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Abstract: The present paper deals with the analytical evaluation of the hydrodynamic characteristics
of an array of vertical axisymmetric bodies of arbitrary shape, placed in front of a reflecting vertical
breakwater, which can be conceived as floaters for wave power absorption. At the first part of the
paper, the hydrodynamic interactions between the floaters and the adjacent breakwater are exactly
taken into account using the method of images, whereas, the interaction phenomena between the
floaters of the array are estimated using the multiple scattering approach. For the solution of the
problem, the flow field around each floater of the array is subdivided into ring-shaped fluid regions,
in each of which axisymmetric eigenfunction expansions for the velocity potential are made. In the
second part of the paper, extensive theoretical results are presented concerning the exciting wave
forces and the hydrodynamic coefficients for various arrays’ arrangements of axisymmetric floaters.
The aim of the study is to show parametrically the effect that the vertical breakwater has on the
hydrodynamic characteristics of each particular floater.

Keywords: vertical axisymmetric floaters; arbitrary shape; breakwater; diffraction and radiation
problem; hydrodynamic characteristics; added mass; damping coefficient

1. Introduction

Within the context of the linearized theory of water waves, a variety of methods have been devised
for the calculation of hydrodynamic interaction phenomena within arrays of floating axisymmetric
bodies having vertical symmetry axis. These methods have found application in many areas including
the dynamics of oil & gas offshore platforms, the design of floating airports and other maritime
structures. The application of most concern in the present paper is the use of arrays of vertical
axisymmetric floaters in front of a vertical breakwater for absorbing wave power.

Several hundreds of patents related to harvesting of wave energy have been in existence by the
late 20th century [1–4]. However, despite the increase of interest and awareness for wave energy
absorption, the development from concept to commercial stage has been found to be a difficult, slow
and expensive process. The main obstacle in harvesting the wave power is the high energy cost,
related mainly to the survivability of the wave energy converter (WEC) and its critical components
and sub-components (i.e., power take off system, mooring system, power electronics gearbox, etc.,) at
the demanding offshore environmental conditions (i.e., extreme weather conditions, salt environment,
etc.) [5]. Another aspect for the high energy cost is the often lack of development of an offshore
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grid infrastructure to transport the electricity from renewable offshore energy sources to centers
of consumption and storage [6]. Furthermore, the uncertainties in identifying and mitigating the
environmental impact of the WEC’s life-cycle operation along with the lack of current licensing and
consenting procedure lead the developers to face stringent and costly monitoring requirements before
and after consent, increasing the wave energy cost [7].

Aiming at overcoming the aforementioned bottlenecks several parameters related to the WEC
characteristics have been up to date examined. Representative examples are: (a) the WEC geometrical
characteristics optimization, in the scope of harnessing maximum wave energy at the installation
location; (b) the optimization of the WEC’s characteristics with respect to their mechanical components,
to withstand the demanding environmental conditions as well as to reduce the energy losses associated
with the transformation of the wave power into electricity; and (c) the installation of WECs close
to other near- or on-shore maritime structures such as a breakwater; a harbor or a pier, so as to use
the already developed electric grid, reducing in parallel the environmental impact of the WEC’s
operation [8].

Looking towards the possible advantages provided by installing of WEC devices in near- or
on-shore areas or close to other maritime structures, several studies have been presented in the literature.
Indicatively, in [9] the most representative existent wave energy converters were evaluated in various
offshore and near-shore areas, whereas, in [10] the installation of a WEC device in a port with dual
operation, i.e., both as a breakwater as well as a wave energy device was examined.

Furthermore, the effect of a reflecting vertical wall on the WECs’ behavior has been investigated in
several studies in the last years. The majority of them are dealing with WECs installed either at a certain
distance from the wall or integrated at it. More specifically, in [11] the performance characteristics
of an array of five wave energy heaving converters placed in front of a reflecting vertical breakwater
have been numerically studied whereas, in [12] the performance of an array of heaving WECs, coupled
with DC generators, in front of a breakwater, were numerically and experimentally investigated.
Furthermore, solution methods concerning the wave diffraction and radiation problems for the case of
a truncated cylinder, in front of a vertical wall have been presented in the literature [13–16], whereas,
in [17] the efficiency of a heaving point absorber in front of a vertical wall in regular and irregular seas
was studied, based on different floater geometries and wave heading angles. In [18] the possibility
of using oscillating water column (OWC) converters for reducing the wave reflection from vertical
breakwaters was explored.

As far as investigations concerning the behavior of WECs integrated at a breakwater, theoretical
hydrodynamic studies of an oscillating water column device (OWC) placed at the tip of a breakwater
and along a straight coast were developed in [19,20]. Moreover, numerical analysis and experimental
investigation into OWCs integrated at a flat breakwater have been presented in [21] whereas, in [22,23]
a feasibility study of an OWC device integrated into a port in the Mediterranean Sea was presented.
In [24,25] multiple OWCs structures integrated into floating breakwaters were investigated. Recently,
in [26] an analytical study of a pile supported OWC breakwater was presented, whereas, in [27,28] the
performance of a WEC integrated into a breakwater was investigated, analytically and experimentally.

Despite the difficulties associated with the placement of WECs in front of a breakwater in terms of
installation, mooring and maintenance issues, such converters appear to outperform the integrated
into the breakwater counterparts. Their main advantage is the possibility they offer to have them
installed at different distances from the vertical wall in dependence from the prevailing sea conditions
at the particular installation site, thus optimizing their performance taking advantage of the particular,
site-dependent interaction phenomena between the floaters and the breakwater. In addition, WECs
placed in front of a breakwater can act as a protecting mole to the incoming waves, reducing the
intensity of wave action on the shore at severe environment conditions [8].

As a common wave energy device, an oscillating buoy has been proved to be an effective WEC
for wave energy extraction due to its favorable properties: ease of installation, economic operation
and manufacturing processes [29–32]. The converter is composed by a base moored to the sea bottom
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and an arbitrary shape floater. The relative motion of the buoyant top to the base is converted into
electrical power by the power-take-off (PTO) mechanism. The PTO system can be a high-pressure
oil system, converting the floater’s motions into hydraulic energy and then converted into electricity
through hydraulic motors, or a linear electrical generator [33,34].

The main objective of the present paper is to evaluate the hydrodynamic characteristics (exciting
wave forces, hydrodynamic coefficients) of an array of vertical axisymmetric floaters of arbitrary shape
that are floating in finite depth waters in front of a vertical and fully reflecting breakwater of infinite
length. Towards this goal, the breakwater’s effect on the floaters’ hydrodynamic coefficients (i.e.,
hydrodynamic added mass and damping coefficients) and on their exciting wave loads is derived by
accounting for the hydrodynamic interaction phenomena both between the bodies of the array as well
as between them and the adjacent breakwater.

As far as the simulation of the vertical breakwater is concerned, the method of images is used to
describe the fluid flow around the array in front of it. According to this method, the problem of N
number of floaters in front of the vertical breakwater is equivalent to the one of an array of 2N number
of floaters consisting of the initial ones and their image virtual devices with respect to the breakwater
that are exposed to the action of surface waves without, however, the presence of the breakwater. The
method of images has been initially applied to tackle the diffraction and radiation problems of single or
array of cylinders in channels, simulating accurately the reflections from the side walls [35–38]. Later,
this method has been also used to simulate the effect of a vertical wall on an array of floating bodies
placed in front of it [11,15,16].

Furthermore, considering the solution of the relevant linearized diffraction and radiation problems,
the hydrodynamic interference effects between the floaters in the array are evaluated within the context
of potential flow theory using single-body hydrodynamic characteristics of the individual bodies and
the method of multiple scattering [39–42]. In this formulation, the incident wave potential and various
orders of propagating and evanescent wave modes radiated and scattered from all the bodies in the
array are superposed to obtain exact series representations of the total wave field around each body of
the configuration. As the boundary conditions are satisfied successively on each body in the array,
there is no need to retain simultaneously the unknown partial wave amplitudes around all the floaters.
As a result, a considerable reduction of the storage requirements in computer applications can be
obtained, without, however, compromising the accuracy of the outcomes of the multiple scattering
approach compared to other computational methods [43,44].

Finally, in the context of the present contribution, extensive theoretical results concerning the
hydrodynamic characteristics (exciting wave forces, hydrodynamic mass and damping coefficients) for
several shapes of the individual floaters and array configurations, are given in form of figures and in
tabular form. The presented results show that the hydrodynamic characteristics of an array of vertical
axisymmetric floaters in front of a vertical wall are evidently different from those in unbounded waters
(i.e., without the presence of the breakwater) and their values are dependent form the wave number
(i.e., wave frequency), floaters’ geometry and arrays’ configuration.

