1]T . By searching in the complement sector of the desired signal
region, the DOAs of the searched peaks θ̂1, θ̂2, . . . , θ̂M are utilized in order to obtain an approximate
estimate of interference SV as ā(θ̂1), ā(θ̂2), . . . , ā(θ̂M). As the SV mismatches due to gain-phase and
sensor position errors are relatively small, the accuracy can be enhanced by correcting the SVs with the
RCB principle. The correction processing for the m-th SV can be performed by solving

min
a(

N′)
m

a(N′)H
m

ˆ̄R−1
x a(N′)

m s.t.‖a(N′)
m − ā(θ̂m)‖2 ≤ ε, (15)

where ε is the uncertainty level, which indicates the extent of SV mismatches. Therefore, after solving

M problems, the corrected SVs
{

a(N′)
m

}M

m=1
can be obtained. The solution of the m-th problem is

given by a(N′)
m = ā(θ̂m) −

(
IN′ + δ ˆ̄Rx

)−1
ā(θ̂m), where δ is the Lagrange multiplier and it can be

calculated by solving ‖
(

IN′ + δ ˆ̄Rx

)−1
ā(θ̂m)‖2 = ε. On the other hand, the power of the interferences

can be approximated by the corresponding eigenvalue divided by the array size [28]. If we denote
the eigendecomposition of DSCM as ˆ̄Rx = ∑N′

n=1 λ̂nûnûH
n , where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N′ are eigenvalues

that are arranged in a descending order and ûn corresponds to λ̂n. Subsequently, in terms of the
interference powers, they can be specifically estimated as

σ2
m ≈

λ̂m

N
, m = 1, . . . , (16)
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In practice, in order to make sure that the interference powers are not underestimated,
the maximum power is used for all of the interference powers. The following estimate is derived

σ2
m ≈

λ̂1

N
, m = 1, . . . , (17)

With the estimated power and SV of the interferences, the interference covariance matrix is
reconstructed as

ˆ̄RI+n =
M

∑
m=1

λ̂1

N′
a(N′)

m a(N′)H
m (18)

On the other hand, using the minimum eigenvalue λ̂N′ as the estimate of noise power [31],
the noise covariance matrix is reconstructed as

ˆ̄Rn = λ̂N′ IN′ (19)

Combining the above processes, the following DINCM reconstruction expression can be derived

ˆ̄RI+n =
M

∑
m=1

λ̂1

N′
a(N′)

m a(N′)H
m + λ̂N′ IN′ . (20)

3.3. Desired Signal SV Estimation

The SV of the desired signal can be replaced by the corresponding eigenvector, as the desired
signal covariance matrix is rank one. The eigenvector that corresponds to the desired signal SV can be
chosen by projecting the eigenvectors into the assumed SV (i.e., the correlation coefficient of the SV
and the eigenvectors reaches the maximum when the eigenvector matches the SV) [32]. The correlation
coefficient between the i-th eigenvector and assumed SV is defined as

cor(ûi, ā(θ0)) =
|ûH

i ā(θ0)|
‖ûi‖‖ā(θ0)‖

(21)

The correlation coefficient between ûi and ā(θ0) reaches maximum when ûi is the eigenvector
that corresponds to the desired signal. Therefore, the desired signal SV is obtained as

a(N′)
0 =

√
N′ud, (22)

where ud is the solution to the problem

max
ûi
|ûH

i ā(θ0)| s.t. 1 ≤ i ≤ M + 1. (23)

By replacing the theoretical DINCM and SV of desired signal with ˆ̄RI+n and a(N′)
0 , the proposed

beamformer is given as

wPRAB =
ˆ̄R
−1
I+na(N′)

0

a(N′)H
0

ˆ̄R
−1
I+na(N′)

0

. (24)

By applying the weighting vector wPRAB to the beamformer, the received data can be processed
in order to effectively suppress the interference and noise. Specifically, the output of the beamformer
at instant k is given as

yout(k) = wH
PRAB x̄(k). (25)

The main complexity of our proposed method lies in the interference SV estimation and DSCM
eigendecomposition. Let us define J as the number of search points in the Capon spectrum, and then the
computational complexity of the interference SV estimation and DSCM eigendecomposition are about
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O
(

N′3 + N′2 J + N′2K
)

and O
(

N′3
)
, in terms of the number of flops, respectively. When considering

the fact that J > K > N′, the above complexity actually becomes O
(

N′2 J
)
. Therefore, the overall

complexity of the proposed approach is aboutO
(

N′2 J
)
. Algorithm 1 summarizes the proposed method.

