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Abstract: This paper describes a numerical model to simulate the behavior of a mussel longline
system, subjected to environmental loads such as waves and current. The mussel line system
consists of an anchor, a mooring chain, a long backbone line, mussel collector lines and buoys.
The lumped-mass open-source code MoorDyn is modified for the current application. Waves are
modelled as a directional spectrum, and the current as a homogeneous velocity field with an
exponential vertical distribution. A Coulomb model is implemented to model the horizontal friction
between nodes and the seabed. Cylindrical buoys with three translational degrees-of-freedom are
modelled by extending the simplified hydrodynamic model in use for line’s internal nodes with
additional properties like cylinder height, diameter and mass. Clump weights are modelled in a
similar way. For validation purposes, the results of the present software are compared with the
commercially available lumped-mass based mooring dynamic software, OrcaFlex.
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1. Introduction

Two different systems for mussel aquaculture are commonly described in the literature: Bottom
culture, and suspension culture. In bottom culture the mussels are placed and grown directly on the
seafloor without the need of any infrastructures [1]. The choice of location is a very sensitive aspect for
bottom culture, due to the influence of predators, temperature, soil deposition and other organisms
living on the sea bed. On the contrary, in suspension culture mussels are attached and grown on
suspended ropes, away from the seafloor. The suspension of crop lines can be achieved with different
strategies and different infrastructures. There are two main types of suspension culture: Raft culture
and longline system [2]. In modern raft system, mussel crop lines are put within a structure made
from a combination of wooden and steel frames to make a stable platform along with large floaters [2].
However, it can also be made from an old wooden boat or a catamaran boat to accommodate up to
1000 crop lines [1]. On the other hand, the longline suspension culture has a typical configuration
consisting of a line that supports suspended ropes with mussels connected to buoys to keep them
afloat. Moreover, the supporting line is moored to the seabed with anchors [3,4]. The longline system
offers the possibility to have a substantial amount of mussel lines suspended from one long line. This
makes it an advantageous technique, since it requires a minimum amount of auxiliary infrastructure [5].
Furthermore, the submerged mussel crops would be less influenced by surface waves, lessening
the risk of system break or mussel detachment. A study to determine the influence of crop lines’
submergence in scallop longline culture has been done by performing a dynamic simulation with a
FEM (Finite Element Method) based software [6,7]. The conclusion of the study was that the decrease
in the stress on the mooring line could achieve 55% as the crop lines are submerged deeper [7]. Lien
and Fredheim [8] performed dynamic analysis of mussel longline and mussel longtube system using
FEM based software [9] originally used for offshore riser analysis. The purpose was to analyze the two
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floating systems with the conclusion that longtube yields in the reduction of dynamic loads compared
to traditional longline system. The dynamics of a model mussel longline system was studied by
Raman-Nair [10] by means of a lumped mass approach. The purpose of the paper was to come up with
a method to perform a design optimization of shellfish aquaculture by means of numerical simulations.
Hydrodynamic forces are modelled using Morison Equation and waves are modelled according to
second-order Stokes theory. No validation work was done; however, the experiment is suggested in
their conclusion to obtain the hydrodynamic coefficients used in the model.

A longline aquaculture system is essentially an underwater system of interconnected lines
of various materials. The dynamics of such a system can be studied with different methods:
Finite-difference [11,12], lumped-mass [13–16] and the inclusion of bending and torsion on cable
segments by finite elements analysis (FEA) [17–19]. In lumped-mass approach, the governing
equations are discretized in space, whereas it is discretized in space and time in finite-difference
models [15]. FEA approach is superior to lumped-mass if the goal is to get an accurate prediction
across different conditions [15]. In a dynamic mooring analysis study done by Hall et al. [20] with
FEA-based approach, it was found that bending and torsion can be neglected in predicting tension of
barge, spar and Tension Leg Platforms (TLP). Based on that finding, Hall [15,16] developed a simple
lumped-mass based mooring dynamic solver to predict line tensions of the typical offshore mooring
system. The code has been validated against the model test of a semisubmersible floating wind turbine
with good fairlead tensions agreement [15,16].

In Section 3, research methodology is presented, which consists of 5 sub-sections. In Section 3.1,
the open-source code MoorDyn and is briefly introduced. The equation of motion and assumptions
made to model the environmental induced load are explained in Section 3.2. The different assumptions
implemented in adapted MoorDyn and OrcaFlex are briefly described in Section 3.3. Test cases setup
used for five simulation cases performed in adapted MoorDyn and OrcaFlex are described in Section 3.4.
In Section 4, simulation results are presented and discussed. Section 5 will conclude the study done in
this paper, along with suggestions for future work.

2. Field Site

In 2017 a research project to examine the feasibility of mussel aquaculture within the Belgian
North Sea Wind Farms was established under the name of Edulis. Belgian wind farms are located in
a restricted area where the space can be utilized for wind power generation and aquaculture. Two
test setups are already deployed in the Belgian wind farms Belwind and C-Power (see Figure 1) to
investigate both the forces on the system and the biological properties of the mussels.

A very important requirement to be complied with is that the position of the mussel line system,
under all circumstances, will not interfere with wind farms activities. Careful design of the mussel
growing system is required for deployment in a critical environment, such as the one found at offshore
locations in the North Sea [21]. The semi-submerged system used in the test setups (Figure 2) consists
of a long backbone line connecting several buoys. The backbone line supports a total of 145 m long
v-shaped mussels collector lines. Properties of the mooring configuration for the test setups are
summarized in Tables 1–3. This system with submerged crop lines is expected to experience less load
on the mooring line as it is submerged deeper [7]. Despite the protection from the surface waves, the
submerged longline system is still in high risks of system failures (anchor loss, buoy immersion, line
breakage), due to storms [22]. Hence, a mathematical model is needed to predict the dynamic behavior
of a mussel line system under the influence of environmental loads. To this end, modifications are
implemented to an open-source lumped-mass mooring dynamic solver. The aim of this paper is to
show the results of newly adapted open-source code compared to commercial software. A comparison
with the commercial mooring dynamic solver OrcaFlex [23] is performed to assess the performances of
the newly adapted code with respect to wave-induced loads acting on a three degrees-of-freedom (all
translations, zero rotations) buoy.
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Figure 2. Illustration of the Edulis test setup line in Belwind (length not drawn to scale). 
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Table 2. Buoy properties.