2. Hydrodynamic Formulation

An array of N vertical axisymmetric floaters, of arbitrary shape, placed in front of a breakwater at
constant water depth d is considered. The floaters are exposed to the action of a plane incident wave
train of frequency ω and amplitude A propagating at an angle θ with respect to the positive x-axis.
A global, right-handed Cartesian co-ordinate system O-xyz is introduced with origin O located at
the still water plane on the breakwater with its vertical axis Oz directed upwards. Moreover, N local
cylindrical co-ordinate systems (rq,θq, zq), q = 1, 2, . . . , N, are defined with origins at the intersection
(Xq, Yq) of the calm water surface with the vertical axis of symmetry of each body. Three different
types of floating bodies are examined, (a) a conical floater; (b) a vertical cylindrical floater; and (c) a
semi-spherical floater, as seen in Figure 1. All the examined floaters have an outer diameter of D and
distance from the sea bed h, whereas the draught of the cylindrical part of the floater, in cases a and c,
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is denoted by h1. The distance between the center of the closest to the wall floater and the breakwater
is denoted by lW (see Figure 1).
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…, 2N, (including the initial and the image floaters) can be described by the potential function, 𝛷൫𝑟௤, 𝜃௤, 𝑧௤; 𝑡൯ = 𝑅𝑒[𝜑௤(𝑟௤, 𝜃௤, 𝑧௤)] , and expressed, on the basis of linear modeling, as a 
superposition of incident 𝜑଴, scattered, 𝜑௦௤ and radiated wave fields, 𝜑௝௤, i.e., 

𝜑௤൫𝑟௤, 𝜃௤, 𝑧௤൯ = 𝜑଴൫𝑟௤, 𝜃௤, 𝑧௤൯ + 𝜑௦௤൫𝑟௤, 𝜃௤, 𝑧௤൯ + ෍ ෍ 𝜑௝௤൫𝑟௤, 𝜃௤, 𝑧௤൯ହ
௝ୀଵ

ଶே
௤ୀଵ    (1) 

Figure 1. 2-D representations of the examined types of floaters in front of a breakwater: (a) a conical
floater; (b) a vertical cylindrical floater; (c) a semi-spherical floater.

In order to describe the fluid flow around the N floaters of the array in front of the breakwater, the
method of images is applied. According to this method, the problem under investigation can be traced
back to an equivalent problem of bi-directional incident waves, one propagating at angle θ and one at
angle 180–θ incident on an array of 2N floaters, without the presence of the breakwater (see Figure 2).
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Figure 2. Plan view of the array of N floaters in front of the breakwater (image cylinders are denoted
dashed).

Assuming that the flow is irrotational and inviscid and that the waves are of small slope,
classical linearized water wave theory can be employed. The fluid flow around each floater q, q = 1,
. . . , 2N, (including the initial and the image floaters) can be described by the potential function,
Φ

(
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)
= Re

[
ϕq

(
rq,θq, zq
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, and expressed, on the basis of linear modeling, as a superposition of

incident ϕ0, scattered, ϕq
s and radiated wave fields, ϕq

j , i.e.,
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)
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)
+ ϕ
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2N∑
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Here, ϕq
j denotes the potential of the wave field induced by the forced oscillation of q floater in the j-th

direction, the remaining ones considered restrained.
The velocity potential of the undisturbed incident wave propagating at an angle θ with respect to

the positive x-axis, expressed in the co-ordinate frame of the q floater is:

ϕ0
(
rq,θq, zq

)
= −iωA

∞∑
m=−∞

imΨ0,m
(
rq, zq

)
eimθq (2)

where:
1
d
Ψ0,m

(
rq, zq

)
= eikl0q cos (θ0q−θ)

Z0(z)
dZ′0(0)

Jm
(
krq

)
e−imθ (3)

Here, Jm is the m-th order Bessel function of the first kind;
(
l0q, θ0q

)
are the polar coordinates of

the q floater center relative to the origin O of the global co-ordinate systems O–xyz and Z0(z) are
orthonormal functions in [0, d] defined as follows:

Z0(z) =
[

1
2

[
1 +

sin h(2kd)
2kd

]]−1/2

cos h(k(z + d)) (4)

In accordance to Equation (2) the diffraction, ϕq
D = ϕ0 + ϕ

q
s , and radiation, ϕq

j , velocity potentials,
around the q floater, when it is considered isolated, can be expressed in the co-ordinate system of body
q as follows:

ϕ
q
D = −iωA

∞∑
m=−∞

imΨ q
D,m

(
rq, zq

)
eimθq (5)

ϕ
q
j =

.
xq

j0

∞∑
m=−∞

Ψ
q
j,m

(
rq, zq

)
eimθq j = 1, 2, . . . , 5 (6)

Here,
.
xq

j0 is the complex velocity amplitude of q floater’s motion in the j-th direction.

The velocity potentials, ϕq
k k = 1, . . . , 5, D, have to satisfy the Laplace equation within the entire

fluid domain; the linearized boundary conditions at the free surface; the zero normal velocity on the
sea bed; the kinematic conditions on the mean floater’s wetted surface and an appropriate radiation
condition at infinity stating that the disturbance propagation must be outgoing [41,42].

The unknown functions ΨD,m, Ψ j,m involved in Equations (5) and (6) can be established through
the method of matched axisymmetric eigenfunctions expansions. According to this method, the flow
field around the floater q is subdivided in coaxial ring-shaped fluid regions, denoted by I and IIIp, p = 1,
. . . , L (see Figure 3), in which different series expansions of the velocity potential can be established.
These series representations are solutions of the Laplace equation and satisfy the kinematic boundary
condition at the walls of the floater; the linearized condition at the free surface; the kinematic condition
at the sea bed; and the radiation condition at infinity. Moreover, the velocity potentials and their
derivatives must be continuous at the vertical boundaries of neighboring fluid regions [45].

By the way of example, the appropriate expansions for the velocity potential, ΨD,m, Ψ j,m, in form
of Fourier—Bessel series in the fluid domain I and IIIp, p = 1, . . . , L are presented below.

(a) Infinite ring element I (r ≥ D
2 , 0 ≤ z ≤ d)

1
δk
Ψ

q
k,m

(
rq, z

)
= gq

k,m

(
rq, z

)
+
∞∑

n=0

Fq
k,mn

Km
(
anrq

)
Km

(
anD

2

) Zn(z) (7)

for k = D, 1, . . . , 5;
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where:

gq
D,m

(
rq, z

)
=

Jm
(
krq

)
−

Jm
(

kD
2

)
Hm

(
kD
2

)Hm
(
krq

) Z0(z)

dŹ0(d)
(8)

and δD = δ1 = δ2 = δ3 = d, δ4 = δ5 = d2; Hm, Km are the m-th order Hankel function of first kind and
the modified Bessel function of second kind, respectively; Fq

k,mn are the unknown Fourier coefficients to
be determined by the solution procedure. Furthermore,

Zn(z) =
[

1
2

[
1 +

sin(2and)
2and

]]−1/2

cos(an(z + d)), n ≥ 1 (9)

The eigenvalues an are roots of the transcendental equation: ω2 + gan tan(and) = 0, which
possesses one imaginary, a0 = −ik, k > 0 and infinite number of real roots.

(b) p-th ring element IIIp of the q floater (αp ≤ rp ≤ αp+1, 0 ≤ z ≤ hp, p = 1, 2, . . . , L)

1
δk
Ψ

q
k,m

(
rp, z

)
= gq

k,m

(
rp, z

)
+

∞∑
np=0

∈np

[
Rmnp

(
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)
Fq

k,mnp
+ R∗mnp

(
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)
F∗qk,mnp

]
cos

(
npπ(z + d)

hp

)
(10)
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−( 1
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2hpd2 ; δk has been defined above; Fq
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are Fourier coefficients
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The Rmnp , R∗mnp terms express the radial dependence of the fluid’s velocity in the p-th ring element.
They can be written as:

Rm0
(
rp

)
=

(
rp
αp

)m
−

(
αp
rp

)m

(
αp+1
αp

)m
−

(
αp

αp+1

)m , R∗m0

(
rq
)
=

(
αp+1

rp

)m
−

(
rp

αp+1

)m

(
αp+1
αp

)m
−

(
αp

αp+1

)m , np = 0 (11)

Rm0
(
rp

)
=

Km

(
npπαp

hp

)
Im

(
npπrp

hp

)
− Im

(
npπαp

hp

)
Km

(
npπrp

hp

)
Km

(
npπαp

hp

)
Im

(
npπαp+1

hp

)
− Im

(
npðαp

hp

)
Km

(
npπαp+1

hp

) , np , 0 (12)
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R∗m0

(
rp

)
=

Im

(
npπαp+1

hp

)
Km

(
npπrp

hp

)
−Km

(
npπαp+1

hp

)
Im

(
npπrp

hp

)
Km

(
npπαp

hp

)
Im

(
npπαp+1

hp

)
− Im

(
npπαp

hp

)
Km

(
npπαp+1

hp

) , np , 0 (13)

Especially, for p = 1 (the middle fluid region underneath the q floater) the velocity potential is
given as:

1
δk
Ψ

q
k,m

(
rp, z

)
= gq

k,m

(
rp, z

)
+

∞∑
n1=0

∈n1 Fq
k,mn1

Im
(n1r1

h

)
Im

(n1πa1
h

)cos
(

n1π(z + d)
h

)
(14)

In accordance to the Equations (5) and (6) the diffraction and radiation velocity potential induced
around any floater of the array can be written as:

ϕ
qq
D = −iωA

∞∑
m=−∞

imΨ qq
D,m

(
rq, zq

)
eimθq (15)

ϕ
qp
j =

.
xp

j0

∞∑
m=−∞

Ψ
qp
i,m

(
rq, zq

)
eimθq (16)

Here Ψ qq
D,m, is the diffraction potential due to the interference of the q floater with the incoming

incident wave field and the scattered waves by all floaters in the array, whereas Ψ qp
i,m denote the

radiation potentials around the q floater of the array due to the forced oscillation of the p floater.
In order to express the potentials in form of Equations (15) and (16) the multiple scattering method

is applied, taking into consideration the interaction phenomena between the bodies of the array.
The method which is applicable to arrays consisting of an arbitrary number of vertical axisymmetric
bodies, having any geometrical arrangement and individual body geometry, has been described
exhaustively in previous publications [41,42], thus it is not further elaborated here.

