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Abstract: Coastal environments are facing constant changes over time due to their dynamic nature
and geological, geomorphological, hydrodynamic, biological, climatic and anthropogenic factors.
For these reasons, the monitoring of these areas is crucial for the safeguarding of the cultural
heritage and the populations living there. The focus of this paper is shoreline extraction by means
of an experimental algorithm, called J-Net Dynamic (Semeion Research Center of Sciences of
Communication, Rome, Italy). It was tested on two types of image: a very high resolution (VHR)
multispectral image (WorldView-2) and a high resolution (HR) radar synthetic aperture radar (SAR)
image (Sentinel-1). The extracted shorelines were compared with those manually digitized for both
images independently. The results obtained with the J-Net Dynamic algorithm were also compared
with common algorithms, widely used in the literature, including the WorldView water index and
the Canny edge detector. The results show that the experimental algorithm is more effective than the
others, as it improves shoreline extraction accuracy both in the optical and SAR images.

Keywords: remote sensing; satellite images; synthetic aperture radar (SAR); Sentinel-1; WorldView-2;
shoreline extraction; coastline extraction; active connection matrix (ACM); J-Net Dynamic;
edge detection; canny edge detector

1. Introduction

The coastal environment is an extraordinary natural resource, not only from the point of view of
the cultural heritage but for hosting resources that can be measured in terms of economic assets. It is a
dynamic environment, subject to continuous and constant transformation. The coastal area is indeed a
highly dynamic system where erosion and deposition phenomena are influenced by various factors.
According to [1], the factors responsible for changes in coastal areas may be grouped into geological
and geomorphological, hydrodynamic, biological, climatic and anthropogenic factors. The coastal
environment, where large percentages of the global population live, change rapidly due to its dynamic
nature. For this reason, the availability of up-to-date information on its state is of great interest.

The theoretical definition of “shoreline” is merely the transition between the sea and the land [2,3],
and in general, between the land surface and the surface of a water body, such as an ocean, sea or
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lake. The coastal zone is, instead, that area of land and water that borders the shoreline and extends
landward [4]. In [5–7] other definitions about coastal areas can be found. In theory, the concept
is very simple and intuitive but its application is actually a complex task because of the temporal
variability of the shoreline itself. The temporal variability develops on scales profoundly different
from instantaneous to secular variations, and it depends on various factors, including wave motion,
tides and winds, but also erosion and deposition. For this reason, the results obtained from surveys on
the field or remote sensing are generally indicators of the actual shoreline.

According to [7], there are three main subdivisions of shoreline indicators:

• Characteristics visible by an operator on an aerial or remote sensing image;
• Intersection between a tidal datum and a digital terrain model or a coastal profile;
• Characteristics of multispectral images identified by automatic algorithms not necessarily visible

to an unaided operator.

In this work, we will experiment with several indicators of the third type by comparing them
with each other and with those of the first type. It is important to underline, however, that those things
which are extracted are indicators of the shoreline and not the shoreline itself.

Several survey methodologies are used for the detection of shorelines: from traditional
topographical and GNSS (Global Navigation Satellite System) surveys to remote sensing techniques
(aerial and unmanned aerial vehicle (UAV) photogrammetry, video systems and satellite optical
and SAR images [8,9]), as widely discussed in another recent work [10]. In the last few years,
the use of optical and SAR satellite images for automatic and semi-automatic shoreline extraction has
complemented the traditional approach based on surveying methods and air-photo processing [11].
Several approaches have been proposed to outline the shoreline using remote sensing, such as edge
detection, segmentation and classification approaches [6].

An edge in an image is a boundary where there is a change in some physical parameters and
it is like a contour between two different regions. Many approaches have been used for edge
extraction; for example, the Canny edge detector [12,13] or the snake model [14]. Segmentation
methods can be divided into three categories: threshold-based, region-based and edge-based [15].
Concerning classification, they can be pixel-oriented, based on individual pixel classifications or
object-oriented—which instead are able to group characteristics by aggregation in similar regions or
polygons. Among the pixel-oriented classification, spectral indices have been successfully used to
extract shorelines. In particular, water indices (WIs) and vegetation indices (VIs) have been developed,
which are obtained by combining two or more spectral bands. Although VIs are mainly used for
vegetation analysis, they have also been tested for shoreline mapping purposes [10,16]. WIs have been
specifically developed for water body detection [17].