Buoy Type
[-]

Outer Diameter
[m]

Dry Mass
[kg]

Length
[m]

Volume
[m3]

Quantity
[-]

SPAR buoy 0.790 2500 8.865 4.345 2

Table 3. Anchor properties.

Anchor Type
[-]

Dry Mass
[kg]

Quantity
[-]

Gravity 15000 2
Danforth 2500 2

3. Methodology

The open-source code used as the starting point in the development of the mathematical model is
MoorDyn (Fortran version) developed by Matthew Hall [15,16]. In this paper, comparison with a finite
element based commercial software OrcaFlex will be presented.

3.1. General Description of Numerical Models: MoorDyn

The original version of MoorDyn is capable of modelling the chain, backbone and mussel collector
lines. The segments of all these lines are modelled as homogenous cylinders, characterized by a certain
diameter. Concerning chains, the nominal shackle diameter needs to be converted to an equivalent
diameter when assuming a cylinder shape [24]. The original MoorDyn code is modified in order to be
able to simulate a mussel longline in waves and current. This requires the introduction of the effects of
environmental loads in the original code, as well as three degrees-of-freedom buoys, clump weights
and the effects of seabed friction. The adapted code allows modelling the complete Edulis test setup as
it is shown in Figure 3. This model assumed a flat sea bottom across the entire domain.

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 5 of 24 

 

of the effects of environmental loads in the original code, as well as three degrees-of-freedom buoys, 
clump weights and the effects of seabed friction. The adapted code allows modelling the complete 
Edulis test setup as it is shown in Figure 3. This model assumed a flat sea bottom across the entire 
domain. 

 
Figure 3. A numerical model of Edulis test setup line in irregular waves (mooring line state at 89.9 s). 
Flat bottom at z = −30 m. 

The code was originally developed with the goal of having a computationally efficient solver 
with the focus on predicting tensions on a typical mooring line system. This is achieved by omitting 
rotational degrees of freedom, neglecting bending and torsional stiffness. MoorDyn uses a lumped-
mass approach to model the dynamics of underwater mooring lines and Morison Equation to 
calculate the hydrodynamic forces acting on such lines. For the purpose of modelling the mussel 
longline system, adaptations to MoorDyn are introduced to model environmental loads, buoys, 
clump weights and the effects of seabed friction. According to the lumped-mass approach, a line is 
represented as a series of contiguous segments with homogenous properties. Each line is evenly 
divided into N number of segments, corresponding to N+1 nodes (see Figure 3). The mass of each 
segment is equally transferred to both its extremity nodes. The same principle applies to the external 
forces acting on each segment. Forces are calculated at each node and at each time step [15]. The first 
and last node in a line is defined as connection nodes. There are three types of connection nodes: 

1. Fixed: Fixed type restricts the node to prevent any displacement in position. 
2. Vessel: This type only allows the node to move according to a prescribed motion provided as an 

input to the code. External forces do not influence the displacement of vessel type connection 
nodes. 

3. Connect: This type allows the node to freely move in any directions according to all the forces 
acting on it. 

A comparison of MoorDyn with OrcaFlex against model test data of OC3-Hywind spar buoy 
was investigated, and good agreement between the two codes was found [25]. 

3.2. Mathematical Model 

This sub-section will describe the assumptions used in the numerical model of. The focus will 
be put on the adaptations made to the original MoorDyn. 

Figure 3. A numerical model of Edulis test setup line in irregular waves (mooring line state at 89.9 s).
Flat bottom at z = −30 m.

The code was originally developed with the goal of having a computationally efficient solver
with the focus on predicting tensions on a typical mooring line system. This is achieved by omitting
rotational degrees of freedom, neglecting bending and torsional stiffness. MoorDyn uses a lumped-mass
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approach to model the dynamics of underwater mooring lines and Morison Equation to calculate the
hydrodynamic forces acting on such lines. For the purpose of modelling the mussel longline system,
adaptations to MoorDyn are introduced to model environmental loads, buoys, clump weights and the
effects of seabed friction. According to the lumped-mass approach, a line is represented as a series
of contiguous segments with homogenous properties. Each line is evenly divided into N number of
segments, corresponding to N+1 nodes (see Figure 3). The mass of each segment is equally transferred
to both its extremity nodes. The same principle applies to the external forces acting on each segment.
Forces are calculated at each node and at each time step [15]. The first and last node in a line is defined
as connection nodes. There are three types of connection nodes:

1. Fixed: Fixed type restricts the node to prevent any displacement in position.
2. Vessel: This type only allows the node to move according to a prescribed motion provided

as an input to the code. External forces do not influence the displacement of vessel type
connection nodes.

3. Connect: This type allows the node to freely move in any directions according to all the forces
acting on it.

A comparison of MoorDyn with OrcaFlex against model test data of OC3-Hywind spar buoy was
investigated, and good agreement between the two codes was found [25].

3.2. Mathematical Model

This sub-section will describe the assumptions used in the numerical model of. The focus will be
put on the adaptations made to the original MoorDyn.