3. Hydrodynamic Reaction Forces

Having determined the diffraction and radiation velocity potentials around each floater of the
array the exciting wave forces and the hydrodynamic reaction forces acting on the q floater; (q = 1, 2,
2N) can be obtained by:

Fq
D,i = −

x

Sq

iωρϕqq
D nidS (17)

Fqp
i j = −

x

Sq

iωρϕqp
j nidS (18)

Here, Fq
D,i denotes the exciting wave force acting on the q floater in the i-th direction; Fqp

i j are the
hydrodynamic reaction forces acting on the q floater in the i-th direction, due to the forced oscillation
of the p floater in the j-th direction; ρ is the water density; Sq is the mean wetted surface of the q floater;
ni are the generalized normal components defined by: n = (n1, n2, n3); r x n = (n4, n5); r being the
position vector of a point on the wetted surface Sq with respect to the reference co-ordinate system of
body q.

The hydrodynamic reaction forces Fqp
i j can be also written as [46]:

Fqp
i j = iω

(
aq,p

i, j +
i
ω
β

q,p
i, j

)
.
xp

j0 (19)

where aq,p
i, j , βq,p

i, j are the added mass and damping coefficients, respectively, of the q floater in i-th
direction due to the forced oscillation of the p floater in the j-th direction.

Based on the method of images the exciting forces acting on the q floater of an array of N floaters
in front of a vertical breakwater exposed to the action of waves propagating at an angle θ, equal to the
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sum of the exciting forces acting on the initial q floater, for wave angles θ and 180–θ, assuming the
presence of image floaters, with respect to the breakwater (i.e., total number of floaters 2N), without
the presence of the vertical wall. Furthermore, the hydrodynamic coefficients aq,p

i, j , βq,p
i, j of the q floater

in i-th direction due the forced oscillation of the p floater in j-th mode of motion in front of the vertical
breakwater can be derived, by summing up properly the motion-dependent hydrodynamic coefficients
aq,p

i, j , bq,p
i, j of the initial q floater in the i-th direction (i.e., I = 1, . . . , 5) due to the forced oscillation of

the p floater in the j-th direction (i.e., j = 1, . . . , 5) with the corresponding hydrodynamic coefficients
aq,p′

i, j , bq,p′

i, j of the initial q floater due to the forced oscillation in the j-th direction of the image floater of
the p body, denoted as p′. Table 1 denotes, indicatively, the determination of the added mass coefficient
of the q floater of an array of N floaters in front of a vertical wall, using the image theory. The same
formula is applied to the damping coefficients.

Table 1. Added mass coefficients of the q floater, q = 1, . . . , N, in front of a vertical wall, using the
image theory (the image floater of the p floater is denoted as p′).

aq,p
1,1 − aq,p′

1,1 aq,p
1,2 + aq,p′

1,2 aq,p
1,3 + aq,p′

1,3 aq,p
1,4 + aq,p′

1,4 aq,p
1,5 − aq,p′

1,5

aq,p
2,1 − aq,p′

2,1 aq,p
2,2 + aq,p′

2,2 aq,p
2,3 + aq,pp′

2,3 aq,p
2,4 + aq,p′

2,4 aq,p
2,5 − aq,p′

2,5

aq,p
3,1 − aq,p′

3,1 aq,p
3,2 + aq,p′

3,2 aq,p
3,3 + aq,p′

3,3 aq,p
3,4 + aq,p′

3,4 aq,p
3,5 − aq,p′

3,5

aq,p
4,1 − aq,p′

4,1 aq,p
4,2 + aq,p′

4,2 aq,p
4,3 + aq,p′

4,3 aq,p
4,4 + aq,p′

4,4 aq,p
4,5 − aq,p′

4,5

aq,p
5,1 − aq,p′

5,1 aq,p
5,2 + aq,p′

5,2 aq,p
5,3 + aq,p′

5,3 aq,p
5,4 + aq,p′

5,4 aq,p
5,5 − aq,p′

5,5

It should be also noted that the Table 1 fulfils the symmetry requirements of the added mass
coefficients, i.e., aq,p

1,3 + aq,p′

1,3 = aq,p
3,1 − aq,p′

3,1 ; aq,p
1,5 − aq,p′

1,5 = aq,p
5,1 − aq,p′

5,1 ; aq,p
4,2 + aq,p′

4,2 = aq,p
2,4 + aq,p′

2,4 ; etc.

4. Numerical Results

Initially, the theoretical results derived from the aforementioned analysis are compared with the
available ones from the literature. The present analytical model is applied to the case of a single floating
cylinder located in front of a vertical wall at finite water depth in order to compare the results with
the ones of [15,16]. The examined cylinder of radius D/2 and draught 2(d − h)/D = 0.5 is subjected to
incident wave with an angle of attack θ = 0 (i.e., the wave is propagating along the x axis), at a water
depth 2d/D = 1.0, for various examined distances between the center of the cylinder and the vertical
wall 2lw/D (see Figure 1). The comparison is made, indicatively, in terms of the dimensionless surge

exciting forces (see Equation (17)), i.e., F =

∣∣∣∣F1
D,1

∣∣∣∣
πρgD2A

4

; and the dimensionless hydrodynamic coefficients

(see Equation (19)), i.e., µi =
a1,1

1,i
πρD2(d−h)

4

, i = 1, 3, 5; ci =
b1,1

1,i
ωπρD2(d−h)

4

, i = 1, 3, 5.

Figure 4 depicts the surge exciting forces for various examined distances between the device
and the wall. An excellent correlation between the analytical results of the presented theoretical
method and the analytical results from [15] can be obtained. In the Figure 5 the dimensionless surge
hydrodynamic coefficients (i.e., hydrodynamic added mass and damping) of the floating cylinder due
to its forced oscillations in surge, heave and pitch directions, are presented and compared, with also an
excellent agreement, with the analytical results from [16].
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Next, three different array types of axisymmetric floaters with vertical symmetry axes are examined,
(a) an array of five same conical floaters; (b) an array of five same vertical cylindrical floaters; and
(c) an array of five same semi-spherical floaters (see Figure 1). The floaters are placed in front of a
vertical breakwater of infinite length in three different array configurations, i.e., the devices are placed:
(a) in a parallel direction to the wall; (b) in a rectangular arrangement in front of the wall; and (c) in
a perpendicular direction to the wall; see Figure 6, C1, C2, C3, respectively. The wave is assumed to
propagate along the x-axis. The distance between the center of the closest to the wall floater and the
breakwater is lW, whereas the distance between adjacent bodies is lb (in C2 array—see Figure 6—the
distance of the 4th from the 5th device and of the 1st from the 2nd device is 1.732lb). The examined
floaters have a radius: D/2; draught: (d − h)/D = 0.5; and D/(2h1) = 10; at a water depth: d/D = 1.0
(see Figure 1). The distances between the center of the cylinder and the vertical wall and between the
adjacent cylinders are lw/D = 2 and lb/D = 4, respectively.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 38 
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Figure 6. Three different examined array configurations concerning the position of each floater to
the incoming wave and the vertical breakwater. The array C1 is placed in a parallel direction to the
wall; the array C2 in a rectangular arrangement in front of the wall; and the array C3 is placed in a
perpendicular direction to the wall.

In the Figures 7 and 8 the dimensionless wave exciting forces in surge (see Equation (17)), i.e.,

Fx =

∣∣∣∣Fk
D,1

∣∣∣∣
πρgD2A

4

; acting on the k floater, i.e., k = 1, 3 of each examined array configuration in front of a

breakwater (see Figure 6), are plotted against the corresponding values acting on the same floater of
the array without, however, the presence of the vertical wall (i.e., no-wall cases in the figures) versus
kD/2. Here k denotes the wave number and D the diameter of the converter. Also, the Figures 9 and 10

depict the vertical counterpart of the dimensionless exciting forces i.e., Fz =

∣∣∣∣Fk
D,3

∣∣∣∣
πρgD2A

4

; acting on the k



J. Mar. Sci. Eng. 2020, 8, 62 11 of 37

floater, i.e., k = 1, 3 compared also with the heave wave loads on the same floater of the array, without
the presence of the breakwater (i.e., no-wall cases in the figures), against kD/2.