In this work, an experimental algorithm, called J-Net Dynamic [18,19], was tested both on a
very high resolution (VHR) WorldView-2 optical image, and for the first time, on a high resolution
(HR) Sentinel-1 SAR image. The J-Net Dynamic algorithm can be considered an edge operator, as it
highlights the edges of the image and is part of the active connection matrix (ACM) system, which is a
new unsupervised artificial adaptive system developed by Semeion Research Institute. The system
can automatically extract features of the images—edges, tissue differentiation, etc., when they are
activated by original non-linear equations. ACM activation reduces the image noise while maintaining
the spatial resolution of high contrast structures. The J-Net Dynamic exploits the dynamic connections
between a central pixel and its neighboring pixels. The relationships among these latter pixels with
their neighbors is also taken into account, so the new image is created considering the totality of these
contributions at every elaboration cycle. Every single neighbor pixel participates in the evolution of
the ACM, which is finally used to create the pixel matrix with the new image. A detailed description
of the algorithm can be found in Appendix A.
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2. Study Area and Data Set

The Abruzzo region (Italy) coastline has a length of 125 km, of which 26 km is high coast and
99 km is sandy coast; the latter, therefore, accounts for 80% of the entire coastline and more than 50%
is under erosion. The northern sector, between the Tronto River and Ortona, is characterized by low
coasts; proceeding southwards, the coast is formed, up to Vasto, by mainly high coasts, but, at Vasto
Marina and San Salvo the coasts are low and sandy. The average width of the Abruzzo beaches is often
less than 100 m, and in some cases, it does not reach 50 m. The dominant winds are the Mistral and
the Tramontana. Studies performed on wave measurements demonstrated that among the states of
significant sea, that is wave heights greater than 0.5 m, the most frequent waves have heights greater
than two meters and the most intense wave motions have heights between 3.5 and 6 m, characterized
by an occurrence frequency of less than 5% [20].

The study of this paper was conducted on the sandy coast of Ortona (Abruzzo Region) in which
three erosion phenomena have been reported on the coast, four active landslides that have effects on
the coast and three landslide crags on the sea [21]. For this reason, according to the guidelines for
the defense of the coast against erosion and the effects of climate change [22], one of the fundamental
elements of a coastal information system is the extraction of the shoreline. The potential of the J-Net
Dynamic algorithm for identifying the shoreline, in automatic or semiautomatic mode, from remote
sensing, has been tested on two types of images: multispectral WorldView-2 and SAR Sentinel-1
satellite images. The Digital Globe WorldView-2 sensor, launched in October 2009, was the first VHR,
8-band, multispectral commercial satellite [23] with four standard (red, green, blue and near-infrared)
and four new (coastal, yellow, red edge and near-infrared) spectral bands [24]. The images are provided
with a panchromatic band (0.5 m) and eight multispectral bands (2 m) [25]. Moreover, depending on
the level of processing, the images can be supplied as “Basic,” “Standard,” “Ortho Ready Standard
Imagery” or “Stereo Pair” products [26]. A WorldView-2 image acquired on 29 June 2010 was analyzed
in this work. This image was projected to UTM WGS84 reference system (WGS84/UTM Zone 33 N,
EPSG: 32633). After pre-processing, described in Section 3.1, a pan-sharpening pre-treatment was also
performed to merge the high geometric resolution of the panchromatic image with the multispectral
bands. A Sentinel-1 SAR image has also been analyzed in this work. The Sentinel-1 mission is
the European Radar Observatory for the Copernicus joint initiative of the European Commission
(EC) and the European Space Agency (ESA) [27]. Sentinel-1 images are freely available and are also
supplied with a level of processing that guarantees immediate use: level-0 provides raw images, level-1
Single Look Complex (SLC), level-1 Ground Range Detected (GRD), level-2 Ocean. Seven Sentinel-1
Interferometric Wide (IW) Level-1 (GRD) images (see Table 1) have been downloaded from Copernicus
Open Access Hub website [28].

Table 1. List of the Sentinel-1 images used in this analysis.

