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Abstract: In this study, the mechanics of an axially moving cable that is used to acquire mineral
resources from the seafloor are theoretically and numerically investigated by focusing on the extent
to which a load of buckets affects the cable deflection. In particular, we construct the theoretical
model of a cable, and its solutions are numerically determined using the mode expansion method.
The results of the simulations performed using a varying number of buckets show that the cable
deflects in response to the passage of each bucket. As the total number of buckets increases, the load
of buckets acts as a continuous load. An increase in the total number of buckets naturally leads to
an increase in the total load on the cable, resulting in the deviation of the paths of the buckets from
a path under the zero-load state. These properties should be considered while designing cables.

Keywords: axially moving cable; mode expansion; ocean mining; cable dynamics

1. Introduction

Axially moving structures can be observed in several transportation technologies such as aerial
tramways, ski lifts, elevator cables, and crane hoist cables. Many of these technologies contain cables
moving in an axial direction. Such cables always deflect and vibrate; hence, understanding the
mechanics of the axially moving cables is important for designing reliable transportation systems [1].

One notable application of transportation systems with axially moving cables is ocean mining.
Large amounts of mineral resources have been found in the deep seafloor during marine exploration.
These deposits contain several types of metals such as gold, silver, copper, and rare metals.
These minerals are considered to be precious for manufacturing integrated circuits, and the social
demand for acquiring metals from oceans is rapidly increasing.

Several systems have been proposed for obtaining resources from the seafloor [2]. One such
system comprises a mining robot and a suction pipe. A mixture of resource, seawater, and mud is
suctioned by the robot moving on the seafloor and is then transported via a pipe to the surface of
an ocean. The process is driven by the electrical equipment for pumping the multiphase fluids.

Other studies have proposed a continuous line bucket (CLB) system having numerous buckets
attached to a long cable supported by ships [3,4]. The cable has the axial motion between the floor and
the surface of an ocean (Figure 1). The buckets scoop a resource from the seafloor and are then lifted
by the moving cable.
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Figure 1. Schematic of a two-ship continuous line bucket (CLB) system. The circular cable comprises
two suspended parts (ascending and descending parts) and a grounded part. The dashed box represents
the ascending part addressed in this study.

Even though some studies have investigated the CLB systems after the completion of the
aforementioned pilot studies, more efforts should be devoted to establishing a CLB system design
because such a system exhibits a structural advantage, i.e., it can be driven only by a circulating
cable [4]. This simplicity of the driving mechanism characterizes the CLB system and makes it robust
even in considerably harsh environments filled with fluid, salt, and sessile organisms. The towing of
the cables using a pair of ships enables the widening of the mining area (Figure 1).

This study provides a method for designing a CLB system based on a reliable theory. To the best
of our knowledge, no other studies have reported theories applicable to the CLB system. Even though
the theory proposed in this study does not consider the nonlinear effects and bending rigidity of
cables, it covers the essential part of cable mechanics. Further, the considerations of the axial motion of
an underwater cable and load from the attached buckets are the novel aspects provided by this study.

The long configuration and structural flexibility of the underwater cable addressed in this study
are similar to those in the suspended bridge, which has been studied experimentally and theoretically
(e.g., [5,6]). It is thus desirable that the underwater cable is investigated by both experimental and
theoretical methods. However, because the theoretical aspect of the underwater cable study is still
unmatured, this study focuses on the construction of a theoretical model for the underwater axially
moving cable.

The cable in the CLB system exhibits a catenary configuration exhibiting curvatures under the
no-load condition. The external forces exerted by the load of the buckets and the surrounding fluids
result in the dynamic motion of the cable; thus, a theory related to the cable in a CLB system should
consider the curved configuration and provide solutions for responses to external forces.

Several previous studies on the dynamics of the axially moving cable mainly address the
eigenfrequency (natural frequency) of the cable by solving a homogeneous problem. References [7,8]
theoretically examine the axially moving cables for in-plane motions to discuss the eigenfrequencies
and vibratory modes under the assumptions of small and large sags. Reference [9] presents a theory
for a traveling elastic cable that contains in-plane and out-of-plane components of motion and
arbitrary sags, respectively, thereby examining the relationship between the eigenfrequency and
cable transportation speed. Even though the catenary configuration of the axially moving cables has
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been studied [10–12], these earlier studies have only discussed the static aspects of the axially moving
cable mechanics.