It can be seen from the Figure 7 that due to the reflected waves from the breakwater the values of
the surge exciting forces oscillate around the corresponding values of the same device of the array,
without the presence of the wall. Furthermore, it is also evident in the Figure 7 that the horizontal
exciting forces are minimizing at kD/2 = 0.80; 1.57; 2.36; . . . etc. regardless the shape of the floater
or the array configuration. However, this is not the case for the same examined floater and array
configuration without the presence of the vertical wall. This phenomenon can be traced back to the
interaction effects between the breakwater and the floaters. More specifically, each of these wave
numbers (i.e., wave frequencies) correspond to a wavelength equals to a multiple value of the distance
between the initial and the image floater, (i.e., 2lw).J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 12 of 38 
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parallel arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular arrangement, C3. 

Moreover, it is also depicted that the horizontal exciting forces on the 1st cylinder of the 
cylindrical floater array are larger comparing with those on the conical and the semi-spherical 
floater-array. The reason is the volume of the cylindrical floater which is larger than the volume of 
the semi-spherical and the conical floater. Finally, it can be seen from the Figure 7b,c, that the 
scattered waves between the remaining bodies of the perpendicular and rectangular arrangement 
and the examined floater, create additional peaks (i.e., at kD/2 ≈ 0.6; 1.7; 2.4) on the horizontal forces 
compared with the corresponding values on the 1st floater of the parallel arrangement. This can be 

Figure 7. Dimensionless horizontal exciting wave forces acting on the 1st floater of the arrays against
kD/2, for the three different examined array configurations. Comparison with the surge exciting wave
forces on the same floater of the arrays without the presence of the breakwater: (a) parallel arrangement,
C1; (b) rectangular arrangement, C2; (c) perpendicular arrangement, C3.
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Moreover, it is also depicted that the horizontal exciting forces on the 1st cylinder of the cylindrical
floater array are larger comparing with those on the conical and the semi-spherical floater-array.
The reason is the volume of the cylindrical floater which is larger than the volume of the semi-spherical
and the conical floater. Finally, it can be seen from the Figure 7b,c, that the scattered waves between the
remaining bodies of the perpendicular and rectangular arrangement and the examined floater, create
additional peaks (i.e., at kD/2 ≈ 0.6; 1.7; 2.4) on the horizontal forces compared with the corresponding
values on the 1st floater of the parallel arrangement. This can be traced back to the position of the
floaters of each configuration with respect to the incoming wave train.
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In addition, perpendicular arrangement due to the position of the floaters with respect to the 
incoming wave. In addition, it can be obtained from Figure 8b,c that the minimization of the 
horizontal exciting forces does not occur at the same values of kD/2 (i.e., wave frequencies) as in the 
case of the 1st floater of the corresponding arrays, see Figure 7. It can be derived that at kD/2 = 0.38; 
0.8; 1.17; … etc. for the rectangular array and at kD/2 = 0.15; 0.32; 0.45; … etc. for the perpendicular 
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its image floater. Also, the sharp peaks observed in the surge exciting forces in Figure 8 can be 

Figure 9. Dimensionless vertical exciting wave forces acting on the 1st floater of the arrays against kD/2,
for the three different examined array configurations. Comparison with the heave exciting wave forces
on the same floater of the arrays without the presence of the breakwater: (a) parallel arrangement, C1;
(b) rectangular arrangement, C2; (c) perpendicular arrangement, C3.

In addition, perpendicular arrangement due to the position of the floaters with respect to the
incoming wave. In addition, it can be obtained from Figure 8b,c that the minimization of the horizontal
exciting forces does not occur at the same values of kD/2 (i.e., wave frequencies) as in the case of
the 1st floater of the corresponding arrays, see Figure 7. It can be derived that at kD/2 = 0.38; 0.8;
1.17; . . . etc. for the rectangular array and at kD/2 = 0.15; 0.32; 0.45; . . . etc. for the perpendicular
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array, the wavelength equals to a multiple value of the distance between the initial 3rd floater and its
image floater. Also, the sharp peaks observed in the surge exciting forces in Figure 8 can be attributed
explicitly to the waves reflected by the wall since they disappear when the wall is removed.

In Figure 9, the heave exciting wave forces on the 1st floater are plotted for every examined array
configuration. It is notable that for kD/2 tending to zero, the heave exciting forces on the floater are
almost two times larger than the forces on the same floater of the array without the presence of the
breakwater. Furthermore, it can be seen that the heave forces minimize at several wave frequencies
(i.e., kD/2 = 0.38; 1.17; . . . etc.). This behavior does not appear in the cases of the arrays without
the existence of the vertical wall. The zeroing of the heave exciting force is due to the interaction
phenomena between the floaters and the breakwater and in particular it appears when the distance
between the initial 1st floater and its image device equals to a multiple value of the half wave length [47].
The same conclusions can be drawn also from the Figure 10, concerning the double values of the heave
exciting forces at kD/2 tending to zero, as well as the minimization of the loads at wave frequencies
corresponding to distances, between the initial and image floater, equal to the half of the wave length.
Following the conclusions of [48] the duplication of the heave exciting forces when kD/2 tends to zero
can be traced back to the fact that a fully wave—reflecting wall of infinite length has been considered
here. However, this would not be the case if a finite length breakwater was examined. It can be also
seen from the Figures 9 and 10 that, similar to the surge exciting forces, the sharp peaks observed in
heave exciting forces can be attributed to the waves reflected by the wall since they disappear when
the wall is removed.
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kD/2, for the three different examined array configurations. Comparison with the heave exciting wave
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C1; (b) rectangular arrangement, C2; (c) perpendicular arrangement, C3.

Next, the hydrodynamic coefficients of the floaters for the examined array configurations (see
Figure 6) are presented against kD/2. More specifically, the hydrodynamic added mass and the
damping coefficients as they have been derived by Equation (19) are plotted in a dimensionless form
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hydrodynamic characteristics of the same floater of the array, without the presence of the breakwater
(i.e., no-wall cases in the presented figures).

In Figure 11, the surge hydrodynamic added mass of the 1st floater due to its forced oscillation
in the surge direction is presented for the three array configurations (i.e., parallel; rectangular and
perpendicular) and compared with the corresponding values of the added masses of the same floater
of the array without the presence of the breakwater. It can be seen that the values of the added mass
for the three examined floaters oscillate around the corresponding values referred to the same arrays
but without the breakwater. Moreover, it can be observed that for the selected position of the floater
in the array (i.e., examined array configuration), a small effect on the added mass coefficient can be
reported since the values of the added mass of each floater at each examined array configuration are,
in general, quite similar. On the other hand, the type of the floater appears to have a major impact
on its added mass. It can be seen that the surge added mass of the cylindrical floater has the larger
values compared with the ones of the conical and the semi-spherical floater, due to the cylinder’s
larger volume. Moreover, it should be also noted that as far as the vertical arrangement is concerned,
the interaction phenomena between the cylindrical floaters, oscillating in the surge direction, and the
breakwater create a negative added mass at kD/2 = 1.17. However, this is not the case for the conical
and the semi-spherical floater.

In Figure 12, the damping coefficient of the 1st floater due to its forced oscillation in the surge
direction is presented for the three aforementioned array configurations and floater types (see Figures 1
and 6). The results are also compared with the corresponding damping coefficients referred to the same
floater of the arrays, without the presence of the breakwater. It can be seen from the Figure 12, that the
breakwater affects also the damping coefficients. The values of the damping coefficients, when the
floater is placed in front of the vertical wall, oscillate around those of the same floater without the
presence of the wall. Moreover, it can be observed that the damping coefficient maximizes at the same
wave frequency (i.e., kD/2 = 1.17) where the surge exciting forces are also maximizing, regardless the



J. Mar. Sci. Eng. 2020, 8, 62 16 of 37

examined array configuration. As far as the comparison of the values of the damping coefficient of the
examined types of floaters is concerned, it can be seen that due to its larger volume the cylindrical
floater is characterized by higher damping coefficients compared with the ones from the conical and
the semi-spherical floater.
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In Figures 13 and 14, the corresponding surge added mass and damping coefficient of the 3rd
floater of the examined array configurations (see Figure 6), due to its surge forced oscillations are
presented. Herein, the results are compared also with the corresponding coefficients of the same floater
of the array but with absence of the breakwater.
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Figure 14. Dimensionless damping coefficient of the 3rd floater at the surge direction due to its
motion at surge against kD/2, for the three different examined array configurations. Comparison
with the corresponding damping coefficient of the same floater of the arrays without the presence
of the breakwater: (a) parallel arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular
arrangement, C3.