3.2.1. Equation of Motion

In MoorDyn, the equation of motion for each node can be expressed as follows [15]:

(m + ai)
..
ri(t) = Fi

(
ri(t),

.
ri(t), vi(t),

.
vi(t)

)
, (1)

where:

• ri(t) is the node’s position at instantaneous time t [m];
•

.
ri(t) is the node’s velocity at instantaneous time t [m/s];

•
..
ri(t) is the node’s acceleration at instantaneous time t [m/s2];

• i represents the 3 degree of freedom in translation (i = 1, 2, 3);
• vi(t) is the fluid velocity at instantaneous time t [m/s];
•

.
vi(t) is the fluid acceleration at instantaneous time t [m/s2];

• m is the mass of the node [kg];
• a is the hydrodynamic added mass of the node [kg];
• F is the total force acting on the node [N].

In this equation of motion, the force acting on the node is expressed as a function of time, outlining
the explicit dependencies on the position and velocity of the node and on the instantaneous values
of the fluid velocity and acceleration at the node’s location. The dependency of the force on the
fluid instantaneous velocity

.
vi(t) and acceleration

..
vi(t) is introduced in the current modification of

MoorDyn. The force acting on a node can be further split into different components induced by
different physical phenomena:

Fi
(
ri(t),

.
ri(t), vi(t),

.
vi(t)

)
= Dp + Dq + T + C + W + B. (2)

The right-hand side of Equation (2) are the contributions of internal forces and external forces.
Line numerical damping C is a function of strain rate and damping coefficient. Tension T is calculated
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as a function of segment strain and Young modulus of the line. Net weight W is calculated based
on the segment’s dry weight and buoyancy. These are the internal forces. As for the external forces,
Dp and Dq are transverse and tangential hydrodynamic drag forces modelled using the Morison
Equation. Vertical bottom contact B is modelled by a spring-damper system. The forces are illustrated
in Figure 4. For additional details on how the aforementioned forces are modelled, the reader is
referred to Reference [15].
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In three dimensions, Equation (1) can be expressed in a matrix form as:
(m + a) 0 0

0 (m + a) 0
0 0 (m + a)




..
rx
..
ry
..
rz

 =


F
(
rx,

.
rx, t

)
F
(
ry,

.
ry, t

)
F
(
rz,

.
rz, t

)
 (3)

The entire equation of motion for a line of N segments is expressed in a matrix which consists
of N+1 sub-matrixes like the one shown in Equation (3). The differential equations of motion are
solved using a constant time step Runge-Kutta second order (RK2) integration scheme [26]. The
implementation of this integration scheme is further explained in Appendix A. In OrcaFlex, bending
and torsional elasticity are taken into account [24]. However, this can be omitted in the calculation,
which was done in the simulations performed for this study.

3.2.2. Current

Current is implemented as a uniform velocity field over the whole simulation domain. Both in
OrcaFlex and adapted MoorDyn, a vertical distribution of the current velocity in three dimensions can
be implemented according to the power law:

vcx = s0

(
d + z
d + z0

)α
·cosθ, (4)

vcy = s0

(
d + z
d + z0

)α
·sinθ, (5)

vcz = 0, (6)
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where:

• s0 is the current magnitude at a reference depth (defined in the input) [m/s];
• d is the water depth (defined in the input) [m];
• z0 is the reference depth (defined in the input) [m];
• α is the exponent to control the shape of vertical distribution [-];
• vcx is the current velocity component in x-direction [m/s];
• vcy is the current velocity component in y-direction [m/s];
• vcz is the current velocity component in z-direction [m/s].

3.2.3. Waves

The wave climate is defined by a directional wave spectrum. For each spectral component,
Airy linear wave theory [27] is used to calculate the free surface elevation and the orbital velocities
and accelerations induced by the spectral component. The total elevation and kinematic quantities,
due to the wave spectrum can be calculated by a superposition of the contributions of each spectral
component [28].

η =
M∑

j=1

P∑
l=1

a j,l cos
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
, (7)

vwx =
M∑

j=1

P∑
l=1

a j,lω j
cosh

(
k j(d + z′)

)
sinh

(
k jd

) cos
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
cosθl, (8)

vwy =
M∑

j=1

P∑
l=1

a j,lω j
cosh

(
k j(d + z′)

)
sinh

(
k jd

) cos
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
sinθl, (9)

vwz =
M∑

j=1

P∑
l=1

a j,lω j
sinh

(
k j(d + z′)

)
sinh

(
k jd

) sin
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
, (10)

.
vwx =

M∑
j=1

P∑
l=1

a j,lω j
2

cosh
(
k j(d + z′)

)
sinh

(
k jd

) sin
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
cosθl, (11)

.
vwy =

M∑
j=1

P∑
l=1

a j,lω j
2

cosh
(
k j(d + z′)

)
sinh

(
k jd

) sin
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
sinθl, (12)

.
vwz =

M∑
j=1

P∑
l=1

−a j,lω j
2

cosh
(
k j(d + z′)

)
sinh

(
k jd

) cos
(
k jxcosθl + k jysinθl − ω jt + α j,l

)
, (13)

where:

• η is the free surface elevation [m];
• M is the number of wave frequency [-];
• P is the number of wave direction [-];
• a is the wave amplitude [m];
• ω is the wave angular frequency [rad/s];
• t is the instantaneous time [s];
• k is the wavenumber [rad/m];
• d is the water depth [m];
• θ is the wave direction [rad];
• α is the phase angle [rad];
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• vwx is the wave-induced velocity component in x-direction [m/s];
• vwy is the wave-induced velocity component in y-direction [m/s];
• vwz is the wave-induced velocity component in z-direction [m/s];
•

.
vwx is the wave-induced acceleration component x-direction [m/s2];

•
.
vwy is the wave-induced acceleration component y-direction [m/];

•
.
vwz is the wave-induced acceleration component z-direction [m/s2].

Since the Airy linear theory formulation does not extend above free surface, the kinematic
properties of each spectral component are extended above the calm water surface by using Wheeler’s
kinematic stretching approach [29]. As for the calculation of dispersion relation, Fenton approximation
is used [30]. This method yields exact results in shallow water and deep water and produces errors of
no more than 0.05% throughout all wavelengths in intermediate water depth [30].