An additional flow chart figure of the proposed method is provided in Figure 2, where the application
of sub-array technique is presented in a clearer way.

Algorithm 1 Steps of the proposed robust adaptive beamforming method

Part 1. DSCM construction based on sub-array
1. Decoupling the received data as x̄(k) = Γx̃(k) = ΓΞMC Ã′S(k) + Γn(k).
2. Constructing the DSCM as ˆ̄Rx , (1/K)∑K

k=1 x̄(k)x̄H(k).
Part 2. Accurate DINCM reconstruction

3. Obtaining approximate estimates of the interference SVs utilizing the Capon spectrum as
ā(θ̂1), ā(θ̂2), . . . , ā(θ̂M).

4. Correcting the interference SVs with RCB principle and obtaining the corrected SVs
{

a(N′)
m

}M

m=1
.

5. Eigendecomposing the DSCM as ˆ̄Rx = ∑N′
n=1 λ̂nûnûH

n and reconstructing the DINCM as
ˆ̄RI+n = ∑M

m=1
λ̂1
N′ a

(N′)
m a(N′)H

m + λ̂N′ IN′ .
Part 3. Desired signal SV estimation

6. Choosing out the eigenvector of ˆ̄Rx maximizes the projection into the assumed SV by solving
maxûi |ûH

i ā(θ0)| s.t. 1 ≤ i ≤ M + 1.
7. Obtaining the desired signal SV as

a(N′)
0 =

√
N′ud.

Final Calculating the weighting vector

wPRAB =
ˆ̄R
−1
I+na(N′)

0

a(N′)H
0

ˆ̄R
−1
I+na(N′)

0

.

…... …...

Middle subarray

…...

1 2 3 P P+1 P+2 N-P-1 N-P N-P+1 NN-1N-2

( )x k

( )x k

 
1

1/ ( ) ( )R x x
HK

x
k

K k k
Step 2 Constructing the decoupled sample covariance matrix 

( ) ( )1

1

ˆ
ˆR a a I

M
N N H

I n m m N N

m N




 
  



 




1
( )

0

1
( ) ( )

0 0

R a
w

a R a

N
I n

PRAB
N H N

I n







 





Step 7 Estimating the desired signal SV 
( )

0a u
N

dN
 

 

1
( ) ( ) ( ) 2ˆ. . ( )

a
a R a a aN

m

N H N N
xm m m mmin s t 


  

 ‖ ‖

1

1ˆ ( )

( ) ( )a R a
Capon

H

x

P 

 




Step 5 Reconstructing the DINCM

Step 4 Correcting the array errors

Step 3 Approximating interference SVs

Step 7 Obtaining the weighting vector of the proposed beamformer

Step 1 Decoupling the received data

0| ( ) | . . 1 1
u

u a
i

H

imax s t i M   Step 6 Performing eigenvector selection by solving 

Figure 2. Flow chart of the proposed method.
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4. Simulation Results

A ULA with 28 receiving sensors with half-wavelength inter-element spacing was deployed in
the considered scenario. Two interferences were assumed from DOAs of −50◦ and 32◦ with INR
20 dB, while the desired signal was pointed with a DOA of 0◦. The additive noise was set to be white
Gaussian noise with unit variance.

The simulation considered all three types of array model errors. The sensor position error
satisfied the normal distribution N(d, (0.025)2). The gain-phase error followed the normal distributions
N(1, 0.12) and N(0, (5◦)2), respectively. P = 4 mutual coupling was considered in the scene and
c1 = 1.65e−jπ/3, c2 = 2.35ejπ/2, and c3 = 0.25e−j2π/5.

We compared the proposed method with the diagonal loading sample matrix inversion (LSMI)
method, middle sub-array based (MSB) beamformer [9] method, orthogonal projection (OP) approach,
eigenspace-based (ESB) beamformer method, optimal beamformer method, Li’s method [29], and the
reconstruction method by Gu [25]. For the proposed beamformer, the RCB uncertainty extent was set
as ε = 2. For Gu’s beamformer (introduced in [25]), Li’s method [29], and our proposed beamformer,
the desired signal sector was set as Θ = [−5◦, 5◦], while the complement sector for the interferences
was Θ̄ = [−90◦,−5◦) ∪ (5◦, 90◦].