The heterogeneous problem of dynamic motion, i.e., the response of a cable to external loads,
was studied by [13]. The authors of the previous studies applied modal analysis [14,15] and Green’s
function to the transverse motions of the string and beam whose configurations were straight under
the no-load condition.

The method developed in this study offers a solution to the heterogeneous problem of the
dynamics of a cable exhibiting curvature in the static state, enabling one to apply itself to the design of
a CLB system.

In this study, only the in-plane motion is analyzed because the cable is likely to be mostly
deflected in the vertical direction under the gravitational load of buckets. The governing equations in
our analysis are similar to the in-plane components of the equations derived in [9], where the equation
of motion can be solved using the mode expansion method [13–15], which will be used in this study.

The results for three different numbers of buckets (1, 4, and 250) are presented below to discuss
the manner in which the in-plane deflection is dependent on the total number of buckets.

2. Governing Equations

The parameters used in the following equations are presented in Table 1. The subscript 0 represents
a static (zeroth-order) variable, whereas the subscript 1 represents a dynamic (first-order) variable.

Table 1. List of parameters.

Symbol Value Unit Definition

c′n 0.1 − ≡ cn
1
m

√
L
g

cn kg m−1s−1 Normal damping coefficient

c′t 0.1 − ≡ ct
1
m

√
L
g

ct kg m−1s−1 Tangential damping coefficient
EA 6.80× 105 N Longitudinal stiffness
g 9.80 m s−2 Gravitational acceleration
H 2.00× 103 m Water depth
L 2.03× 103 m Entire cable length
m 1.00 kg m−1 Cable mass per unit length
V 0.60 m s−1 Velocity of axial motion
vc 4.25× 10−3 - Speed of axial motion
vl 5.85 - Longitudinal wave speed
vT 3.06× 10−2 - Transverse wave speed
wb 0.30 N m−1 Underwater weight of bucket per unit longitudinal length
- 500 m Bucket interval for the case with four buckets
- 10.0 m Bucket interval for the case with 250 buckets

2.1. Solution for the Static State

The governing equations for static variables are described in the Cartesian O–XY coordinate
system (Figure 2), where X is the horizontal coordinate axis, and Y is the vertically upward coordinate
axis. The bottom end of the cable is located at the origin O. The arc-length coordinate s is used for
measuring the distance of a point on the cable from the origin O. The notations t0 and n0 denote the
zeroth-order tangential and normal unit vectors, respectively. The parameters p and q denote the
tangential and normal components of displacement measured from the static point s0. Φ is the angle
formed by a tangential line of the cable with the horizontal (X) axis.
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Figure 2. O–XY Cartesian and arc-length (s) coordinate systems. The dashed box enlarges a point on
the cable to denote the definition of angles and displacements.

The static state of the cable can be represented using the following equations:

0 =
dT0

ds
− wg sin Φ0, (1)

0 =
(

T0 −mV2
) dΦ0

ds
− wg cos Φ0, (2)

where T0 denotes the zeroth-order true tension, m denotes the mass per unit length of the cable,
V denotes the velocity of the axial motion, wg denotes the underwater weight of the cable per
unit length.

The static configuration (X0, Y0) is given as

X0 = a sinh−1 s
a

,

Y0 =
√

a2 + s2 − a,

}
(3)

where a denotes the equivalent length, determined using the water depth H and entire cable length L.
This static solution has been used for the static analysis of an axially moving cable [10].

The angle Φ0 satisfies the following relations:

dΦ0

ds
=

a
a2 + s2 , (4)

d2Φ0

ds2 = − 2as

(a2 + s2)
2 . (5)

Equation (4) represents the static curvature of the cable. Equations (4) and (5) impact the dynamic
motion of the cable as detailed in the following sections.

2.2. Equation of Motion

The model in this study considers the first-order dynamics and omits terms higher than the
second-order of the dynamic variables. The bending moment of the cable is ignored because the
flexural rigidity has a much smaller impact on the in-plane deflection when compared with other effects.
The cable is assumed to have a uniform density and cross-section. Even though these simplifications
decrease the rigor of the model, the simplified model can elucidate the overall mechanics associated
with the in-plane deflection considered in this study.