Sentinel-1 Images

Number Date dd/mm/yyyy

1 12/01/2017
2 06/01/2017
3 31/12/2016
4 25/12/2016
5 19/12/2016
6 13/12/2016
7 07/12/2016

They consist of focused SAR data that have been detected, multi-looked and projected to ground
range using the Earth ellipsoid model WGS84. The ellipsoid projection of the GRD products is
corrected using the terrain height specified in the product general annotation. The terrain height varies
in azimuth but is constant in range (but can be different for each IW sub-swath) [29]. The IW swath
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acquires data with 250 km swath at 5 m by 20 m spatial resolution. IW captures three sub-swaths
using Terrain Observation with Progressive Scans SAR (TOPSAR) [30]. Ground range coordinates are
the slant range coordinates projected onto the ellipsoid of the Earth. Pixel values represent detected
amplitude. There is no information about the phase. The resulting product has approximately square
resolution pixels and square pixel spacing with reduced speckle but reduced spatial resolution. For the
IW GRD products, multi-looking is performed on each burst individually. All bursts in all sub-swaths
are then seamlessly merged to form a single, contiguous, ground range detected image per polarization.
Seven Sentinel-1 images are processed in order to better remove the speckle, although just the one in
the middle was processed for shoreline extraction.

Information regarding tides was also taken into account to compare the instantaneous
shoreline [31]. In Ortona area, the maximum high tide recorded in the tide tables is 0.6 m and
the minimum height is –0.2 m, referenced to mean lower low water (MLLW). As the wave action on
the Mediterranean coast is limited [32] the images can be considered at the same tidal moment.

3. Methodology

3.1. Shoreline Extraction with WorldView-2 Image

The WorldView-2 images are provided as Ortho Ready Standard products, so a pre-processing is
required to correct the geometric distortions [16]. An orthorectification was performed using ERDAS
Imagine 2015 [33], and rational polynomial coefficients (RPCs) were used to correct the geometric
distortions. In addition, 17 ground control points (GCPs) and 8 check points (CPs) were used to
improve the process [10]. Finally, the original spatial resolution of the multi-spectral bands was
improved with the panchromatic one by applying the HCS (hyperspherical color dpace) resolution
merge algorithm, designed for WorldView-2 [34] and implemented in Erdas Imagine. After the
pre-processing, two algorithms were applied to extract the shoreline edges: the WVWI (WorldView
Water Index) and the J-Net Dynamic. The WVWI (1) is a WI adjusted for the WorldView-2 images [35]
and defined as:

WVWI =
CB− NIR2
CB + NIR2

, (1)

where CB and NIR2 are referred to the Coastal band (400–450 nm) and Near Infrared 2 band
(860–900 nm), respectively. WVWI combines the Coastal and the Near-Infrared 2 bands pixel by
pixel and it ranges mathematically between −1 and 1. WVWI tends to 1 in the presence of water and
to 0 where sand is present. To vectorize the shoreline extracted from WVWI, a threshold was set in
correspondence of the inflection point evaluated on some WVWI profiles, as it was determined in [36]
and in a previous work [10] (Figure 1). The peaks, showed around 150 m on the profile, correspond to
the rocks but, for the purpose of this paper, they were not taken into account.

A reclassification based on the threshold was performed and finally the shoreline was digitized
with the Arcscan tools in ArcMap (ESRI, Redlands, California). Finally, a smoothing algorithm was
used to improve the quality of vector line [37].

The J-Net Dynamic algorithm has been tested on a single band or band combinations. For the
sake of brevity, in this work only the analysis of the NIR2 band, which gave the best results,
is reported. The NIR2 band is indeed suitable for discriminating water from wet and dry sand, as it is
almost completely absorbed by the water and possible perturbations are minimized by the shallow
bottoms [38,39].
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Figure 1. Spatial profiles of WVWI (WorldView Water Index): along the x-axis the distances (m) and
along the y-axis the WVWI pixel values; the vertical line represents the inflection point in which the
threshold between water and sand has been set.

The J-Net Dynamic algorithm, thoroughly described in the Appendix A, permits one to obtain a
clear separation threshold between water and land (Figure 2).

Figure 2. J-Net algorithm tested on NIR2 band of the WorldView-2 image.

The vectorization of the shoreline extracted by J-Net is performed in the same way of the WVWI.