3.2.4. Wave-Current Interaction

The interaction between waves and current is a very complex hydrodynamic phenomenon, and
the literature which covers it is extensive. In general, the current has an effect on both the kinematic and
dynamic properties of waves. The effect of current on wave kinematics is essentially a change of the
dispersion relation, due to the Doppler effect [31]. In the case of a steady uniform current, the Doppler
effect can be trivially calculated based on the uniform current speed. For vertically varying currents,
more complex relations need to be used. An approximate solution valid for current profiles of arbitrary
shapes up to the second order was given in Reference [32]. On the other hand, the effects of current on
wave dynamics account for changes in the wave amplitude, due to wave action conservation [33]. An
expression to calculate the modifications to a wave spectrum, due to the presence of current, was first
provided in Reference [34]. Through Doppler effect and considerations deriving from wave action
conservation, the effect of current on waves can be included in a phase averaged representation of the
wave field.

The problem of wave current interaction is further complicated in shallow water, where both waves
and currents interact with the bottom as well. This very complex problem is still the object of ongoing
research, mainly focused on the use of phase resolving wave models. Recently, the problem was
tackled in Reference [35] through a non-linear vertical 2D model which solves the wave-current-bottom
interaction taking also into account the effects of vorticity induced by vertically non-uniform currents.
In this case, the model only solves the interaction of waves on a vertical strip under the effects of
collinear currents. A different approach was followed in Reference [36], where a turbulent jet current
interacting with frontal waves was investigated by means of a 2DH non-linear model based on shallow
water equations. A 2DH non-linear shallow water model was also used in Reference [37] to investigate
the effects of turbulence and seabed friction on macrovortices generated at a river mouth.

While phase resolving models allow investigation into detail the hydrodynamics of wave-current
interaction, such models are still rather heavy from a computational point of view. In the present
study, a numerical model to investigate the dynamics of a moored system in waves and current is
presented. For the moment, wave-current interaction is not considered in the code, and the orbital
velocities induced by the wave components of the input wave spectrum are superimposed to the
current velocity, which is defined as a vertical profile. The present code could be easily improved in
the future by implementing a simplified wave-current interaction based on the Doppler effect and
on a modification of the spectral density according to wave action conservation. On the other hand,
major modifications to the code would need to be implemented in order to use the results of more
computationally expensive codes like the ones outlined above.
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3.2.5. Hydrodynamic Forces

The wave-induced modifications to the free surface act on the buoyancy of the line segments
and of the connection nodes. On the other hand, wave and current induced fluid velocities, and
wave-induced fluid accelerations all contribute to the total hydrodynamic forces acting on the system’s
nodes. Wave-current interaction is not modelled, hence, total fluid velocity component vi is the
summation of wave orbital velocity component vwi and current component vci. Furthermore, current
acceleration component

.
vci is not modelled (

.
vci = 0), which makes the fluid acceleration component

.
vi

is only due to the wave-induced acceleration component
.
vwi.

vi = vwi + vci , (14)

.
vi =

.
vwi +

.
vci , (15)

.
vci = 0. (16)

In order to calculate the hydrodynamic forces, relative flow velocity is calculated for each node
by subtracting the fluid from the node’s velocities

.
r. The relative fluid velocities are decomposed

into a transverse and tangential direction. Drag forces on the aforementioned directions are then
calculated through Morison Equation. Fluid acceleration

.
vi is used to calculate the inertial force, which

is a contribution of Froude-Krylov force and hydrodynamic added mass. The force per unit length,
according to the Morison Equation is expressed in the following equations [38]:

Fhydrodinamic(t) = FInertia + FDrag, (17)

FInertia =
π
4
ρD2 .

vi(t) +
π
4
ρCaD2

( .
vi(t) −

..
r(t)

)
, (18)

FDrag =
1
2
ρCDD (vi(t) − r(t))

∣∣∣vi(t) −
.
r(t)

∣∣∣, (19)

where:

• CD is the drag coefficient [-];
• Ca is the inertia coefficient [-];
• D is the cylinder equivalent diameter [m];
• ρ is the density of the water [kg/m].

3.2.6. Buoys and Clump Weights

The buoy is modelled as a cylinder and an extension to a connection node with additional
properties of cylinder height, diameter and mass. The submerged volume of the buoy (orange colour
in Figure 5) is calculated based on the free surface calculated at the exact position of the node. Wet
volume fraction is calculated as the ratio of the submerged volume and the total volume of the cylinder.
Buoyancy is then calculated using the total volume and the newly calculated wet volume fraction. The
drag force is calculated through Morison Equation again by taking into account the total projected
area, multiplied by the wet volume fraction calculated before.
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3.2.7. Seabed Friction

When the absolute horizontal velocity |Va| of a node is zero, the static friction force is applied. The
direction of the friction force is opposite to the direction of the node’s resultant force in the horizontal

axis
→

FH. The static friction coefficient µs is applied in this case. On the other hand, the kinetic friction
force is applied when the node starts moving. In this case, the friction force acts in the opposite
direction of the node’s velocity, with a magnitude equal to the normal force multiplied by the kinetic
friction coefficient µk.

F f riction =


−min

(
µs FN,

∣∣∣∣∣→FH

∣∣∣∣∣) →

FH∣∣∣∣∣⇀FH

∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣ |Va| = 0

µkFN
Va
|Va |

, |Va| , 0

. (20)

3.3. Adapted MoorDyn and OrcaFlex Comparison

This sub-section will briefly describe the similarities and differences of the assumptions
implemented in OrcaFlex in comparison to the ones in the adapted MoorDyn.

3.3.1. Seabed Friction

Sea bed friction in OrcaFlex is implemented differently. A modified version of the Coulomb friction
model is implemented. The modification to the standard Couloumb model is the implementation of
a ramping zone to create a transition from the node being static into moving to a certain deflection
criterion. The friction force is increasing linearly throughout this ramping zone [24].