To express the acceleration in a frame moving with a point on the cable that moves axially with
velocity V, let us define the material temporal differentiation as

D
Dt

=
∂

∂t
+ V

∂

∂s
. (6)
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The acceleration of a point on the moving cable is the second-order temporal differentiation of the
dynamic position s1(= s0 + pt0 + qn0, Figure 2) in the following manner:

D
Dt

(
Ds1

Dt

)
= V2 ∂2

∂s2 s0

+ V
D
Dt

{
∂

∂s
(pt) +

∂

∂s
(qn)

}
+

D
Dt

{
∂

∂t
(pt) +

∂

∂t
(qn)

}
. (7)

The relation ds
dt = V is used by [16] based on the following mathematical manipulation. The first

term in the right-hand side of Equation (7) is the zeroth-order centrifugal force.
The tangential unit vector t0 and normal unit vector n0 are zeroth-order variables;

the displacements p and q in the tangential and normal direction, respectively, are the first-order variables.
The tangential and normal vectors share the following geometrical relation that can be referred to

as Frenet formula [17]:

dt0

ds
= n0

dΦ0

ds
,

dn0

ds
= −t0

dΦ0

ds
.

 (8)

By expanding Equation (7) and using Equation (8), the tangential and normal components of the
acceleration can be written as

D
Dt

(
Dp
Dt

)
− 2V

dΦ
ds

Dq
Dt
− pV2

(
dΦ
ds

)2
− qV2 d2Φ

ds2 , (9)

D
Dt

(
Dq
Dt

)
+ 2V

dΦ
ds

Dp
Dt
− qV2

(
dΦ
ds

)2
+ pV2 d2Φ

ds2 . (10)

The tension on the upper end of a small segment with length ∆s, denoted by T1(s + ∆s), can be
written in terms of Taylor series around the tension on the lower end of the segment T1(s) as follows:

T1(s + ∆s) = T1(s) +
∂T1

∂s
∆S + O(∆s2). (11)

The tangential vector at the upper end of the small segment can be written as

t0(s + ∆s) = t0(s) +
∂t0

∂s
∆S + O(∆s)2. (12)

Using Equations (11) and (12), the linearized form of the tension in the segment can be expressed as

T1(s + ∆s)t0(s + ∆s)− T1(s)t0(s) '
(

T1(s)
dΦ0

ds
n0 +

∂T1

∂s
t0

)
∆s, (13)

which is identical to that derived by Bliek (1982) [18].
Hydrodynamic damping is linearly modeled. The dimensionless damping coefficients that are

defined as the doubled damping ratio in the tangential and normal directions are presented in Table 1.
The gravity acting on the cable has tangential Ft

g and normal Fn
g components that can be expressed

as follows:

Ft
g ≡ −wg sin(Φ0 + Φ1) ' −wg(sin Φ0 + Φ1 cos Φ0),

Fn
g ≡ −wg cos(Φ0 + Φ1) ' −wg(cos Φ0 −Φ1 sin Φ0).

}
(14)
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2.3. Compatibility Relation

To describe the dynamic motion of a continuum body, the model has to ensure continuity of the
cable, which can be expressed based on the compatibility relation as follows:

T1

EA
=

∂p
∂s
− q

dT0

ds
, (15)

Φ1 =
∂q
∂s

+ p
Φ0

ds
. (16)

The aforementioned relation is the linearized form of the compatibility relation [18].

2.4. Dimensionless Equation of Motion

Using the dimensionless arc length s′, time t′, and tension T′ defined as

s′ ≡ s
L

, t′ ≡ t
√

g
L

, T′ =
T
Ta

, (17)

where g denotes the gravitational acceleration, the governing equations derived above can be
transformed into their dimensionless forms, where Ta denotes the gross weight of the cable. In the
following description, the superscript ′ is omitted for ensuring the simplicity of the expression.