3.2. Shoreline Extraction with Sentinel-1 Image

The pre-processing of Sentinel-1 images is a key issue of SAR elaboration because, for a better
identification of the shoreline, it is essential to improve the image quality, and in this case, to reduce
noise while preserving the edges. Pre-processing methods can be grouped into noise reduction and
image correction [6]. SAR images are affected by speckle, an effect caused by the coherent radiation
used by radar systems. It is like a salt and pepper effect that happens because each resolution cell
associated with an extended target contains several scattering centers whose elementary returns,
by positive or negative interference, originate light or dark image brightness [40]. There are some
adaptive filters, such as the median filter, which are suitable for SAR speckle removal. The median
filter uses the median values within a moving kernel in place of each pixel of the image. That way,
it smooths the image without smoothing the edges [6]. The SNAP (Sentinel Application Platform)
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software is used to pre-process the Sentinel-1 SAR images. The pre-processing steps that were carried
out are:

1. Thermal noise removal;
2. Apply Orbit filer;
3. Calibration to Beta0;
4. Coregistration;
5. Multitemporal de-speckle;
6. Range doppler terrain correction.

The pre-processing aims to enhance the image for a better interpretation. In particular, the purpose
is to increase the contrast while preserving the edges, using bands, algorithms and polarizations which
maximize the difference between coast and water. The following options were tested:

1. Use decibel bands or not;
2. Use polarization VV or VH;
3. Choose the filter for the multitemporal de-speckle.

Two masks, one on the sea and one on the mainland, have been created and statistics have been
computed using the ENVI software (Harris Geospatial Solutions, Broomfield, Colorado, United States).
For each study, the digital number (DN) minimum, maximum, mean and standard deviation are
calculated. The results show that the contrast between sea and land is higher using the decibel bands
and VH polarization. Among the filters computed with SNAP to reduce the speckle, the one which
maximizes the contrast is the IDAN, but it presents the problem of excessively smoothing the edges.
For this reason, the Lee filter is used, because it is a good compromise between keeping the spatial
resolution and preserving the edges [41–43].

Finally, the image selected for analysis and shoreline extraction was the one in decibels, with the
VH polarization and whose speckle had been reduced using the Lee filter. Figure 3 shows the image
acquired on December 31, 2016 after the pre-processing.

Figure 3. Pre-processed and georeferenced Sentinel-1 image. Date: December 31, 2016. Units: decibels.
Polarization: VH polarization. De-speckle filter: Lee.

After image pre-processing, edge detection algorithms are used to extract the shoreline. It is also
manually vectorized to create a reference. As reference shoreline, both an orthorectified Sentinel-2,
acquired on 1 January 2017, and the Sentinel-1 on 31 December 2016 itself were used. Due to the
inherent characteristics of the SAR images, a better reference line can derive from orthoimagery. This is
the reason why the Sentinel-2 optical image was also used as reference. As it was given already



J. Mar. Sci. Eng. 2020, 8, 9 7 of 17

orthorectified, it was pre-processed by applying the atmosphere correction using the Sen2Cor tool
in SNAP, and then, it was resampled to 10 m. Finally, for the same reason previously explained in
Section 3.1, the NIR band (that is band 8 in Sentinel-2) was chosen to extract the reference shoreline.
Then, two edge detection algorithms were tested. The first one is the Canny edge detector, which
detects a wide range of edges in raster images and produces thin edges as a raster map. It operates,
at first, with a Gaussian filter (based on normal distribution) to reduce the noise, then two orthogonal
gradient images are computed. Finally, only relevant or significant edges are extracted by thresholding
with hysteresis [44]. The result is shown in Figure 4.

Figure 4. Canny algorithms applied on the pre-processed Sentinel-1 image acquired on 31 December 2019.

Then, the J-Net Dynamic algorithm was tested. The result provided by the J-Net Dynamic
algorithm on the SAR image is shown in Figure 5.

Figure 5. Application of the J-Net Dynamic algorithm on the SAR Sentinel-1 image acquired on
31 December 2016.

4. Results and Discussion

The shorelines extracted from the WorldView-2 image are presented in Figure 6: the red line
illustrates the shoreline extracted manually, while the yellow one is the one generated using the WVWI
and the blue one from the J-Net Dynamic.
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Figure 6. WorldView-2 image with three shorelines: the red line is the manually extracted shoreline;
the yellow one is generated using the WVWI and the blue one from the J-Net Dynamic algorithm.

The three instantaneous shorelines extracted using the Sentinel-1 image are shown in Figure 7:
the red one is the shoreline extracted manually, the yellow one is from the Canny algorithm and the
blue one is from the J-Net Dynamic algorithm. The additional green line is the shoreline manually
extracted from Sentinel-2, acquired on 1 January 2017; that is, one day after the Sentinel-1. It was also
used as a reference for the reasons explained in Section 3.2.