3.3.2. Line Theory

OrcaFlex modelled a line in a similar way to MoorDyn, which is made up of numerous segments
with a node connecting contiguous segments. The mass, weight, buoyancy, drag and other properties
of half-segment are lumped into the neighboring nodes. As for the axial and torsional properties, it is
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modelled in the segment as a massless spring following the FEA based approach [24]. The tension at
the segment’s center is calculated as follows [24]:

Te = Tw + (poao − piai), (21)

Tw = EAε− 2υ (poao − piai) + ktt
τ
l0
+ EAc

dl
dt

1
l0

, (22)

where:

• Te is the effective tension;
• Tw is the wall tension;
• po, pi are the internal and external pressure;
• ao, ai are the internal and external cross-section stress area;
• EA is the axial stiffness of the line, which is Young’s modulus multiple by cross-section area;
• l is the instantaneous length of the segment;
• ε is the strain;
• l0 is the segment’s unstretched length;
• υ is Poisson ration;
• ktt is tension and torque coupling;
• τ is the segment twist angle;
• c is damping coefficient;
• dl/dt is the rate of increase of length.

3.3.3. Waves

Various wave theories are available to choose in OrcaFlex: Airy, Dean, Stokes’ 5th, Cnoidal [24].
Waves are modelled the same way as in the adapted MoorDyn, which was explained in Section 3.2.3.
Waves in MoorDyn are generated through an external program, based on JONSWAP, which randomizes
the phase for each wave component. OrcaFlex offers the possibility to have wave input based on
JONSWAP spectrum as well. However, in order to have the exact same component, all the wave
components need to be defined manually for the test cases used in this paper.

3.3.4. Integration Scheme

In OrcaFlex, the user might choose two different integration scheme: An explicit scheme, and an
implicit scheme. The explicit scheme is essentially a semi-implicit Euler scheme, which does not have
the same order of accuracy as the one implemented in MoorDyn (see Appendix A). As for the implicit
scheme, it is implementing the generalized-∝ integration scheme [24]. For the purpose of adapted
MoorDyn and OrcaFlex comparison, the explicit scheme is chosen in OrcaFlex.

3.4. Test Cases Setup

A numerical model which consists of an anchor connected to a three degrees-of-freedom buoy
through a chain is built in the adapted version of MoorDyn and in OrcaFlex. In both codes, the anchor
is modelled as a fixed point, which restricts any movements of the node in all degrees of freedom.
Simulations are performed in both codes to compare the forces at the anchor and buoy’s position. The
properties of the model, summarized in Tables 4 and 5, are kept the same in both codes.
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Table 4. Line properties.

Equivalent
Diameter

[m]

Dry Mass per
Length
[kg/m]

Axial
Stiffness

[N]

Chain
Length

[m]

Can
[-]

Cat
[-]

Cdn
[-]

Cdt
[-]

0.042 10.910 48884000 50 1.0 0.50 1.4 0.2

Table 5. Buoy properties.

Equivalent
Diameter [m]

Dry Mass
[kg]

Height
[m]

Volume
[m3]

Can
[-]

Cat
[-]

Cdn
[-]

Cdt
[-]

0.790 1200 8.865 4.345 0.94 0.50 0.81 0.40

In both codes, the 50 metres chain is discretized as an array of 12 contiguous segments of
homogeneous cylinder. The inertia coefficients of the chain are taken from recommendations provided
by Bureau Veritas [39] in BV-NR493. As for the drag coefficients of the chain, suggested values were
taken from Det Norske Veritas Germanische Lyold (DNVGL) [40]. The suggested values of drag
coefficients are adjusted according to the chain equivalent diameter used in the numerical calculations.
However, since these coefficients are kept the same in both OrcaFlex and MoorDyn, the chosen values
are not strictly relevant to the results of this comparative study. The same principle applies to the
Morison coefficients used for the buoy.

The seabed is modelled as flat bottom/constant bathymetry with a depth of 30 m. The initial
position of the system is summarized in Table 6.

Table 6. The initial position of the system.

Object Type X [m] Y [m] Z [m]

Anchor 0.00 0.00 −30.00
Buoy 30.00 0.00 −4.43

OrcaFlex gives the option to select an explicit or implicit time integration scheme. As Moordyn
uses an explicit scheme for time integration of the equations of motion, this is chosen in OrcaFlex as
well. Moreover, compression forces are not modelled in both codes.

3.5. Environmental Loads

There are five simulation cases performed in the adapted MoorDyn and OrcaFlex.
The implementation of the regular wave, seabed friction, current and unidirectional spectrum are
investigated in these test cases. The environmental input for the simulation cases is described further
in Section 4.

4. Results and Discussions

4.1. Simulation Case 1: Regular Wave

The system is subjected to a regular wave amplitude of 5 m and period of 8.33 s (wavelength = 103 m)
propagating in the direction of the positive x axis.

Figure 6 shows the time series of buoy’s position calculated in adapted MoorDyn and OrcaFlex.
Good agreement can be found for all direction (x, y, z). Due to the limitation of the chain length, no
wave drift apparent as the buoy cannot move further. Figure 7 shows the comparison of calculated
tension at the anchor for the period of t = 100 s–114 s. High frequency oscillations are found in
OrcaFlex results with overshoot values that are 10 times higher than the peak values predicted by
MoorDyn. These values occur when the last of the chain segments which lay on the seabed (furthest
from anchor) suddenly changes its state from slack to taut. This change of state eventually leads to
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the segment being lifted up from the seafloor. Further investigation shall focus on seabed contact
model and line numerical damping. The seabed contact model influences the total forces acting on that
specific segment as the seabed provides reaction force to the chain segment. When sea bed stiffness
provides high reaction force over a very short period of time, this induces a very fast motion of the
node, which is difficult to be damped out. Additionally, the line discretization could cause a high
frequency oscillation in the segment, especially when the adjacent nodes are out of phase with each
other [16]. It is worth mentioning that for time integration scheme of the equations of motion, OrcaFlex
implements a semi-implicit Euler scheme, one order lower than the RK2 scheme used in MoorDyn. The
fundamental difference between the two schemes is that RK2 calculates an additional state (position
and velocity in this case) in between two time steps (see Appendix A). For this reason, with the same
constant time step, OrcaFlex is expected to give a numerically less stable result.

