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Abstract: Hydrodynamic modeling is the basis of the precise control research of underwater
manipulators. Viscous hydrodynamics, an important part of the hydrodynamic model, directly
affects the accuracy of the dynamic model and the control model of the manipulator. Considering
the limited research on viscous hydrodynamics of underwater manipulators and the difficulty in
measuring viscous hydrodynamic coefficients, the viscous hydrodynamic model in the form of Taylor
expansion is analyzed and established. Through carrying out simulation calculations, curve fitting
and regression analysis, positional derivatives, rotational derivatives, and coupling derivatives in the
viscous hydrodynamic model, are determined. This model provides a crucial theoretical foundation
and reference data for subsequent related research.
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1. Introduction

With the rapid development of the marine industry, the application of robots mounted on
underwater vehicles has become increasingly widespread. Underwater manipulators are mainly
employed in the acquisition and exploration, etc. Their underwater performance can be determined by
their speed and accuracy. Underwater manipulators are usually subjected to large forces and moments
during their operation. These forces and moments mainly include gravity, inertial hydrodynamics,
and viscous hydrodynamics. There are more solutions to the determination of gravity and inertial
hydrodynamics. Therefore, the viscous hydrodynamic model has become a research focus that needs
to be broken through because of its large number of coefficients and the difficulty of measurement.

References [1–3] verified the accuracy of fluid simulation calculations using software, such as
FLUENT, by comparing the simulated calculation values of hydrodynamics with the measured
values of engineering methods. References [4–6] studied the drag and additional mass force of the
manipulator underwater and obtained the inertial hydrodynamic model by the CFD (Computational
Fluid Dynamics) simulation, but the viscous hydrodynamics were not considered as key targets in the
study. References [7–10] numerically calculated the viscous hydrodynamic coefficients of submarine
and ship models with complex shapes under the specified navigation conditions and further improved
the handling performance during navigation. Reference [11] determined the viscous kinetic coefficients
of the manipulator through aerodynamic experiments and carried out a sea trial.

At present, research on viscous hydrodynamics mostly focus on specific ship models and
underwater vehicles, and less on manipulators loaded on them. Therefore, a numerical calculation
method of the viscous hydrodynamic coefficient based on single-DOF (Degree of Freedom) manipulators
is put forward. The method is based on ANSYS Fluent. UDF (user-defined function) and dynamic mesh
which are used to simulate the rotational motion of the manipulator. The inlet and outlet conditions,
as well as boundary conditions of the fluid domain, are changed. Also, the viscous hydrodynamic
model could be obtained by curve fitting and regression analysis.

J. Mar. Sci. Eng. 2019, 7, 261; doi:10.3390/jmse7080261 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0003-2610-3000
http://www.mdpi.com/2077-1312/7/8/261?type=check_update&version=1
http://dx.doi.org/10.3390/jmse7080261
http://www.mdpi.com/journal/jmse


J. Mar. Sci. Eng. 2019, 7, 261 2 of 11

2. Mathematical Model and Theoretical Analysis

2.1. Mathematical Modeling of Viscous Hydrodynamics

Since its surrounding flow field is changed during the operation of the underwater manipulator;
the arm is subjected to the reaction of the water body caused by force generated by the water body.
The hydrodynamics of the moving manipulator in water include two parts: Inertial hydrodynamics
caused by acceleration and viscous hydrodynamics caused by friction. Inertial hydrodynamics is
generally determined by empirical formulas, while coefficients of viscous hydrodynamics are complex
and difficult to measure.

This paper is intended to use a single-DOF manipulator model mounted on a fixed base. The arm
is a homogeneous lightweight rod with a circular cross-section, 50 mm in diameter (d), 500 mm in
arm length (l), at length to diameter ratio of 10, belonging to the slender pole. The establishment of its
coordinate system is shown in Figure 1.
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Figure 1. Manipulator model and coordinate system.

When the manipulator performs the constant motion, the influence of acceleration and angular
acceleration on the motion variable could be ignored based on the “slow-motion” assumption. So the
mere considerations for viscous hydrodynamics are the effects of the velocity and angular velocity in
the motion variable. It can be represented as: U = [u v w p q r]T, where u stands for the velocity in
the OX direction, v for the velocity in the OY direction, w for the velocity in the OZ direction, p for the
angular velocity of the rotation around the OX axis, q for the angular velocity of the rotation around
the OY axis, and r for the angular velocity of the rotation around the OZ axis.