The output SINR curves versus the SNR were investigated (with the number of snapshots
K = 500), as shown in Figure 3. The results clearly show the superiority of the proposed method,
which outperformed the others at all SNRs. It is worth noting that the Gu’s method is parallel to
Optimal SINR method at all SNRs. This is because the deviation between the assumed and real SV
structure is determined by the DOA and, therefore, once the DOA distribution of the interferences is set,
the deviation between the Gu’s method and the optimal is stable at all SNRs. Specifically, when there is
no array error, the output SINR of Gu’s method can be very close to the optimal. Similarly, Li’s method
is also parallel to the optimal, since the same INCM reconstruction process is involved. While Gu’s
method is superior to Li’s method, this is due to the array aperture loss in Li’s method degrading
its performance.

-30 -20 -10 0 10 20 30 40 50

SNR(dB)

-40

-20

0
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Figure 3. Output signal-to-interference-plus-noise ratio (SINR) versus input signal-to-noise ratio (SNR).

The output SINR of our method is close to the optimal result at low SNRs and outperformed all of
the other methods at high SNRs. At low SNRs, the mismatches of the steering vector bring significant
influence to the output SINR. The proposed method is able to attain the optimal due to the SV correcting
process. It should be noted that, at high SNRs, the performance improvement of the proposed method
over other methods decreases, but it still enjoyed the best performance. The proposed method gradually
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converges to Gu’s method at high SNRs. Because, at high input SNRs, the performance increase that
arises from the SV correction process gradually decreases, as the higher input SNR is the more important
factor for improving the output SINR, rather than the correcting process.

In Figure 4, the gap between the optimal SINR and beamformers are depicted in curves.
The deviations from the optimal SINR versus the input SNR can be clearly observed. It can be
observed that the proposed method showed similar performance at high SNRs to Gu’s method, and it
achieved about 18 dB higher at low input SNRs. In terms of Gu’s method, its performance was stable,
retaining a deviation of about 17 dB from optimal performance. The proposed method achieved fast
convergence, while the other beamformers showed slow convergence.
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Figure 4. Deviations from the optimal SINR versus input SNR.

With the SNR set at 0 dB, the output SINR versus the number of snapshots is plotted in Figure 5.
The depicted curves illustrate the superiority of the proposed method; it was very close to optimal.
It can be observed that the proposed method was not sensitive to the number of snapshots and it
showed almost the same convergence rate as the optimal beamformer, with the performance improving
slightly with an increase of the number of snapshots.
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Figure 5. Output SINR versus number of snapshots; SNR = 0 dB, INR = 20 dB.
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In the last example, we further investigated the influence of the array aperture on the performance
of beamformers. We explored the output SINR curves of different methods with the array length
varying from 16 to 35 and the input SNR fixed at 0 dB. Figure 6 clearly shows that, as the array aperture
gets larger, the output SINR of the proposed method gets better accordingly. It is also noted that the
output SINR of Gu’s method as well as the Li’s method gets slightly higher with the larger array
aperture. The array length reflects the array sampling ability of the signals in the spatial domain. When
the array aperture gets larger, the spatial solution of the array gets better and it can more effectively
form nulls at the directions that correspond to the interferences. On the other hand, in terms of some
other methods, as the solution of the array gets more precise, the mismatches of steering vector become
increasingly obvious and degrade the performance more. Therefore, the performance of some methods
are slightly getting worse.
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Figure 6. Output SINR versus array aperture; SNR = 0 dB, INR = 20 dB.

5. Conclusions

This paper introduced a new robust adaptive beamforming method, which is robust to the sensor
position, gain-phase, and mutual coupling errors. In the proposed method, the mutual coupling effect
is mitigated while using the sub-array technique, where the DINCM is reconstructed by combining the
corrected SVs and maximum eigenvalue of the DSCM. Moreover, the desired signal SV is obtained
using the matched eigenvector. The proposed method is capable of simultaneously dealing with
multiple types of array errors. Our simulation results validated the superiority of the proposed method
over existing methods in the presence of multiple types of array errors.
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