Figure 7. SAR Sentinel-1 image on the background showing four shorelines: the red and the green lines
are, respectively, the shorelines manually extracted from Sentinel-1 and Sentinel-2 images; the yellow
one is the one generated using the Canny algorithm and the blue one from the J-Net Dynamic algorithm.

In order to compare the accuracy of the obtained shorelines, an index I (2), reported in
literature [16,45], is used:

I =
S
L

, (2)

where S is the area calculated between the shoreline extracted from the algorithm and the shoreline
used as reference; and L is the length of the reference line. The index is expressed in meters. The values
obtained are shown in Table 2.
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Table 2. I Index values. Comparisons.

Image Type Optical Image SAR Image

Reference shoreline extracted from Pansharpened WV-2 image Sentinel-1 image Sentinel-2 image

Algorithm NDVI J-Net Dynamic Canny J-Net Dynamic Canny J-Net Dynamic

I (m) 1.67 1.20 12.52 5.86 66.49 60.77

% increase 28.14 58.19 8.60

The results of the index indicate that the use of J-Net Dynamic algorithm improves the shoreline
extraction both in the optical and in the SAR images compared to the common filters. For the optical
WorldView-2 image, the index I is equal to 1.67 m using WVWI indexed image and 1.20 m using the
J-Net Dynamic derived image. This means that, in the VHR image, the J-Net Dynamic algorithm
improves the accuracy by about 28%. For the SAR Sentinel-1 image, considering as a reference the
shoreline extracted from the Sentinel-1 image, the index I is equal to 12.52 m using Canny derived
image and 5.86 m with the application of the J-Net Dynamic filter. In brief, in the HR SAR image,
the accuracy is increased by about 58%. Considering as reference the shoreline extracted from Sentinel-2
image, the index I is 66.49 m for the Canny and 60.77 m for the J-Net Dynamic, which means an increase
of almost 9%. All the results proves that the shoreline extracted from the J-Net Dynamic derived image
is over-fitted to the reference compared to the ones extracted from the common filters. Two more
things can be also noted: the first one is that there is a higher difference between the SAR image
values and the optical image values. This happens because the SAR image has a lower resolution.
The second one is that, with respect to the SAR image, there is a big difference depending on the chosen
reference shoreline. The ones extracted with the algorithms are further away from the Sentinel-2 than
the Sentinel-1 reference shoreline. The SAR image, due to its nature, could have little backscattering
from the wet sand, which means that, in this case, it “confuses” the wet sand with water. However,
the purpose of this paper is to test the J-Net Dynamic on optical and SAR images and to compare the
results to the common algorithms. In all of the aforementioned cases, it proved to extract a shoreline
closest to the reference one.

To better determine the accuracy of the shoreline extraction, a method already used in literature [10,46]
was used. Ten transects (Figure 8), about one every 100 m and drawn from the land to the sea, were used
to calculate the intersection between them and the seven shorelines extracted from WorldView-2, WVWI,
J-Net Dynamic on the VHR image, Sentinel-1, Sentinel-2, Canny and J-Net Dynamic on the HR image.

Figure 8. Ten transects every 100 m, drawn from the land to the sea, to calculate the intersection
between them and seven shorelines extracted from WorldView-2, WVWI, J-Net Dynamic on the VHR
image, Sentinel-1, Sentinel-2, Canny and J-Net Dynamic on the HR image.
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Then, the differences between the reference shorelines and the ones extracted from the algorithms
were measured. In the end, the mean values and the standard deviations of every difference were
calculated (Table 3).

Table 3. Statistic table. The means and the standard deviations have been calculated on the difference
between the reference shorelines with the algorithms we tested. The difference has been calculated on
the values obtained from the intersection between the transects and the seven shorelines.