Using the dimensionless variables and Equations (1), (2) and (13)–(16), the dimensionless equation
of motion can be written as follows:

∂2 p
∂t2 + ct

∂p
∂t

+ 2vc
∂2 p
∂t∂s

+
(

v2
c − v2

l

) ∂2 p
∂s2 +

(
−v2

c + v2
TT0

)(dΦ
ds

)2
p

−2vc
dΦ
ds

∂q
∂t

+
(
−2v2

c + v2
l + v2

TT0

) dΦ
ds

∂q
∂s

+
(
−v2

c + v2
l

) d2Φ
ds2 q = Ft, (18)

∂2q
∂t2 + cn

∂q
∂t

+ 2vc
∂2q
∂t∂s

+
(

v2
c − v2

TT0

) ∂2q
∂s2 +

(
−v2

c + v2
l

)(dΦ
ds

)2
q

+2vc
dΦ
ds

∂p
∂t

+
(

2v2
c − v2

l − v2
TT0

) dΦ
ds

∂p
∂s
−

vT
dT0

ds
∂q
ds

+

{(
v2

c − v2
TT0

) d2Φ
ds2 − v2

T
dT0

ds
dΦ
ds

}
q = Fn. (19)

These equations describe the first-order motions p and q of the cable segment while ensuring the
continuity of the cable. The notations Ft and Fn denote the tangential and normal components
of the external forces, including the bucket load, respectively. The presence of a curvature
(Equations (4) and (5)) results in coupling between the tangential and normal motions.

Equations (18) and (19) have the following three dimensionless parameters: vT denotes the
transverse wave speed; vl denotes the longitudinal wave speed; and vc denotes the axial motion speed.
They can be defined as follows:

vT
2 ≡ Ta

mgL
, (20)

vl
2 ≡ EA

mgL
, (21)

vc
2 ≡ V2

gL
. (22)
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3. Mode Expansion Method

In this study, the mode expansion method is applied to compute the solution of the governing
equations described above (see [19] for a detailed explanation of this method).

Let us express p and q according to the superposition principle of vibratory modes as

p(s, t) =
n

∑
j=1

Xj(s)φj(t),

q(s, t) =
n

∑
j=1

Xj(s)φn+j(t).

 (23)

The notation Xj(s), j = 1, · · · , n denotes the mode shape functions that satisfy the specified
boundary condition, whereas φj(t), j = 1, 2, · · · , n, n+ 1, · · · , 2n denotes the generalized coordinates.
The following mode shape function is used:

Xj(s) =
√

2 sin(jπs), (24)

which satisfies the boundary conditions that state that the cable is simply supported at the lower and
upper ends as

p(s = 0, t) = q(s = 0, t) = 0, (25)

∂2 p
∂s2 (s = 0, t) =

∂2q
∂s2 (s = 0, t) = 0, (26)

p(s = 1, t) = q(s = 1, t) = 0, (27)

∂2 p
∂s2 (s = 1, t) =

∂2q
∂s2 (s = 1, t) = 0. (28)

By multiplying Equations (18) and (19) by Xi(s), integrating the results with respect to s over
(0, 1), and applying the orthogonality relation of the mode shape functions, a set of 2n coupled
equations can be derived for the solution φj, j = 1, 2, · · · , 2n as

Mφ̈ + Cφ̇ + Kφ = F, (29)

where φ = (φ1, φ2, · · · , φ2n)
T and the dot “ ”̇ denote temporal differentiation. The elements of the

2n× 2n coefficient matrices M, C, and K are provided in the Appendix A.
The augmented state vector Q̂ ≡ (φ1, φ2, · · · , φ2n, φ̇1, φ̇2, · · · , φ̇2n)

T is introduced for writing
a set of the equations in the form of a first-order derivative as

˙̂Q− AQ̂ = B. (30)

The 4n× 4n matrix A and the vector B with 4n elements are

A ≡
(

O E
−M−1K −M−1C

)
, (31)

B ≡
(

0, M−1F
)T

, (32)

where E is a 2n× 2n unit matrix, O is a 2n× 2n zero matrix, and 0 is a zero vector with 2n elements.
Without an external force term, Equation (30) can be written as

˙̂Q− AQ̂ = 0. (33)
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By assuming that the temporal variation in Q̂ is expressed as peλt, the following eigenvalue
problem can be derived:

Ap = λp, (34)

where p is the eigenvector, and λ is the eigenvalue. The solutions of Equation (34) are generally
complex numbers. If the real part of an eigenvalue is positive, the mode corresponding to this
eigenvalue is divergent (unphysical); meanwhile, if the real part is negative, the corresponding mode
is evanescent. Further, if the real part of the eigenvalue is zero, the corresponding mode is vibratory,
and the imaginary part of eigenvalue is the circular eigenfrequency.