The viscous hydrodynamics can be expressed as a multivariate function F = f(u, v, w, p, q, r),
and the six-dimensional component of viscous hydrodynamics F = [X Y Z K M N]T could also be
displayed in the above functional form, the direction of which is shown in Figure 2.
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The viscous hydrodynamic F performs Taylor expansion in the form of Equation (1):

f(U) = f(Uk) + (U−Uk)
T
∇f(Uk)

+ 1
2! (U−Uk)

TH(Uk)(U−Uk)+
n (1)

where Uk =
[
u0 v0 w0 p0 q0 r0

]T
, Uk is the initial constant.

H(Uk)=



∂2f(Uk)

∂u2
∂2f(Uk)
∂u∂v · · ·

∂2f(Uk)
∂u∂r

∂2f(Uk)
∂u∂v

∂2f(Uk)

∂v2 · · ·
∂2f(Uk)
∂v∂r

...
...

. . .
...

∂2f(Uk)
∂u∂r

∂2f(Uk)
∂v∂r · · ·

∂2f(Uk)

∂r2


Considering the left-right and front-back symmetry and the motion limit of the manipulator, several
coefficients in the second-order expansions are zero, and the remaining others are non-negligible
hydrodynamic coefficients, as in Equation (2):

X = Xuuu2 + Xvvv2 + Xwww2 + Xrrr2 + Xvrvr
Y = Yvv + Yrr + Yv|v|v|v|+Yr|r|r|r|+Yv|r|v|r|
Z = Zww + Zw|w|w|w|+ Zvvv2 + Zrrr2 + Zvrvr
K = Kvv + Kv|v|v + Krr + Kr|r|r|r|
M = Mww + Mw|w|w|w|+ Mvvv2 + Mrrr2 + Mvrvr
N = Nvv + Nrr + Nv|v|v|v|+ Nr|r|r|r|+ Nv|r|v|r|

(2)

Viscous hydrodynamics of the manipulator could be calculated in FLUENT. The regression
analysis of the calculated viscous hydrodynamics and corresponding velocities could be performed to
obtain unknown coefficients in Equation (2) in MATLAB. The first derivative coefficients associated
only with the linear velocity (u, v, w) are the position derivatives, and the first derivative coefficients
related to the angular velocity (p, q, r) are the rotational derivatives. The coefficients caused by joint
changes of two or more parameters are the coupling derivatives.

2.2. Control Equation

To analyze hydrodynamics of underwater manipulators, it is generally assumed that the fluid is
isothermal and incompressible, also as a constant flow that magnitude and direction do not change
with time. The continuity equation (Equation (3)) and the Navier–Stokes equation (Equation (4)) serve
as the two basic equations necessary to solve the flow problem of viscous fluid. These equations are
generally described in the form of partial differentials:

∇ ·
→
u = 0 (3)

∂
→
u
∂t

+
(
→
u · ∇)

→
u =

→

f −
1
ρ
∇p + ν∇2→u (4)

The form of expression of the time-averaged continuity equation does not change. Instead, the
tensor of the Reynolds stress is added to the formula after the N–S equation time-averaged, which
leads to the closure problem of the original equation. The Reynolds stress is about 10−2 Pa, which is
indicative of the turbulent flow and cannot be directly ignored. Therefore, it is necessary to introduce a
proper turbulence model to make a modeling description of the increased Reynolds stress.

For the incompressible isothermal turbulent water environment, the basic equations of turbulence
include the DNS equations (direct numerical simulation), LES equations (large eddy simulation),
and RANS equations (Renault time average). The two equations (DNS equations and LES equations)
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are of limited use due to the requirements of a large number of computational grids. At present,
most engineering calculations adopt the RANS equation to solve closed equations formed by introducing
the turbulence model and, thus, obtain the time-average value of the turbulent elements. To solve
the viscous hydrodynamics under steady-state, the appropriate turbulence model is the key to the
numerical simulations in this paper.

3. Calculation Method Analysis

3.1. Calculation Domain Establishment

Generally speaking, the larger the size of the calculation domain is, the closer it is to the real
working condition. The downside is that it will increase the amount of calculation and prolong the
calculation period. If the calculation domain is too small, the boundary conditions and calculation
results are difficult to match the real working conditions. Therefore, it is very important to choose the
size of the calculation domain reasonably.