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 13 of 24 

 

from anchor) suddenly changes its state from slack to taut. This change of state eventually leads to 
the segment being lifted up from the seafloor. Further investigation shall focus on seabed contact 
model and line numerical damping. The seabed contact model influences the total forces acting on 
that specific segment as the seabed provides reaction force to the chain segment. When sea bed 
stiffness provides high reaction force over a very short period of time, this induces a very fast motion 
of the node, which is difficult to be damped out. Additionally, the line discretization could cause a 
high frequency oscillation in the segment, especially when the adjacent nodes are out of phase with 
each other [16]. It is worth mentioning that for time integration scheme of the equations of motion, 
OrcaFlex implements a semi-implicit Euler scheme, one order lower than the RK2 scheme used in 
MoorDyn. The fundamental difference between the two schemes is that RK2 calculates an additional 
state (position and velocity in this case) in between two time steps (see Appendix A). For this reason, 
with the same constant time step, OrcaFlex is expected to give a numerically less stable result. 

 
Figure 6. Simulation case 1: Time series of buoy’s position and tension at the anchor. 

 
Figure 7. Simulation case 1: Time series of anchor tension at t = 100 s until t = 114 s. OrcaFlex results 
are represented as points instead of continuous line in order to highlight the overshoot values. 

  

Figure 6. Simulation case 1: Time series of buoy’s position and tension at the anchor.

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 13 of 24 

 

from anchor) suddenly changes its state from slack to taut. This change of state eventually leads to 
the segment being lifted up from the seafloor. Further investigation shall focus on seabed contact 
model and line numerical damping. The seabed contact model influences the total forces acting on 
that specific segment as the seabed provides reaction force to the chain segment. When sea bed 
stiffness provides high reaction force over a very short period of time, this induces a very fast motion 
of the node, which is difficult to be damped out. Additionally, the line discretization could cause a 
high frequency oscillation in the segment, especially when the adjacent nodes are out of phase with 
each other [16]. It is worth mentioning that for time integration scheme of the equations of motion, 
OrcaFlex implements a semi-implicit Euler scheme, one order lower than the RK2 scheme used in 
MoorDyn. The fundamental difference between the two schemes is that RK2 calculates an additional 
state (position and velocity in this case) in between two time steps (see Appendix A). For this reason, 
with the same constant time step, OrcaFlex is expected to give a numerically less stable result. 

 
Figure 6. Simulation case 1: Time series of buoy’s position and tension at the anchor. 

 
Figure 7. Simulation case 1: Time series of anchor tension at t = 100 s until t = 114 s. OrcaFlex results 
are represented as points instead of continuous line in order to highlight the overshoot values. 
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4.2. Simulation Case 2: Regular Wave and Seabed Friction

In simulation case 2, environmental input is kept the same as in case 1: Regular wave with a wave
amplitude of 5m and period of 8.33 s. The same friction coefficients are set in both adapted MoorDyn



J. Mar. Sci. Eng. 2019, 7, 309 14 of 24

and OrcaFlex to study the influence of sea bed friction, which is 0.5. In his implementation of sea bed
friction modelling, Hall [41] used three different friction coefficients—0, 0.05, and 0.1. It was concluded
that even with the coefficient of 0.1, the influenced is well pronounced in changing the motion of the
modelled mooring line. DNV [40] recommends a friction coefficient of 1.0 for a chain in contact with
sea bottom. In order to assess the influence of such parameter on the results of the simulations, a value
in between the highest one tested by Hall [41] and the one recommended by DNV [40] was chosen. In
a real case scenario, this parameter needs to be calibrated according to the sea bed characteristics.

Good agreement of buoy’s position in all direction can be found between OrcaFlex and adapted
MoorDyn as it is shown in Figure 8. Overall the results between simulation case 1 and simulation case
2 are similar. When comparing overshoot values in anchor tension, however, the implementation of
sea bed friction gives a reduction to these values. This is consistent in both adapted MoorDyn and
OrcaFlex as it is shown in Figures 9 and 10. As it was discussed in Section 4.1, the addition of sea
bed friction would provide damping to the whole system, which in turns reduce the tension on the
line. However, high overshoot values are still found in OrcaFlex results even when sea bed friction
is modelled.

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 14 of 24 

 

4.2. Simulation Case 2: Regular Wave and Seabed Friction 

In simulation case 2, environmental input is kept the same as in case 1: Regular wave with a 
wave amplitude of 5m and period of 8.33 s. The same friction coefficients are set in both adapted 
MoorDyn and OrcaFlex to study the influence of sea bed friction, which is 0.5. In his implementation 
of sea bed friction modelling, Hall [41] used three different friction coefficients—0, 0.05, and 0.1. It 
was concluded that even with the coefficient of 0.1, the influenced is well pronounced in changing 
the motion of the modelled mooring line. DNV [40] recommends a friction coefficient of 1.0 for a 
chain in contact with sea bottom. In order to assess the influence of such parameter on the results of 
the simulations, a value in between the highest one tested by Hall [41] and the one recommended by 
DNV [40] was chosen. In a real case scenario, this parameter needs to be calibrated according to the 
sea bed characteristics. 