By applying the mode function expansion of the displacement and the compatibility relation,
the expressions of dynamic tension and angle can be written as

T1 =
v2

l
v2

t

{
n

∑
j=1

dXj

ds
(s)φj(t)−

dΦ
ds

n

∑
j=1

Xj(s)φn+j(t)

}
, (35)

Φ1 =
n

∑
j=1

dXj

ds
(s)φj+n(t) +

dΦ
ds

n

∑
j=1

Xj(s)φj(t). (36)

Equation (36) provides the dynamic curvature Ω1 ≡ ∂Φ1
∂s as follows:

Ω1 =
n

∑
j=1

d2Xj

ds2 (s)φj+n(t) +
n

∑
j=1

{
dΦ0

ds
dXj

ds
(s) +

d2Φ0

ds2 Xj

}
φj(t). (37)

4. Solution of the Generalized Coordinate

To determine the equation that governs the generalized coordinate, the following equation is
solved instead of Equation (30).

˙̂Qd − AdQ̂d = Bd, (38)

where the vectors Q̂d and Bd are defined as Q̂d ≡ P−1Q̂ and Bd ≡ P−1B, respectively. The matrix Ad

is a diagonal matrix whose diagonal elements comprise the eigenvalues of A, which can be obtained
based on the following similarity transformation:

Ad ≡ P−1 AP, (39)

where the 4n× 4n matrix P comprises 4n eigenvectors of A in its column [20].
The k-th row of Equation (38) is

ṙd
k − akkrd

k = bd
k , k = 1, · · · , 4n. (40)

The notations rd
k and bd

k denote the k-th elements of the vectors Q̂d and Bd, respectively, and akk
denotes the k-th diagonal element of Ad, i.e., the k-th eigenvalue.

By applying the Laplace transform defined as

L[rd
k ] =

∫ ∞

0
rd

k e−utdt ≡ r̄d
k (u) (41)

and imposing the initial condition of rd
k (t = 0) = 0, the closed form of r̄d

k can be written as

r̄d
k (u) =

1
u− akk

b̄d
k , (42)
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where b̄d
k represents L[bd

k ]. By performing the inverse Laplace transform, rd
k can be expressed in terms

of the convolution integral as

rd
k (t) = L

−1[r̄d
k ] =

∫ t

0
eakk(t−τ)bd

k (τ)dτ. (43)

Further, the closed form of rd
k can be written as

rd
k (t) =

∫ t

0
eakk(t−τ)

4n

∑
j=1

P−1
kj bj(τ)dτ

=
3n

∑
j=2n+1

P−1
kj eakkt

∫ t

0
e−akkτ < Ft(τ), Xj−2n > dτ

+
4n

∑
j=3n+1

P−1
kj eakkt

∫ t

0
e−akkτ < Fn(τ), Xj−3n > dτ, (44)

where the final equality in Equation (44) can be obtained from the fact that the first 2n elements of B
are zero. The bracket < f (s), Xj(s) > indicates the integration of the multiplication of an arbitrary
function f (s) with Xj(s) with respect to s over (0, 1), which can be written as

< f (s), Xj(s) >≡
∫ 1

0
f (s)Xj(s)ds. (45)

Simpson’s formula is adopted to compute the spatial and temporal integrations in Equation (44).
To model the load of buckets, let us assume that the i-th bucket is initially located at s = s0

i and
that the number of buckets is Nb. Hence, the components of the load can be expressed as

Ft = −wb sin Φ(s)
Nb

∑
i=1

δ(s− s0
i − vct),

Fn = −wb cos Φ(s)
Nb

∑
i=1

δ(s− s0
i − vct),

 (46)

where wb denotes the weight of the bucket per unit longitudinal length and δ(s) denotes Dirac’s delta
function. The modeling using δ(s) is the same as the one used by [13,21].