VHR OPTICAL HR SAR

WV2 - WVWI WV2 - J Net S2 - Canny S2 - J Net S1 - Canny S1 - JNet

Mean (m) 1.87 1.45 70.11 66.09 17.21 10.61
Standard deviation (m) 1.13 1.12 29.20 19.57 9.10 8.21

As shown in Table 3, for the VHR image, the standard deviation is 1.13 m and the mean is 1.87
considering the common filter. On the other hand, the standard deviation of the J-Net Dynamic is
1.12 m and the mean value 1.45 m. For the HR image, considering the Sentinel-2 optical image as a
reference, the results show that the mean value of the difference with the Canny derived shoreline
is 70.11 m and the standard deviation is 29.20 m. Compared with the J-Net values, that are 66.09 m
and 19.57 m respectively, they are higher. The same happens considering the Sentinel-1 as a reference:
the mean values for Canny and J-Net are 17.21 m and 10.61 m and the standard deviations are 9.10 m
and 8.21 m, respectively. It can be noticed that the mean and standard deviation are lower for the VHR
optical image than the HR SAR image, as expected. Moreover, the values obtained for the SAR image
using two different reference shorelines confirm the better results obtained by using the Sentinel-1
image as references, as they were found previously. Indeed, the standard deviation for the difference
between Sentinel-2 and Canny shorelines is 29.20 m, compared to 9.10 m obtained by the difference
between the Sentinel-1 and Canny shorelines. The same happens for the differences between the
Sentinel-2 with the J-Net (19.57 m) and Sentinel-1 with the J-Net (8.21 m). However, in every case,
the J-Net Dynamic gives best accuracy compared to the common filters, as already found out with the
index I.

In [16], the index I was used to compare the results obtained for the shoreline extraction using
the NDVI and the NDWI (normalized difference water index, which considers the same bands of
WVWI and the same equation) filters on the WorldView-2 initial and pansharpened image. It confirms
that NDWI application provides better results; and that the pan-sharpening permits one to enhance
geometric resolution and to reduce, to less than 1 m, the mean value of shifts between the automatically
extracted shoreline and the manually vectorized one. They found an index value of 1.386 m for
the multispectral image and 0.955 m for the pan-sharpened one. The better accuracy, compared to
the one obtained for the research of this paper, that is, 1.67 m, could be due to the fact that they
identified a different threshold to detect the shoreline based on a classification method using three
contrasting classes (sea, land and vegetation) or due to the fact that the range of shoreline was both
sandy and rocky. The rocky parts are less sensitive to instantaneous dynamic change than the sandy
ones. The index I was also considered to evaluate the average shift between two temporal consecutive
shorelines [11]. They compared shorelines during 2005 and 2011 and they evidenced that the effects of
the human intervention, like the installation of breakwaters, limit erosion phenomena near shore zone.
This tendency was also remarked on for the years 2011–2012.

The index I has not been used yet in literature to assess the SAR images. In [47], an automated
method of the shoreline position detection using Sentinel-1 SAR image was studied. The method aimed
at the automatic extraction of shoreline edge from pre-processed images. The algorithm performs four
steps: despeckling, binarisation, morphological operations and edge detection by means of the Canny
edge detector. Once the shoreline is extracted, it is compared to the one extracted from the images
acquired by video system. The VDS (video-derived shoreline) is a collection of shoreline points. So,
the distance between each point from the SDS (satellite-derived shoreline) is calculated in order to
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evaluate quantitatively the correctness of the SDS position. The average offset turns out to be about
10 m and the root mean square difference (RMSD) is 12.48 m.

To compare the accuracy with the case study discussed in this paper, the vertices of the reference
shoreline (so the shoreline manually outlined on the pre-processed Sentinel-1 image) are extracted
and the shortest distance between them and the Canny derived shoreline is calculated. The results
show that the average offset is around 16 m, while the standard deviation is 11.40 m. So, a robust
contrast can be performed also by applying the binarisation, as proposed by [47], because it splits
exactly water and land, and as consequence, the edge detector can easily extract the contour of the
image. To increase the accuracy, [48] propose an integration between RASAT pansharpened image
and Sentinel-1 SAR image to improve the quality of the results. The first land/water segmentation
was obtained using RASAT image by means of random forest classification method. Then, the result
was used as training data set to define fuzzy parameters for shoreline extraction from Sentinel-1A
SAR image. The manually digitized shoreline was used as a reference and the accuracy assessment
was performed by calculating perpendicular distances between reference data and extracted shoreline
by the aforementioned method. The mean distance value between the final result and the reference
data was calculated to be 5.59 m, which is half pixel size of Sentinel-1A and which is almost three
times better then the results obtained in this research. The higher accuracy was due not only to the
integration between optical and SAR images, but also to the fact that the coast considered in [48] is
mainly stony rather than sandy.