Good agreement of buoy’s position in all direction can be found between OrcaFlex and adapted 
MoorDyn as it is shown in Figure 8. Overall the results between simulation case 1 and simulation 
case 2 are similar. When comparing overshoot values in anchor tension, however, the implementation 
of sea bed friction gives a reduction to these values. This is consistent in both adapted MoorDyn and 
OrcaFlex as it is shown in Figures 9 and 10. As it was discussed in Section 4.1, the addition of sea bed 
friction would provide damping to the whole system, which in turns reduce the tension on the line. 
However, high overshoot values are still found in OrcaFlex results even when sea bed friction is 
modelled. 

 
Figure 8. Simulation case 2: Time series of buoy’s position. 
Figure 8. Simulation case 2: Time series of buoy’s position.

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 15 of 24 

 

 
Figure 9. Simulation case 2: Anchor tension comparison. 

 
Figure 10. Simulation case 2: Anchor tension comparison at t = 100 s until t = 114 s. 

4.3. Simulation Case 3: Irregular wave 

In simulation case 3, the unidirectional spectrum is used as an input. A list of wave components 
with different frequencies are generated based on JONSWAP spectrum and used as input for 
simulation case 3, which can be found in Appendix B. Time series of wave sea elevation at the origin 
(0, 0) is shown in Figure 11. All the wave components are propagating to the direction of the negative 
y axis. 

Figure 9. Simulation case 2: Anchor tension comparison.



J. Mar. Sci. Eng. 2019, 7, 309 15 of 24

J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 15 of 24 

 

 
Figure 9. Simulation case 2: Anchor tension comparison. 

 
Figure 10. Simulation case 2: Anchor tension comparison at t = 100 s until t = 114 s. 

4.3. Simulation Case 3: Irregular wave 

In simulation case 3, the unidirectional spectrum is used as an input. A list of wave components 
with different frequencies are generated based on JONSWAP spectrum and used as input for 
simulation case 3, which can be found in Appendix B. Time series of wave sea elevation at the origin 
(0, 0) is shown in Figure 11. All the wave components are propagating to the direction of the negative 
y axis. 

Figure 10. Simulation case 2: Anchor tension comparison at t = 100 s until t = 114 s.

4.3. Simulation Case 3: Irregular wave

In simulation case 3, the unidirectional spectrum is used as an input. A list of wave components
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In Figure 12, the positions of the buoy calculated by OrcaFlex and adapted MoorDyn are compared.
Some discrepancies are found in the calculated horizontal positions of the buoy. The discrepancies
found are likely because of the implementation of wave-induced loads in OrcaFlex and adapted
MoorDyn, which becomes more apparent in the results of simulation case 5. In terms of anchor tension
prediction, OrcaFlex shows overshoot values (Figure 13), which is not the case in the adapted MoorDyn.
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4.4. Simulation Case 4: Current

The system is subjected to an environmental load of current propagating to the direction of the
positive x axis. Current is kept constant throughout simulation time with the magnitude along the
depth modelled using power law. The current magnitude at the surface (s0) is set to be 1 m/s, while the
exponent alpha (α) is 1/7. Figure 14 shown the current vertical profile used in both codes.

Perfect agreement between OrcaFlex and adapted MoorDyn are found when comparing positions
of the buoy (Figure 15). There is a minor discrepancy when comparing anchor tension. As it is shown
in Figure 16, OrcaFlex gives slightly higher tension.
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4.5. Simulation Case 5: Irregular Wave and Current

In simulation case 5, wave input is kept the same as the one in the simulation case 3.
An environmental load of current is now added propagating in the negative y-direction. Current
magnitude along the depth is shown in Figure 14 of simulation case 4. The mooring state at t = 143.9 s
is visualized in the following Figure 17.J. Mar. Sci. Eng. 2019, 7, x; doi: FOR PEER REVIEW 19 of 24 
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Figure 17. Simulation case 5: Mooring state at t = 143.9 in 2D (a) and in 3D (b) view. Flat bottom at z 
= −30 m. 
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In simulation case 4, it was shown that both codes are in perfect agreement when predicting the
buoy position, due to current-induced load. In general, good agreement of buoy positions is found
between OrcaFlex and adapted MoorDyn as it is shown in Figure 18. The addition of current makes
the chain reached its maximum length sooner in comparison with irregular wave only in simulation
case 3. This makes the wave drift non-apparent in simulation case 5. In Figure 19, anchor tension
calculated by OrcaFlex and adapted MoorDyn are compared. Overshoot values in OrcaFlex results are
still apparent. However, compared to the simulation case 3, these values are much less. This is due to
the current-induced load gives raised to tension in the chain, reducing the occurrence of snap loads.
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4.6. Summary of Anchor Forces

The anchor forces for all simulation cases are summarized in the following Table 7:

Table 7. Summary of anchor tension for all simulation cases.

Simulation
Case

OrcaFlex
min

OrcaFlex
mean

OrcaFlex
max

Adapted
MoorDyn

min

Adapted
MoorDyn

mean

Adapted
MoorDyn

max

1 0 N 2986 N 79,442 N 0 N 2355 N 16,597 N
2 0 N 2696 N 68,756 N 0 N 2609 N 12,672 N
3 0 N 1605 N 58,753 N 0 N 293 N 14,024 N
4 0 N 1406 N 1558 N 0 N 1380 N 1535 N
5 0 N 5058 N 71,766 N 0 N 3319 N 24,173 N

5. Conclusions and Future Work

The flexibility of open-source code is a big advantage to have an efficient code that can adapt to
the needs of a user, in this case, aquaculture purposes. The original MoorDyn was partially capable of
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modelling a mussel line system, and was adapted to cope with 3DOF buoy objects and environmental
induced loads (waves and current). The adaptation is focused on modelling the mussel line test setup
described in the introduction, which uses a longline system. The modified code can calculate the
reactions of an arbitrary mussel line system with slender cylindrical floaters to the environmental loads
of wave and current. Based on the calculated forces and displacements, a mussel line system can be
optimized for a real case scenario. From the viewpoint of placing mussel line systems in wind farms,
the system has to be restricted in its movement based on very strict safety distances from the wind
farm equipment. The model can be used to simulate the behavior of mussel line systems in an arbitrary
location. In order to do that, an analysis of the wave and current characteristics of the location of
interest has to be performed. The environmental loads will define the forces on the system and its
maximum displacement, which can be used to design an optimal configuration. The modelling of a
mussel line system with floaters different from slender cylinders would require further adaptations to
the code.