5. Results and Discussion

5.1. Accuracy of the Numerical Integration

The numerical results computed using Simpson’s formula are compared with the analytical
solutions to evaluate the numerical integration accuracy. The spatial integration in Equation (44)
can be analytically performed by assuming that the cable is straight, i.e., Φ0(s) = 0 for 0 ≤ s ≤ 1.
The analytical result for one bucket moving with a horizontal cable is

< Fn(τ), Xj−3n >=
√

2wb
1

a2
kk + (j′πvc)2

×[
e−akkt {akk sin(j′πvct) + j′πvc cos(j′πvct)

}
− j′πvc

]
, (47)

where j′ ≡ j− 3n.
The results obtained using the two methods are compared in Figure 3, where the tangential and

normal components of the displacement at t′ = 117.5 are plotted. The numerical result of the tangential
component is observed to slightly differ from the analytical one; however, the normal components
exhibit few differences.



J. Mar. Sci. Eng. 2019, 7, 301 10 of 17

Arc-length coordinate [-]

(a) (b)

Analytical integration
Numerical integration

×10-4

Ta
ng

en
tia

l d
is

pl
ac

em
en

t [
-]

N
or

m
al

 d
is

pl
ac

em
en

t [
-]

Arc-length coordinate [-]

Figure 3. Comparison of the computed results using analytical and numerical integrations for a straight
cable: (a) tangential displacements; and (b) normal displacements at t = 117.5.

5.2. Numerical Convergence

The numerical convergence of the solutions produced by the mode expansion method is verified
by performing a couple of calculations with varying n.

In Figure 4, the tangential and normal components of the displacement at t = 117.5 are plotted
for n = 50, 75, and 100. The displacements for n = 50 differ marginally from that observed in other
cases. In contrast, the calculations for n = 75 and 100 provide similar displacement distributions.
The dynamic tension and curvature exhibit sufficiently converged distributions. The short wavelength
fluctuations in the distributions arise from the insufficient resolution for the short wavelength
constituent of the dynamic response. On the basis of the above discussion, the result obtained
using n = 75 will be used in the following discussion.

)b()a(

(c) (d)

Arc-length coordinate [-]
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Figure 4. Convergence of the computed results using three maximum numbers of mode expansion,
n = 50, 75, and 100: (a) tangential displacement; (b) normal displacement; (c) dynamic tension;
and (d) dynamic angle.

5.3. Eigenvalues

Eigenvalues are determined by solving Equation (34) based on the properties of the cable
presented in Table 1. This eigenvalue problem has 4n solutions, among which 2n ones are complex
conjugates of the remaining 2n ones. Figure 5 denotes only the positive imaginary parts against
the mode number. The mode numbers are assigned in the decreasing order of magnitude of
the eigenvalues.
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Figure 5. Plots of the eigenfrequencies (imaginary part of the eigenvalue) against the mode numbers.
The lines represent the eigenfrequencies of the axial and transverse vibrations of a straight string.

Figure 5 also denotes the eigenfrequency for a straight string, which are analytically given as
ω = jπvc for a transverse vibration and ω = (j− n)πvl for an axial vibration (j denotes the mode
number, and ω denotes the eigenfrequency), e.g., [22]. In Figure 5, the lower end of the line for axial
vibration is placed at (j, ω) = (n, 0) to count the mode number of axial vibration from n + 1.

The eigenfrequencies of the curved cable are categorized into two groups; the first is
mostly proportional to the line ω = jπvc, whereas the second is on the line ω = (j− n)πvl.
The eigenfrequencies of the vibratory mode of the curved cable are close to those for the transverse
mode of the straight string. It should be noted that they disagree based on the presence of a curvature.
The second group comprises axial vibration modes, all of which are evanescent and immediately
disappear after they are excited.

5.4. Response to Moving Load

5.4.1. One Bucket Case

The response to the load of one bucket is simulated to clearly demonstrate the effect of a single
bucket. The starting point of the bucket is assumed to be at the lower end, s0

1 = 0. Figure 6 depicts the
temporal changes in the generalized coordinates of the lowest four modes. First, a transient response
can be observed while lifting a bucket from the bottom to the top end, and it subsequently transforms
into vibration response when the bucket passes at the top end.

The spatial distribution of the displacements exhibits a deformation of the cable caused by the
load of the bucket (Figure 7). The distributions are the sharpest at the point at which the bucket
is located. The normal displacement becomes smaller as time passes because the load is pointed
downward as the bucket moves upward on the catenary path.