Comparing the Figures 11a and 13a it can be seen that the position of each floater in the parallel
array configuration does not affect the added mass in surge direction, since both figures (i.e., added
mass of the 1st and the 3rd floater) depict very similar results. Furthermore, in these figures the effect
of the breakwater is also notable since the values of the added mass of the floater placed in front of
a breakwater oscillate around those without the presence of the vertical wall. However, this is not
occurring in the cases of the perpendicular and the rectangular arrangements (see Figure 11b,c and
Figure 13b,c). The effect of the breakwater on the added mass of the 3rd floater is decreasing for these
two arrangements, since the oscillations of the values of the floater’s added mass placed in front of the
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wall, around those of the same floater without the presence of the wall, decrease. This is happening
because the 3rd floater is closer to the wall at the parallel array, whereas this distance increases for the
rectangular and vertical arrangement. The same conclusion can be drawn for the damping coefficients
of the 3rd floater presented in Figure 14. Following the remarks by [49], the arrays of WECs can be
divided into broad categories, based on the converters spacing relative to the wavelength. When the
ratio of the spacing between the converters of the array and the radius of the WEC has a value larger
than the wavelength the interaction phenomena between the converters decrease significantly and each
device tends to behave as a single converter. From the image theory presented in this work, the system
of the N converters and the breakwater has been simulated as an array of 2N converters consisting of
the initial and their image virtual devices with respect to the breakwater that are exposed to the action
of surface waves (diffraction problem) or forced to move in otherwise calm water (radiation problems)
without, however, the presence of the wall. At the examined perpendicular arrangement this ratio
is larger than the wavelength for kD/2 > 0.7. However, for lower values of kD/2, where the ratio is
tending to the wave length, the interaction phenomena on the initial device due to the motion of its
image device are also small. Thus, the breakwater seems to have minor effect on the added mass and
on the damping coefficient of the 3rd floater of the array.

Concluding, as far as the surge added mass and damping coefficients are concerned, their values
seem to be mainly dictated by the type of the floater (i.e., larger coefficients appear for the cylindrical
floater and follow the semi-spherical and the conical floater) and not to a large extend by the floater’s
array configuration.

In the sequel, the heave hydrodynamic added masses and the heave damping coefficients of
the same floaters (i.e., 1st and 3rd, see Figure 6) of the aforementioned array configurations (i.e.,
parallel, rectangular and vertical arrangement) are presented in Figures 15–18. The Figures 15 and 16
depict the added mass and damping coefficient, respectively, of the 1st floater of the examined array
configurations, in heave direction due to its forced oscillation also in heave. Herein, the impact of
the floater’s type on its hydrodynamic coefficients (i.e., added mass and damping) is notable. The
cylindrical floater is characterized by lower values of damping coefficients, compared to the conical and
semi-spherical floater, at every examined arrangement. This was not the case for the surge damping
coefficient, as being depicted in Figures 12 and 14. Furthermore, it can be observed from the Figures 15
and 16 that the effect of the breakwater is higher for small values of kD/2 (i.e., kD/2 < 1.17). For values
of kD/2 larger than 1.17 the values of the added mass and damping coefficients of the floater in front of
the breakwater tend to those of the same floater without the presence of the wall. In Figure 16 it can be
also seen the doubling of the damping coefficient at values of kD/2 tending to zero. This has been also
observed at the heave exciting forces on the floaters in front of the vertical wall.
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(a) 

Figure 15. Dimensionless added mass of the 1st floater in the heave direction due to its motion in heave
against kD/2, for the three different examined array configurations. Comparison with the corresponding
added mass on the same floater of the arrays without the presence of the breakwater: (a) parallel
arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular arrangement, C3.
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be seen that the added mass and the damping coefficients of the 3rd floater in the parallel 
arrangement tend to those of the 1st floater, for the same array configuration. 

 
(a) 

Figure 16. Dimensionless damping coefficient of the 1st floater at the heave direction due to its
motion at heave against kD/2, for the three different examined array configurations. Comparison
with the corresponding damping coefficient of the same floater of the arrays without the presence
of the breakwater: (a) parallel arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular
arrangement, C3.

In Figures 17 and 18, the hydrodynamic coefficients of the 3rd floater in heave (i.e., added mass
and damping values) are presented for the three examined array configurations in front of the vertical
wall and compared with the corresponding values of the same floater of the arrays, without the
presence of the vertical wall. Comparing the Figures 15 and 16 with the Figures 17 and 18 it can be
seen that the added mass and the damping coefficients of the 3rd floater in the parallel arrangement
tend to those of the 1st floater, for the same array configuration.
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(a) parallel arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular arrangement, C3. 
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Figure 17. Dimensionless added mass of the 3rd floater at the heave direction due to its motion at heave
against kD/2, for the three different examined array configurations. Comparison with the corresponding
added mass on the same floater of the arrays without the presence of the breakwater: (a) parallel
arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular arrangement, C3.
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Figure 18. Dimensionless damping coefficient of the 3rd floater at the heave direction due to its 
motion at heave against kD/2, for the three different examined array configurations. Comparison 
with the corresponding damping coefficient of the same floater of the arrays without the presence of 
the breakwater: (a) parallel arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular 
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Figure 18. Dimensionless damping coefficient of the 3rd floater at the heave direction due to its
motion at heave against kD/2, for the three different examined array configurations. Comparison
with the corresponding damping coefficient of the same floater of the arrays without the presence
of the breakwater: (a) parallel arrangement, C1; (b) rectangular arrangement, C2; (c) perpendicular
arrangement, C3.

The same conclusion has been also drawn at the discussion of the Figures 11 and 13. However, this is
not the case for the other examined array configurations. Especially, for the perpendicular arrangement,
the interaction phenomena between the floaters and the breakwater imply large oscillations of the
values of the hydrodynamic coefficients of the 3rd floater, around the ones of the same floater without
the presence of the vertical wall. Furthermore, it is notable that the heave hydrodynamic characteristics
of the floater is mainly affected by the type of the floater (i.e., cylindrical, conical or semi-spherical) and
less by its position in the array.

In the Figures 19 and 20, the hydrodynamic added mass and the damping coefficients in heave are
presented for the 3rd floater of the aforementioned types (i.e., cylindrical, conical and semi-spherical)
due to the forced heave oscillation of the j-th floater (j = 1, 2, . . . , 5), in the perpendicular array case
configuration. The latter is selected due to the high interaction phenomena between the members of
the array compared with the ones that appear in the parallel and rectangular array. In the Appendix A,
these values (i.e., heave hydrodynamic added mass and damping coefficients for the 3rd floater) are
also presented in a tabular form for indicative values of wave frequencies to allow more accurate
comparisons to be made with other numerical estimates.

Comparing the Figure 19a–c it can be seen that the type of the floater affects mainly the heave
added mass due to its own forced heave oscillation. Thus, the higher added mass is applied for the
cylindrical floater followed by the added mass from the semi-spherical and conical floater. On the
other hand, the added mass on the floater, due to the forced heave motion of the rest bodies of the
array, seems not to be affected by the type of the floater, since the values of the hydrodynamic mass
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of the floaters have similar values. This is also the case for the damping coefficient of the 3rd floater
in the heave direction due to the forced oscillation at heave of the j-th floater, presented in Figure 20.
The contribution of the floater’s shape on the damping coefficients of the 3rd floater, due to the forced
heave motion of the remaining floaters, seems to be minor. However, contrary to the added mass,
the higher values of damping coefficients are presented for the conical and semi-spherical floater,
followed by the ones of the cylindrical floater.
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perpendicular arrangement, C3. 

In the Figures 21 and 22 the hydrodynamic added mass and the damping coefficients in sway 
(y—direction, see Figure 6) are presented for the 1st floater in the parallel array case configuration, 
C1, due to the forced sway oscillation of the j-th floater (j = 1, 2, …, 5) in dependence on the floater’s 
geometry, i.e., cylindrical, conical and semi-spherical. It can be seen from the Figures 21 and 22 that 
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oscillation but also to the forced oscillation in the sway direction of the rest of the floaters. Thus, 
due to its larger volume the cylindrical floater is characterized by higher hydrodynamic 

Figure 20. Dimensionless damping coefficient of the 3rd floater at the heave direction due to the forced
motion at heave of the j-th floater (j = 1, 2, . . . , 5) against kD/2, for the three different examined types
of floaters: (a) conical floater; (b) semi-spherical floater; (c) cylindrical floater in the perpendicular
arrangement, C3.

In the Figures 21 and 22 the hydrodynamic added mass and the damping coefficients in sway
(y—direction, see Figure 6) are presented for the 1st floater in the parallel array case configuration,
C1, due to the forced sway oscillation of the j-th floater (j = 1, 2, . . . , 5) in dependence on the floater’s
geometry, i.e., cylindrical, conical and semi-spherical. It can be seen from the Figures 21 and 22 that
the type of the floater affects its hydrodynamic characteristics not only due to its own forced sway
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oscillation but also to the forced oscillation in the sway direction of the rest of the floaters. Thus, due
to its larger volume the cylindrical floater is characterized by higher hydrodynamic characteristics
compared with the ones from the conical and the semi-spherical floater. Indicative theoretical results
for the cylindrical floater case, i.e., Figures 21c and 22c, are given in the Appendix B, (i.e., sway
hydrodynamic added mass and damping coefficients for the 1st floater) in tabular form to allow more
accurate comparisons to be made with other numerical estimates.