OrcaFlex has been used to compare the numerical calculations with some discrepancies found.
Simulation case 1 and 2 shows that the snap loads phenomenon is captured; however, the magnitudes
calculated by OrcaFlex and adapted MoorDyn do not show the same results. Looking at the high
overshoot values, OrcaFlex with bending and torsion not modelled and explicit integration scheme
chosen appear to give numerically unstable results in the occurrence of snap loads. A comparison
with experiment is suggested to determine the real magnitude of these snap loads. In simulation case
3, wave drift on the buoy, predicted by the two codes, shows some discrepancies. Concluding the
simulation case 4, OrcaFlex and adapted MoorDyn predicted drag force, due to currents that are in
perfect agreement. When the system is subjected to both irregular wave and current, the two codes
show good agreement.

Some aspects of the code will be further improved in the near future: A more complex modelling
of floating objects and seabed contact effects, a more efficient algorithm for wave calculations and a
more computational efficient integration scheme. Finally, additional research effort will be put in the
validation of the numerical model with full scale measurements. The adapted MoorDyn code is used
in the framework of Edulis project to perform a validation study of the test setup line. Positions of the
two SPAR buoys in the test setup line were recorded. A study is being done by comparing the positions
of the buoys from measured data and simulation results of the adapted MoorDyn during a full tidal
cycle of 13 h. The preliminary results showed that positioning the system in line with the direction of
ebb and flood current gives the lowest maximum displacements of the system. Furthermore, forces
are measured on one of the SPAR buoy’s shackle. A numerical calculation during 30 min of sea state
with wave and current as the input will be compared with the measured forces. In the near future, the
results of this on-going study will be published, and the validated code will be used to design a layout
of mussel lines array for the location of the Belgian North Sea.
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Appendix A. Integration Scheme

The equation of motion in the Equation (1) will be reduced from second order to a first order
problem. This is done by introducing the state vector Xi(t) which contains the velocity

.
ri(t) and

position ri(t) of a node:

Xi(t) =
[ .

ri(t)
ri(t)

]
. (A1)

The left hand side of the Equation (2) can be expressed as a function of the state vector and
other time-dependent variables, in our case the fluid velocity and acceleration. For convenience, time
dependent variables different from the state vector can be summarized as a general dependency on t:

Fi
(
ri(t),

.
ri(t), vi(t),

.
vi(t)

)
= Fi(Xi(t), t), (A2)

With the force expressed as a function of the state vector, substituting Equation (A2) into the
Equation (1), the node’s acceleration

..
ri(t) can be expressed as follows:

..
ri(t) = (m + ai)

−1Fi(Xi(t), t). (A3)

Now let us introduce the derivative of the state vector
.

Xi(t):

.
Xi(t) =

dXi(t)
dt

=

[ ..
ri(t)
.
ri(t)

]
. (A4)

By substituting Equation (A1) and Equation (A3) into Equation (A4), the derivative of the state
vector can be expressed in terms of the external force Fi(X(t), t) and of the state vector Xi(t):

.
Xi(t) =

[
(m + ai)

−1 0
0 0

][
Fi(X(t), t)

0

]
+

[
0 0
1 0

]
Xi(t). (A5)

According to the second order Runge-Kutta explicit method, the derivative of the state vector at
half a time step

.
Xi

(
t + ∆t

2

)
can be calculated by substituting the time t with t + ∆t

2 in Equation (A5),

whereas the state vector at half time step Xi
(
t + ∆t

2

)
required by the calculation can be obtained with

the Euler’s explicit method, as shown in Equation (A6):

Xi

(
t +

∆t
2

)
= Xi(t) +

.
Xi(t)

∆t
2

. (A6)

Finally, the new state vector at instantaneous time of t + ∆t is calculated through a modified
Euler’s method where the derivative of the state vector in use is the one calculated at an intermediate
time t + ∆t

2 according to Equation (A5) and Equation (A6):

Xi(t + ∆t) = Xi(t) +
.

Xi

(
t +

∆t
2

)
∆t . (A7)
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Appendix B

Table A1. Irregular wave input.

Wave Components

Frequency Period Amplitude Phase Angle

[Hz] [s] [m] [rad]

0.061 16.262 0.002 2.308
0.068 14.784 0.015 3.02
0.074 13.440 0.065 0.463
0.082 12.218 0.172 0.034
0.090 11.107 0.327 2.181
0.099 10.098 0.504 2.15
0.109 9.180 0.72 1.369
0.120 8.345 0.873 0.837
0.132 7.586 0.832 5.658
0.145 6.897 0.691 2.43
0.159 6.270 0.604 2.799
0.175 5.700 0.533 4.159
0.193 5.182 0.461 0.101
0.212 4.711 0.393 4.089
0.234 4.282 0.332 4.062
0.257 3.893 0.279 2.029
0.283 3.539 0.233 5.376
0.311 3.217 0.194 2.521
0.342 2.925 0.161 1.3
0.376 2.659 0.133 6.086
0.414 2.417 0.11 3.76
0.455 2.198 0.091 4.228
0.501 1.998 0.076 2.871
0.551 1.816 0.062 2.074
0.606 1.651 0.052 0.631
0.666 1.501 0.043 4.747
0.733 1.364 0.035 3.806
0.806 1.240 0.029 4.518
0.887 1.128 0.024 5.638
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