Due to the high resolution difference, the authors find it inappropriate to compare the
WorldView-2 optical image and the Sentinel-1 SAR image. The purpose of the paper was only to discuss
potentiality of the J-Net Dynamic algorithm both in optical and in SAR images independently. So,
an additional test was performed. To compare the accuracy with the average offset obtained by means
of the Canny edge detector (16 m with an RMSD equal to 11.40), the vertices of the pre-processed
Sentinel-1 image shoreline were extracted and the shortest distance between them and the J-Net
derived shoreline was calculated. An average offset around 7 m and a standard deviation of 7.36 m
were found. The accuracy was lower than one pixel. The values confirm the trend that was delineated
by means of the index I value: the algorithm J-Net Dynamic increased the accuracy of the extraction.

In future studies, other images, comparable in terms of resolution, such as Sentinel-1 and
Sentinel-2 or WorldView-2 and COSMO-SkyMed images, can be integrated to improve the accuracy of
the results. Moreover, to answer to the question of whether the Sentinel-1 is capable of monitoring
coastal changes, another interesting future work could consider all the Sentinel-1 image data set to
study the shoreline changes during a determined period of time.

5. Conclusions

Monitoring coastal areas with shoreline mapping allows one to analyze erosion and deposition
phenomena in order to be able to propose corrective actions. In this work, an experimental algorithm,
called J-Net Dynamic, has been presented to automatically extract the shoreline. It has been tested
both in multispectral and in SAR images with different resolutions. Both images were pre-processed to
improve their geometric and radiometric properties in order to facilitate their subsequent analysis.
They were then processed with filters and indices commonly used for this kind of research, like the
WorldView water index for the optical image and the Canny edge detector for the radar image, and the
J-Net Dynamic. The J-Net Dynamic algorithm was mainly developed and previously applied in
medical fields and it has been tested on a VHR optical image, and for the first time, also on an HR
SAR image for environmental monitoring. To validate and verify the accuracy and robustness of
this approach, a comparison with other typical algorithms was performed through an index I, which
divides the area between the shoreline obtained by the algorithm and the reference one with the length
of the latter, and through the use of ten transects along the shorelines. The results showed that J-Net
Dynamic improves the detection, obtaining a shoreline closest to the reference, both for VHR and HR
satellite images.
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Abbreviations

The following abbreviations are used in this manuscript:

VHR very high resolution
HR high resolution
SAR synthetic aperture radar
GNSS Global Navigation Satellite System
UAV unmanned aerial vehicle
WI water index
VI vegetation index
ACM active connections matrix
UTM universal transverse mercator
WGS84 World Geodetic System 1984
EPSG European Petroleum Survey Group
EC European Commission
ESA European Space Agency
SLC single look complex
GRD ground range detected
IW Interferometric Wide
TOPSAR Terrain Observation with Progressive Scans SAR
MLLW mean Lower low water
RPC rational polynomial coefficient
GCP ground control point
CP check point
HCS hyperspherical color space
WVWI WorldView water index
CB coastal band
NIR near infrared
SNAP sentinel application platform
DN digital number
NDVI normalized difference vegetation index
NDWI normalized difference Water Index
VDS video-derived shoreline
SDS satellite-derived shoreline
RMSD root mean square difference
COSMO-SkyMed COnstellation of small Satellites for the Mediterranean basin Observation

Appendix A

J-Net Dynamic

This algorithm was developed by Professor Paolo Massimo Buscema, mathematician, Director of
the Semeion Research Centre of Science of Communication of Rome and Full Professor Adjoint at the
University of Colorado (USA).

The patent concerns active connections matrix systems (ACM), according to which each image
is considered as an active matrix (network) of connected elements (pixels) that develops over time.
The main idea upon which this theory is based states that each digital image stores the maximum
amount of information within the pixel values and their relationships. Furthermore, it is possible to
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obtain important information by analyzing the reciprocal positions occupied by pixels. For a complete
presentation of ACM algorithms, see [18,49].