In the Figure 23 the hydrodynamic added mass and the damping coefficient in sway (y—direction,
Figure 6) are presented indicatively for the 1st conical floater due to the forced surge oscillation
(x—direction) of the j-th conical floater (j = 1, 2, . . . , 5), in the parallel array case configuration, C1.
The results are compared with the corresponding values of the 1st conical floater of the array without
the presence of the breakwater. Due to the examined arrangement (i.e., parallel) these values (i.e.,
hydrodynamic added mass and damping coefficient in sway for the 1st conical floater due to the forced
surge oscillation of the j-th conical floater) tend to zero at every wave frequency, when the vertical wall
is absent. Nevertheless, this is not the case for the array placed in front of the breakwater, since it is
evident from the figures that the examined hydrodynamic characteristics of the floater appear no zero
values. Indicative theoretical results for the hydrodynamic interaction coefficients concerning the 1st
conical floater, see Figure 23a,b, are given in the Appendix C, in tabular form to allow more accurate
comparisons to be made with other numerical estimates.
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Figure 21. Dimensionless added mass of the 1st floater in the sway direction due to the forced 
motion in sway of the j-th floater (j = 1, 2, …, 5) against kD/2, for the three different examined types 
of floaters: (a) conical floater; (b) semi-spherical floater; (c) cylindrical floater in the parallel array 
case configuration, C1. 
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Figure 21. Dimensionless added mass of the 1st floater in the sway direction due to the forced motion
in sway of the j-th floater (j = 1, 2, . . . , 5) against kD/2, for the three different examined types of
floaters: (a) conical floater; (b) semi-spherical floater; (c) cylindrical floater in the parallel array case
configuration, C1.
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Figure 23. Dimensionless added mass (a) and damping coefficient (b) of the 1st conical floater in the 
sway direction due to the forced motion in surge of the j-th conical floater (j = 1, 2, …, 5) against 
kD/2, for the parallel arrangement, C1. 

Next, indicative results concerning the absorbed wave power by the three examined 
arrangements (i.e., parallel, rectangular and perpendicular to the wall) for the case of the cylindrical 

Figure 22. Dimensionless damping coefficient of the 1st floater at the sway direction due to the forced
motion in sway of the j-th floater (j = 1, 2, . . . , 5) against kD/2, for the three different examined types of
floaters: (a) conical floater; (b) semi-spherical floater; (c) cylindrical floater in the parallel array case
configuration, C1.
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Figure 23. Dimensionless added mass (a) and damping coefficient (b) of the 1st conical floater in the
sway direction due to the forced motion in surge of the j-th conical floater (j = 1, 2, . . . , 5) against kD/2,
for the parallel arrangement, C1.
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Next, indicative results concerning the absorbed wave power by the three examined arrangements
(i.e., parallel, rectangular and perpendicular to the wall) for the case of the cylindrical floater-array are
given. The cylindrical floaters of the array are assumed to oscillate at the heave direction, as heaving
WECs. The power absorbed by each floater equals to [50]:

pq = 0.5bPTOω
2
∣∣∣xq

30

∣∣∣2 (20)

Here, xq
30 is the complex amplitude of q floater’s motion in the vertical direction obtained from the

solution of the linear system of motion equations (see Appendix D); ω is the wave frequency and bPTO
represents the damping coefficient that originates from the Power Take Off (PTO) mechanism, modeled
as a linear damping system actuated from the heave motion of the floater. In the present analysis all the
examined cylindrical floaters are considered to have the same PTO characteristics, which for the sake
of presenting some initial numerical results are assumed, according to [50], equal to the heave radiation
damping of the isolated cylindrical floater at its heave natural frequency. Considering the draught and
the radius of the floaters equal to 5 m and the mass of each floater equals to 402.5 t, the heave natural
frequency of the floater equals to 1.088 rad/s, leading to bPTO = 73.88 kNm/s.

In the Figure 24 the absorbed power by the first cylindrical floater (see Figure 6) of each examined
arrangement is presented against the corresponding results of the same array arrangements without
the presence of the breakwater. It can be observed that the wall influences the absorbed wave power
by the floater. More specifically, near the natural frequency of the floater (i.e., kD/2 = 0.68) the presence
of the wall causes a significant increase of the floater’s absorbed power value compared to its no wall
counterpart. This is in line with the expected influence of the vertical wall, which actually offers to
the WEC the reflected wave for harvesting. This influence is evident in the low frequency regime
of e.g., Figure 9 (wave frequencies up to approximately 0.25 rad/s), where the vertical exciting wave
forces on the first floater of the examined array configuration are depicted. However, for higher than
0.25 rad/s wave frequencies the wall’s influence is affected by the hydrodynamic interactions between
the floaters and the wall, depending on the specific geometrical arrangement and the distances lw.
These interactions can minimize the excitation forces and reduce the absorbed power. Moreover,
it has to be stressed that the wave power absorption by a floater in front of a wall and its comparison
with the no wall case is affected by the PTO damping coefficient which has to be properly selected to
accommodate the importance of the hydrodynamic interference effects. It is therefore evident that the
effect of the vertical wall on the WECs efficiency should be further examined for different PTO damping
coefficients, distances between the wall and the floaters and various angles of wave propagation and
in the entire range of the wave frequencies of interest, in order to depict accurately the influence of the
wall to the WECs efficiency.
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Figure 24. Absorbed wave power by the 1st cylindrical floater against kD/2, for the parallel, C1,

rectangular, C2; and perpendicular, C3 arrangement. The results are also compared with the absorbed
power of the same floater of the arrangements without the presence of the wall.
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5. Conclusions

This study dealt with the determination of the hydrodynamic loads on an array of floaters in front
of a vertical breakwater of infinite length. The image method has been applied to simulate the effect
of the breakwater on the array and the multiple scattering approach has been used to evaluate the
interaction phenomena between the WECs.

Three different types of floaters have been studied, i.e., a cylindrical; a conical and a semi-spherical
floater, as well as three different types of array configurations in front of the vertical wall have
been investigated, i.e., a parallel, a perpendicular and a rectangular array. Based on the theoretical
computations shown and discussed in the dedicated sections, the main findings of the present research
contribution concern the effect of the breakwater on the exciting wave forces and the hydrodynamic
coefficients of the floaters, at every examined configuration, which should not be neglected when
designing a WEC array in front of a vertical wall. This effect, the significance of which is depending on
the distances between the floaters and the wall, causes an increase or decrease of the values of the
exciting loads and the hydrodynamic coefficients of the floaters, at specific wave frequencies. On top
of that, it is shown that the type of the floater dictates by a large expense the exciting wave loads and
its hydrodynamic characteristics compared to the effect that the different examined array configuration
may have on these hydrodynamic parameters. The presented figures showed that the cylindrical
floater is characterized by higher values of surge exciting forces, as well as, surge hydrodynamic
added mass and damping coefficients, at every array configuration, compared to those of the conical
and semi-spherical floaters. However, this is not the case for the heave damping coefficients of
the cylindrical floater, which attain lower values compared to the corresponding ones of the other
examined floaters.

Concluding, the effect of the breakwater on the exciting wave loads and hydrodynamic coefficients
of a floater, when the latter is a part of an array placed in front of the wall, increases or decreases in
dependence to the ratio of the distance between the wall and the breakwater and the radius of the
examined floater. However, neither the existence of the breakwater nor the arrangement of the array
with respect to the incoming wave seem to have a greater influence on the values of the hydrodynamic
forces and coefficients of a floater than its geometrical characteristics. Nevertheless, the present research
will be continued further by determining in detail the power efficiency of the array and the q-factor [39]
of the system, as well as their interaction with the presence of the breakwater, the shape of the floaters
and their position in the array towards the incoming wave.
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Nomenclature

N Number of vertical axisymmetric floaters
d Water depth
ω Wave frequency
A Wave amplitude
θ Angle of wave propagation with respect to the positive x-axis
D Outer diameter of the examined floater
h Distance of the floater’s bottom from the sea bed
lW Distance between the center of the closest to the wall floater and the breakwater
lb Distance between adjacent floaters
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ϕq Potential function describing the fluid flow around the q floater, i.e.,
Φ
(
rq,θq, zq; t

)
= Re

[
ϕq

(
rq,θq, zq

)]
ϕ0 Velocity potential of the undisturbed incident wave
ϕ

q
s Velocity potential of the scattered wave field around the q floater
ϕ

q
j Velocity potential of the radiated wave field around the q floater

ϕ
q
D Diffraction velocity potential around the q floater

Jm The m-th order Bessel function of the first kind
k Wave number(
l0q, θ0q

)
The polar coordinates of the q floater center relative to the origin of the global co-ordinate system

Z0, Zn Orthonormal functions
.
xq

j0 The complex velocity amplitude of q floater’s motion in the j-th direction
I The infinite ring element around the q floater
IIIp The p-th ring element, p = 1, . . . , L, below the q floater
αp The radius of the p-th ring element of type III
hp Distance of the upper surface of the p-th ring element of type III from the sea bottom
Hm The m-th order Hankel function of first kind
Km The m-th order modified Bessel function of second kind
Fq

k,mn
The unknown Fourier coefficientsFq

k,mnp

F∗qk,mnp

∈np The Neumann’s symbol, p = 1, . . . , L
an The roots of the transcendental equation: ω2 + gan tan(and) = 0
ρ Sea water density
Fq