The dynamic tension indicates that the disturbance excited at the bottom end quickly travels
toward the top end (Figure 8). The passage of the bucket disturbs the tension; however, the disturbance
quickly decays because of hydrodynamic damping. The curvature begins to respond near the bottom
end, and its disturbance propagates in the same manner as the disturbance of the tension (Figure 8).

The configuration of the cable in the X–Y coordinate system is depicted in Figure 9a. The deflection
due to the bucket load is distinct immediately after the departure of the bucket from the bottom end.
This is because the normal component of the bucket load is the largest when the bucket is located near
the bottom end. After the bucket passes over the top, the cable is released from the load, vibrating
around the static configuration with considerably small amplitudes.
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Figure 6. Temporal changes in the generalized coordinates of the lowest four modes for one bucket:
(a) tangential component and (b) normal component.
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Figure 7. Distributions of the (a) tangential and (b) normal displacements for one bucket. t′ denotes
dimensionless time.
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Figure 8. Distributions of the (a) dynamic tension and (b) dynamic curvature for one bucket. t′ denotes
dimensionless time.
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Figure 9. Cable configurations in the X–Y plane for (a) one bucket, and (b) 250 buckets. t′ denotes
dimensionless time.
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5.4.2. Four Buckets Case

Next, four buckets are incorporated into the calculation to examine the effect of a load from
multiple buckets on the cable response. The load of the four buckets consecutively provides
disturbances to the cable and then ceases after the fourth buckets passes the top end, where the
cable is restored to the static position (Figure 10). Figure 11 depicts that the displacement becomes
large in the lower part of the cable as a new bucket departs, whereas the displacement decreases when
the fourth bucket approaches the top end.

The dynamic tension demonstrates a stepwise increase (Figure 12) and accumulates as the next
bucket begins to leave the bottom end. The tension is eventually maximized around the top end.
Meanwhile, the maximum curvature stays near the bottom end even after the buckets are far from it.

The configuration in the X–Y frame in this case is very similar to that for one bucket (Figure 9a).
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Figure 10. Time histories for the generalized coordinates of the lowest four modes in case of four
buckets: (a) tangential component and (b) normal component.
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Figure 11. Distributions of the (a) tangential and (b) normal displacements for four buckets. t′ denotes
dimensionless time.
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Figure 12. Distributions of (a) dynamic tension and (b) dynamic curvature for four buckets. t′ denotes
dimensionless time.

5.4.3. 250 Buckets Case

The total number of 250 is close to that observed in the actual applications of the CLB system.
The load from a large number of buckets results in a continuous response because buckets depart



J. Mar. Sci. Eng. 2019, 7, 301 14 of 17

consecutively from the bottom end. The time histories of the generalized coordinates (Figure 13) are
very smooth when transient response occurs as opposed to those observed in case of one and four
buckets, which exhibit a discrete response to each bucket. The absolute values of the generalized
coordinates are considerably larger in this case when compared with those for the remaining two
cases because the total load from 250 buckets is considerably larger, yielding a larger magnitude of
displacement (Figure 14).

Furthermore, the accumulation of dynamic tension toward the top end is observed in this case
(Figure 15). A large number of moving buckets increases the tension toward the top; however,
the increase is not stepwise but almost linear, indicating that the discreteness of the response is no
longer clear and that the load of buckets is temporally continuous during the evolution of tension.
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Figure 13. Time histories for the generalized coordinates of the lowest four modes for 250 buckets:
(a) tangential component and (b) normal component.
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Figure 14. Distributions of the (a) tangential and (b) normal displacements for 250 buckets. t′ denotes
dimensionless time.
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Figure 15. Distributions of the (a) dynamic tension and (b) dynamic curvature for 250 buckets.
t′ denotes dimensionless time.

5.4.4. Relation of In-Plane Deflection and the Design of CLB

The curvature exhibits its maximum magnitude only near the bottom (Figure 15b). In the three
aforementioned cases, the dynamic curvature is observed to be locally large near the bottom end.
This stems from the fact that the catenary curve is almost horizontal in proximity to the bottom end,
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where the load of buckets mainly deflects the cable. This aspect is of prime importance while designing
an axially moving catenary cable.