Any digital image is a matrix made of as many rows as the pixels that determine the width and as
many columns as the pixel number related to the height. Each pixel is identified by its coordinates
i ∈ 1, . . . , R, j ∈ 1, . . . , C, and its brightness L ∈ 2M (e.g., in the case of 256 shades of gray, M = 8).
For each pixel uij a set containing all the surrounding pixels I(uij)

named neighborhood can be defined.
In the ACM systems, all the pixels uxy ∈ I(uij)

are linked to the central pixel uij by means of the
w(ij),(xy) connections. The systems are classified into three orders of complexity, according to the type
of evolution over time. In the first order of complexity, the values of connections are initialized once,
at the beginning, and then remain fixed while pixel values u[n]

ij evolve over time until convergence,

starting from the u[0]
ij value, directly derived from the image. The situation is specular in the case of

second order, where the pixels’ values are fixed and equal to u[0]
ij , while the connections values w[n]

(ij),(xy)

are updated at each iteration, after initializing them to values w[0]
(ij),(xy) ≈ 0. Finally, the third order of

complexity includes models in which both the pixels and the connections change over time.
J–Net Dynamic [19,49] is a ACM system with dynamic connections and units (third order of

complexity). The main prerogative of this method is to consider in its equations not only the central
pixel as such, with its relative neighborhood, but also as part of the surroundings of each of the
pixels around it, when they are considered in turn as the central pixel. At the beginning of the
process, the units uij are linearly scaled into the range [−1 + α, 1 + α], where α is a parameter to
be set up. By varying the α value it is possible to study images in an iterative manner. The first
part of computations involves exclusively the central pixel and its neighborhood Iij, as shown by
Equations (A2)–(A7). J–Net follows the schema: update of weights (Equations (A1)– (A5), computation
of the new pixel values based on the weights (Equation (A6)), update of units (Equations (A7)–(A14),
re-update of weights and so on. In this case, the update of units also involves the neighborhoods Ixy

such that uxy ∈ Iij.

S[n]
ij = π · (r[n]ij )2 (A1)

D[n]
ij = ∑

(xy)s.t.uxy∈Iij

(u[n]
ij − w[n]

(ij),(xy)) (A2)

J[n]ij =
eD[n]

ij − e−D[n]
ij

eD[n]
ij + e−D[n]

ij

(A3)

∆w[n]
(ij),(xy) = −(u

[n]
ij − J[n]ij ) · (−2 · J[n]ij ) · (1− (J[n]ij )2) · (u[n]

xy − w[n]
(ij),(xy)) (A4)

w[n+1]
(ij),(xy) = w[n]

(ij),(xy) + ∆w[n]
(ij),(xy) (A5)

P[n]
ij = SP ·

1
|Iij|
·
(

∑
(xy)s.t.uxy∈Iij

w[n]
(ij),(xy)

)
+ OP, (A6)

where:

SP =
MP

Mw −mw

OP = − mw ·MP
Mw −mw

.
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MP denotes the maximum value available for pixels, Mw and mw are, respectively, the maximum and
the minimum weights w[n]

(ij),(xy)∀i, x ∈ {1, . . . , R} and j, y ∈ {1, . . . , C}.

Out[n]ij = S0 ·
1
|Iij|
·
(

∑
(xy)s.t.uxy∈Iij

w[n]
(ij),(xy)

)
+ O0 (A7)

where, with the usual notation:

S0 =
2

Mw −mw

O0 = −Mw + mw

Mw −mw
.

The internal activation state of each pixel is then defined as:

S[n]
ij = |Out[n]ij |. (A8)

Therefore, the closer the weighted average of the connections of each pixel with those of its
surroundings is to a neutral value, 0 or 127 depending on the encoding, the higher the value of the
internal activation state of the pixel itself. With the aim of defining an update rule for units, the quantity
∆S[n]

(ij),(xy) is considered (Equation (A9). Then, according to Equations (A10)–(A11), the transition from
Iij to Ixy takes place.

∆S[n]
(ij),(xy) = −tanh(S[n]

ij − u[n]
xy ) (A9)

ϕ
[n]
ij = L · u[n]

ij · ∑
(xy)s.t.uxy∈Iij

(
1−

(
∆S[n]

(xy),(ij)

)2)
(A10)

ψ
[n]
ij = ∑

(xy)s.t.uxy∈Iij

tanh(ϕ
[n]
xy ). (A11)

The delta quantities required for correction shall be calculated in the last step. It is possible to
choose for two different update laws named union (Equation (A12)) and intersection (Equation (A13)).

δu[n]
ij = ϕ

[n]
ij + ψ

[n]
ij (A12)

δu[n]
ij = ϕ

[n]
ij · ψ

[n]
ij (A13)

u[n+1]
ij = u[n]

ij + δu[n]
ij . (A14)
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