D,i The exciting wave forces on the q floater in the i-th direction

Fqp
i j

The hydrodynamic reaction forces acting on the q floater in the i-th direction, due to the forced
oscillation of the p floater in the j-th direction

Sq The mean wetted surface of the q floater
ni The generalized normal components

r
The position vector of a point on the wetted surface Sq with respect to the reference co-ordinate
system of q floater

aq,p
i, j

The added mass of the q floater in i-th direction due to the forced oscillation of the p floater in the
j-th direction

β
q,p
i, j

The damping coefficient of the q floater in i-th direction due to the forced oscillation of the p floater
in the j-th direction

bPTO The PTO damping coefficient
pq Absorbed wave power by the q floater

Appendix A

In the Tables A1–A3 the hydrodynamic characteristics in heave of the 3rd floater of an array of five floaters
in front of a vertical breakwater (arrangement C3, Figure 6) due to the heave motion of the p-th body in the array

(p = 1, . . . , 5), i.e., A33̂3p =
a3,p

3,3
ρD3

8

; B33̂3p =
β

3,p
3,3

uρD3

8

, (see Equation (19)), are presented against kD/2, for the examined

arrays of conical, semi-spherical and cylindrical floaters, respectively.
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Table A1. Hydrodynamic characteristics of the 3rd floater of the array of five conical floaters.

kD/2 A33ˆ31 B33ˆ31 A33ˆ32 B33ˆ32 A33ˆ33 B33ˆ33 A33ˆ34 B33ˆ34 A33ˆ35 B33ˆ35

0.0760 −0.2360 1.1028 −0.8603 1.2179 2.4640 0.8949 −0.1510 0.3629 0.2158 0.6327
0.1805 −0.0252 0.7306 −0.3496 −0.6498 2.1878 1.5191 −0.5434 −0.5031 −0.7096 0.6787
0.2928 −0.7786 −0.0826 0.2841 0.0017 2.0292 1.0917 0.1770 −0.5122 −0.6660 0.2569
0.3536 −0.2798 −0.2549 0.0789 0.0752 1.5308 1.2013 0.3457 0.1524 −0.4136 −0.2889
0.4894 −0.3789 −0.4587 0.1129 0.1740 1.6349 1.1434 −0.2070 0.3310 −0.1616 −0.5393
0.5665 0.2184 −0.4510 −0.2133 0.1988 1.3301 0.8888 −0.1542 0.0658 −0.0215 −0.3010
0.6515 0.1568 −0.1270 −0.2278 −0.2506 1.3399 1.1049 −0.0274 −0.2827 0.3463 −0.2111
0.7459 0.2740 −0.1072 0.2078 −0.1297 1.1247 0.8422 0.1125 −0.1327 0.2257 −0.1059
0.8511 0.2465 0.1522 0.1636 0.2200 1.0931 0.8060 0.0502 0.1023 0.1927 0.0828
0.9683 0.1613 0.1726 −0.1883 −0.0104 1.1807 0.8200 −0.1564 0.0511 0.0755 0.2864
1.0984 −0.1636 0.1469 0.0456 −0.0476 1.0931 0.7917 −0.0254 −0.1468 −0.1188 0.1967
1.3980 −0.0915 −0.1084 −0.0460 0.1049 0.9388 0.6009 −0.0733 0.0654 −0.1622 −0.1120
1.5668 0.1309 −0.0473 0.1312 0.0015 1.0226 0.6763 0.0959 0.0004 0.1154 −0.0474
1.7476 0.0903 −0.0753 −0.0075 0.0715 0.8328 0.5286 0.0126 0.0632 0.1197 −0.0466
1.9397 0.0314 0.0606 −0.0039 −0.0147 0.9211 0.4426 −0.0080 −0.0302 0.0322 0.0677
2.1428 −0.0420 0.0704 0.0427 −0.0067 0.8566 0.4343 0.0330 0.0079 −0.0113 0.0764
2.3564 0.0234 −0.0184 0.0627 −0.0189 0.9101 0.3617 0.0254 0.0180 0.0049 −0.0015
2.8148 0.0482 −0.0051 −0.0109 −0.0057 0.8368 0.2777 −0.0160 −0.0170 0.0489 0.0003

Table A2. Hydrodynamic characteristics of the 3rd floater of the array of five semi-spherical floaters.

kD/2. A33ˆ31 B33ˆ31 A33ˆ32 B33ˆ32 A33ˆ33 B33ˆ33 A33ˆ34 B33ˆ34 A33ˆ35 B33ˆ35

0.0760 −0.8635 1.2148 −0.2368 1.1000 2.3526 0.8922 0.2178 0.6306 −0.1497 0.3611
0.1805 −0.3377 −0.6459 −0.0255 0.7255 2.0528 1.5033 −0.7073 0.6624 −0.5302 −0.5045
0.2928 0.2713 0.0112 −0.7435 −0.0973 1.8795 1.0634 −0.6481 0.2397 0.1851 −0.4980
0.3536 0.0697 0.0699 −0.2516 −0.2337 1.3792 1.1262 −0.3762 −0.2743 0.3186 0.1590
0.4894 0.1053 0.1708 −0.3529 −0.4431 1.4818 1.0611 −0.1367 −0.5065 −0.2121 0.2974
0.5665 −0.2086 0.1730 0.2169 −0.3894 1.1993 0.7768 −0.0269 −0.2731 −0.1417 0.0625
0.6515 −0.1809 −0.2476 0.1228 −0.1022 1.1718 0.9735 0.3082 −0.1472 0.0078 −0.2533
0.7459 0.1729 −0.0814 0.2182 −0.0751 0.9993 0.6822 0.1856 −0.0862 0.1099 −0.1063
0.8511 0.1182 0.2058 0.1870 0.1343 0.9866 0.6190 0.1473 0.0605 0.0313 0.0802
0.9683 −0.1454 −0.0338 0.1254 0.1400 1.0568 0.6282 0.0262 0.2212 −0.1289 0.0170
1.0984 0.0373 −0.0214 −0.1192 0.0709 0.9910 0.5761 −0.0992 0.1234 0.0071 −0.1188
1.3980 −0.0485 0.0664 −0.0432 −0.0657 0.9364 0.3272 −0.0918 −0.0885 −0.0619 0.0327
1.5668 0.1177 −0.0224 0.1128 −0.0457 1.0162 0.3594 0.1023 −0.0503 0.0942 −0.0324
1.7476 −0.0175 0.0401 0.0557 −0.0414 0.9123 0.2609 0.0660 −0.0130 −0.0058 0.0377
1.9397 −0.0006 −0.0068 0.0105 0.0251 0.9558 0.2206 0.0105 0.0300 −0.0018 −0.0174
2.1428 0.0254 0.0013 −0.0227 0.0273 0.9354 0.2011 −0.0070 0.0384 0.0186 0.0096
2.3564 0.1268 0.0071 0.1106 0.0097 1.0873 0.1657 0.0914 0.0234 0.0862 0.0364
2.8148 −0.0019 −0.0036 0.0110 0.0014 0.9984 0.0946 0.0089 −0.0001 −0.0010 −0.0021

Table A3. Hydrodynamic characteristics of the 3rd floater of the array of five cylindrical floaters.

kD/2 A33ˆ31 B33ˆ31 A33ˆ32 B33ˆ32 A33ˆ33 B33ˆ33 A33ˆ34 B33ˆ34 A33ˆ35 B33ˆ35

0.0760 −0.8664 1.2090 −0.2374 1.0945 3.0262 0.8876 0.2201 0.6269 −0.1477 0.3583
0.1805 −0.3195 −0.6352 −0.0257 0.7127 2.6931 1.4694 −0.6980 0.6354 −0.5085 −0.5018
0.2928 0.2484 0.0224 −0.6812 −0.1127 2.4978 1.0035 −0.6103 0.2122 0.1914 −0.4677
0.3536 0.0568 0.0609 −0.2102 −0.2000 2.0120 0.9968 −0.3184 −0.2468 0.2732 0.1608
0.4894 0.0873 0.1554 −0.2938 −0.3956 2.1036 0.8971 −0.0964 −0.4327 −0.2007 0.2357
0.5665 −0.1818 0.1275 0.1911 −0.2858 1.8794 0.5890 −0.0282 −0.2209 −0.1173 0.0530
0.6515 −0.1067 −0.2072 0.0754 −0.0699 1.8190 0.7170 0.2225 −0.0680 0.0404 −0.1837
0.7459 0.1062 −0.0356 0.1313 −0.0411 1.7336 0.4294 0.1208 −0.0532 0.0868 −0.0606
0.8511 0.0511 0.1419 0.0973 0.0879 1.7539 0.3439 0.0834 0.0306 0.0146 0.0443
0.9683 −0.0712 −0.0342 0.0641 0.0800 1.8073 0.3221 −0.0093 0.1074 −0.0671 −0.0080
1.0984 0.0145 −0.0034 −0.0436 0.0155 1.7947 0.2482 −0.0459 0.0415 0.0196 −0.0510
1.3980 −0.0206 0.0164 −0.0085 −0.0166 1.8519 0.0885 −0.0188 −0.0268 −0.0214 0.0041
1.5668 0.0423 −0.0165 0.0399 −0.0211 1.9072 0.0634 0.0316 −0.0260 0.0327 −0.0210
1.7476 −0.0050 0.0059 0.0115 −0.0063 1.9025 0.0426 0.0096 0.0011 −0.0027 0.0057
1.9397 0.0000 −0.0007 0.0013 0.0024 1.9347 0.0278 0.0065 0.0063 0.0003 −0.0019
2.1428 0.0027 0.0009 −0.0018 0.0020 1.9542 0.0177 −0.0010 0.0035 0.0018 0.0017
2.3564 0.0176 0.0108 0.0168 0.0110 1.9931 0.0212 0.0126 0.0118 0.0125 0.0120
2.8148 0.0001 −0.0002 0.0007 0.0001 2.0082 0.0032 0.0010 −0.0003 0.0002 0.0003
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Appendix B