The cable configuration in the X–Y frame (Figure 9b) sags to a greater extent when compared
with those for a smaller number of buckets (Figure 9a,b). A large sag leads to a large deviation of the
bucket paths from the catenary curve in the static state, and it may reduce the number of resources
that can be scooped by the buckets and that can alter the cable circulation stability in the CLB system.
Hence, the sag should be considered to be an important design parameter.

The limitations of this study are as follows. First, this calculation permits the lower part of the
cable to sink below the Y = 0 line for a case involving 250 buckets. This unrealistic behavior may be
eliminated by imposing surface normal forces on the part in contact with the floor.

Second, there is room for arguments, especially regarding the boundary condition at the bottom
end. Another type, such as the free-end condition, may be appropriate because the cable is not fixed at
the touchdown point in the actual CLB system. This issue can be tackled by developing a dynamic
model capable of considering the grounded part of the cable as well as the suspended part. If the
vicinity of the touchdown point has to be examined, the bending rigidity of the cable should be
included in the equations. The theory presented in this study can be extended to achieve this.

The next step of the analysis for the static and dynamic responses must consider uncertainties in
the responses, because the external loads on the cable involve considerable irregularities. This condition
is similar to ones for bridge [23] and wharf [24], which deform and vibrate due to wind and wave
loads, respectively. Evaluations of the response uncertainty and structural reliability for the cable
can be achieved by constructing a stochastic model of the cable mechanics. The present deterministic
model can provide a basis for the stochastic model.

6. Conclusions

This study examined the static and dynamic responses of the underwater axially moving cables to
loads of the buckets attached to the cables. In particular, the in-plane deflection of the cable is analyzed
through linear analyses. The equations that govern the dynamic response of the cable were solved by
adopting the mode expansion method.

The calculations using different maximum numbers of mode expansion confirmed the
convergence of numerical computation. The comparison between the numerical and analytical
integrations demonstrated that the implemented numerical scheme can precisely compute the
convolution integrals involved in the expression of a solution.

Several simulations were performed by varying the total number of buckets. According to the
simulation results, the cable transiently responds to the bucket load and exhibits a vibratory variation
when the cable is released from the load. The load of each bucket discretely disturbs the cable if only
a few numbers of buckets are attached. As the total number of buckets increases, the load becomes
spatially continuous and the response magnitude increases, producing a deviation in the trajectory of
the buckets from the catenary curve observed in the static state.
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writing—original draft preparation, D.I.; writing—review and editing, Y.N.
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Appendix A

The elements of the coefficient matrices in Equation (29) are described here. Similar to [9],
these matrices are expressed in terms of the submatrices as follows:

M =

{
Mtt O
O Mnn

}
, (A1)
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K =

{
Ktt Ktn

Knt Knn

}
, (A2)

and

C =

{
Ctt Ctn

Cnt Cnn

}
, (A3)

where Mtt, Mnn, Ktt, Ktn, Knt, Knn, Ctt, Ctn, Cnt, and Cnn denote n× n submatrices.
Mtt and Mnn are the unit matrices. The elements of the remaining matrices are

Ktt ≡ < (v2
c − v2

l )X′′i , Xj > + < (−v2
c + v2

t T0)(Φ′)2Xi, Xj >,

Ktn ≡ < (−2v2
c + v2

l + v2
t T0)(Φ′)X′i , Xj > + < (−v2

c + v2
l )X′′i , Xj >,

Knt ≡ < (2v2
c − v2

t T0 − v2
l )(Φ′)X′i , Xj >

+ < {(v2
c − v2

t T0)(Φ′′)− v2
t T′0Φ′}Xi, Xj >,

Knn ≡ < (v2
c − v2

t T0)X′′i , Xj > + < (−v2
c + v2

l )(Φ
′)2Xi, Xj >,

Ctt ≡ < c′tXi + 2vcX′i , Xj >,

Ctn ≡ < −2vcΦ′Xi, Xj >,

Cnt ≡ < 2vcΦ′Xi, Xj >,

Cnn ≡ < c′nXi + 2vcX′i , Xj > .

Simpson’s formula is adopted to compute the spatial integrations expressed as the bracket symbol.
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