In the Table A4 the hydrodynamic characteristics in sway of the 1st cylindrical floater of an array of five
cylindrical floaters in front of a vertical breakwater (arrangement C1, Figure 6) due to the sway motion of the p-th

body in the array (p = 1, . . . , 5), i.e., A22̂1p =
a1,p

2,2
ρD3

8

; B22̂1p =
β

1,p
2,2

ωρD3

8

, (see Equation (19)), are presented against kD/2.

Table A4. Hydrodynamic characteristics of the 1st floater of the array of five cylindrical floaters.

kD/2 A22ˆ11 B22ˆ11 A22ˆ12 B22ˆ12 A22ˆ13 B22ˆ13 A22ˆ14 B22ˆ14 A22ˆ15 B22ˆ15

0.0760 2.0240 0.0183 −0.0333 0.0156 −0.0229 0.0089 −0.0208 0.0000 −0.0165 −0.0084
0.1805 2.0946 0.0988 −0.1033 0.0271 −0.0532 −0.0743 0.0491 −0.0597 0.0608 0.0351
0.2928 2.1574 0.2369 −0.1880 −0.1245 0.1852 −0.0818 −0.0532 0.1774 −0.0791 −0.1307
0.3536 2.2015 0.3541 −0.1477 −0.3186 0.2236 0.2107 −0.2359 −0.0907 0.2053 −0.0131
0.4894 2.3223 0.4508 0.2054 −0.3321 −0.3508 0.0840 0.3204 0.1705 −0.1637 −0.3285
0.5665 2.3637 0.6022 0.4733 −0.0971 −0.2355 −0.5107 −0.3272 0.3323 0.3707 0.2725
0.6515 2.4707 0.8085 0.5054 0.3262 0.5083 −0.3324 −0.1108 −0.6708 −0.5270 −0.2038
0.7459 2.3836 1.4354 0.0344 0.9222 0.1344 0.9514 0.3748 0.6947 0.4932 0.3823
0.8511 2.5715 1.3667 −0.0572 0.4063 −0.6186 0.0419 −0.7277 −0.2513 −0.5758 −0.4337
0.9683 1.8682 1.6947 −0.4459 0.1238 0.3490 −0.6673 0.6573 0.1634 −0.0601 0.6370
1.0984 1.8146 1.6999 −0.8365 −0.2386 0.7164 0.4411 −0.7716 −0.0823 0.6550 −0.3169
1.3980 0.9078 1.3463 0.5921 −0.4201 0.3349 −0.0537 −0.0863 −0.2994 −0.4034 0.0289
1.5668 0.9926 1.4841 0.5586 0.7083 −0.2482 0.4221 −0.1401 0.4517 −0.2159 0.3162
1.7476 0.2887 1.3876 −0.4381 0.5763 0.4545 −0.0133 0.2373 0.1227 −0.1345 0.1795
1.9397 0.7768 1.0233 −0.5525 −0.3183 0.0166 0.0321 −0.1709 −0.1282 0.0572 0.1157
2.1428 0.3299 1.0565 0.2992 −0.5280 0.0286 0.3425 −0.3123 −0.1373 0.1857 0.1297
2.3564 0.4857 0.8862 0.3346 0.1012 0.1713 −0.1660 −0.0121 0.1464 0.0771 0.1877
2.8148 0.4188 0.6489 −0.1544 0.0188 0.2062 0.1173 0.0848 −0.0616 −0.1132 −0.0147

Appendix C

In the Table A5 the hydrodynamic characteristics in sway of the 1st conical floater of an array of five conical
floaters in front of a vertical breakwater (arrangement C1, Figure 6) due to the surge motion of the p-th body in the

array (p = 1, . . . , 5), i.e., A21̂1p =
a1,p

2,1
ρD3

8

; B21̂1p =
β

1,p
2,1

ωρD3

8

, (see Equation (19)), are presented against kD/2.

Table A5. Hydrodynamic characteristics of the 1st floater of the array of five conical floaters.

kD/2 A21ˆ11 B21ˆ11 A21ˆ12 B21ˆ12 A21ˆ13 B21ˆ13 A21ˆ14 B21ˆ14 A21ˆ15 B21ˆ15

0.0760 0.0000 0.0000 0.0025 0.0001 0.0010 0.0002 0.0005 0.0002 0.0002 0.0002
0.1805 0.0002 0.0000 0.0044 0.0024 0.0006 0.0027 −0.0014 0.0010 −0.0010 −0.0006
0.2928 0.0000 0.0006 0.0008 0.0099 −0.0062 −0.0002 0.0014 −0.0034 0.0018 0.0024
0.3536 −0.0007 0.0011 −0.0069 0.0110 −0.0043 −0.0070 0.0056 0.0015 −0.0043 0.0006
0.4894 0.0050 −0.0008 −0.0276 −0.0125 0.0193 0.0097 −0.0099 −0.0104 0.0026 0.0077
0.5665 0.0010 0.0035 −0.0034 −0.0329 −0.0107 0.0162 0.0137 0.0009 −0.0058 −0.0071
0.6515 −0.0020 0.0016 0.0269 −0.0224 −0.0163 −0.0079 −0.0038 0.0072 0.0067 0.0043
0.7459 −0.0031 −0.0013 0.0381 0.0108 0.0037 −0.0160 −0.0105 −0.0070 −0.0065 −0.0007
0.8511 0.0088 −0.0066 0.0238 0.0484 0.0299 0.0095 0.0211 0.0023 0.0126 −0.0044
0.9683 0.0025 0.0040 −0.0653 0.0189 −0.0095 0.0073 −0.0134 0.0066 −0.0223 −0.0142
1.0984 −0.0096 −0.0015 −0.0223 −0.0425 −0.0325 −0.0407 0.0520 −0.0127 −0.0220 0.0408
1.3980 −0.0043 0.0033 0.0048 0.0346 −0.0497 −0.0195 −0.0134 0.0265 0.0310 0.0155
1.5668 −0.0041 −0.0140 −0.0197 0.0303 0.0459 0.0043 0.0232 0.0050 0.0199 0.0026
1.7476 0.0069 0.0205 −0.0447 −0.0583 −0.0428 0.0014 0.0092 0.0090 0.0054 −0.0011
1.9397 −0.0132 −0.0358 0.0521 −0.0315 0.0380 −0.0102 −0.0003 0.0157 −0.0074 −0.0014
2.1428 −0.0384 0.0204 −0.0797 0.0922 −0.0619 −0.0546 0.0604 −0.0223 0.0050 0.0217
2.3564 0.0235 0.0179 −0.0055 −0.0941 0.0119 0.0728 0.0453 −0.0255 −0.0161 −0.0010
2.8148 −0.0074 0.0071 −0.0370 0.0074 −0.0170 0.0323 0.0005 −0.0024 0.0123 −0.0109

Appendix D

The equilibrium of the forces acting on the each floater of the array leads to the following system of differential
equations of motion in the frequency domain, (q = 1, 2, . . . , N), i.e.,:
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N∑
p=1

6∑
j=1

(
δp,qmq

kj + aq,p
k, j

)
..
xp

j0 +
(
β

q,p
k, j + δp,qδ j,3bp

PTO

)
.
xp

j0 + δp,qcq
kjx

p
j0 = Fq

D,k, k = 1, . . . , 6 (A1)

where xp
j0 is the 6–degree displacement vector of the p floater of the array; mq

kj is the mass matrix of the q floater; aq,p
k, j

is the frequency–dependent hydrodynamic mass matrix and βq,p
k, j is the frequency–dependent damping matrix of

the q floater in the kth direction due to the forced oscillation of the p floater in the jth direction (see Equation (19));
cq

kj is the stiffness matrix; Fq
D,k represents the exciting force on the q floater in the kth direction (see Equation (17));

bp
PTO is the damping coefficients that originate from the PTO mechanism and δp,q, δ j,3 are Kronecker delta.
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