Based on previous experience and multiple numerical practices [6,12,13], this paper establishes
the domain as the computational domain, shown in Figure 3b. The specific sizes are as follows:

Front boundary: 1.5 H
Back boundary: 2 H
Side boundary: 1.5 H

where, H stands for the sum of the height of the arm and the base.
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The motion parameters of the simulation are shown in Figure 3, α stands for the rotation angle
around the OZ axis, β for the angle of the arm to the flow direction, V for the inlet flow velocity of the
domain, and the linear velocity components of the manipulator are as shown in Equation (5):

u = Vcosβ cosα
v = Vcosβ sinα
w = Vsinβ

(5)

3.2. Meshing

The calculation of CFD requires well-distributed grids. Usually, grids are classified into structured
and unstructured grids. The unstructured grid means that internal points in the mesh area do not
have the same adjacent unit, with no regular topology, not arranged in layers, and the distribution of
mesh nodes is arbitrary. Therefore, it is more flexible than structured grid. Unstructured grids can be
optimized by using certain criteria in the process of their generation. Ultimately, they can be displayed
as high-quality meshes, which are suitable for complex geometry, easy to control grid size, and node
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density. Moreover, the adoption of random data structures is conducive to mesh adaptation. It is
difficult to model the structured mesh due to the shape of the manipulator, instead, the unstructured
mesh is easy to combine with the dynamic mesh technology. Thus, the unstructured mesh is adopted
in the research.

We compare basic mesh to dense mesh for the sake of grid independence verification. Basic
mesh in the vicinity of the manipulator is shown in Figure 4a and dense mesh is shown in Figure 4b.
The number of elements and nodes are shown in Table 1.
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Table 1. Parameters of basic and dense mesh.

Maximum Layers Growth Rate Elements Nodes

Basic Mesh 5 1.2 636,457 114,559
Dense Mesh 5 1.2 1,429,231 401,609

The rotation process of the manipulator is realized by UDF and dynamic mesh technology in
Fluent. Dynamic meshing is performed by using the spring smoothing model, which approximates
connecting lines between the grid nodes as springs, and the position of nodes after smoothing is
obtained by calculating force equilibrium equations between them. In the calculation process, meshes
with a large aberration rate or huge change in size are grouped together to re-divide the partial meshes.

3.3. The Solution of Position Derivatives, Rotation Derivatives, and Coupling Derivatives

Solving the unknown coefficients in Equation (2) is the key to the research task, where Yv, Nv, Zw,
and Mw are positional derivatives, Yr and Nr are rotational derivatives, and the remaining unknown
coefficients are coupled derivatives.

The positional derivatives could be obtained by simulating the low-speed wind tunnel test,
and the rotational derivatives are obtained by measuring the viscous hydrodynamic of the model at
different rotational angular velocities. The number of coupled derivatives is large, and the viscous
hydrodynamic subjected to the rotational manipulator is measured when β is not 0. After extensive
experiments, the viscous hydrodynamic coefficients were obtained by least-square regression analysis.

The calculation domain inlet is set as the velocity boundary, the outlet as the free-flow condition,
and the calculation domain wall as the non-slip fixed wall.

According to the research of the turbulence model in the reference [13], the standard k–ω model
has many advantages, such as good numerical stability, accurate solution of pressure gradient, low
Reynolds number influence, compressibility effect, and shear flow diffusion. It has better adaptability
in calculating the flow problem of the boundary layer separation. It is one of the most widely used
turbulence models for the viscous hydrodynamic solution. Therefore, the standard k–ω model is used
as the turbulence model in this paper. The equation of the kinetic energy k and the turbulent frequency
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ω are as shown in Equation (6). The determined model parameters are shown in Table 2, according to
the reference [13]: 

∂ρk
∂t +∇ ·

(
ρ
→

Uk) = ∇ ·

[(
µ+

µt
σk

)
∇k

]
+Pk − β

′ρkω
∂ρω
∂t +∇ ·

(
ρ
→

Uω
)
= ∇ ·

[(
µ+

µt
σω

)
∇ω

]
+αt

ω
k Pk − βtρω2

(6)

Table 2. Standard k–ω model parameters.

σk σω αt βt β
′

2.0 2.0 5/9 0.075 0.09

4. Result Analysis

Comparing the viscous hydrodynamics of the manipulator measured by adopting the basic
and dense mesh, respectively, we conclude that the differences are in the range from 1.7% to 4.3%.
The differences are sufficiently low and negligible.

Computations are executed in a 64-bit processor consist of CPU (Intel Core i5-8400 @ 2.80 GHz)
and 8 GB accessible memory, and take 37 h with at least 40 iterations per time step.

Using the size of calculation domain set in Section 3.1, the flow velocity of the calculation domain
is kept constant, the angle β between the manipulator and the incoming flow direction is adjusted, the
viscous hydrodynamics at different angles are calculated, and then the viscous hydrodynamic position
derivative is obtained by linear analysis. The position derivative calculation contents are shown in
Table 3.

Table 3. Solving cases of position derivatives.

α 0◦, ±2◦, ±5◦, ±7◦, ±10◦

β 0◦, ±2◦, ±4◦, ±6◦, ±8◦, ±10◦

r 0 rad/s
V 1 m/s

Since the different degrees of α and β cause the manipulator to have different linear velocities
in the OX, OY, and OZ directions, viscous hydrodynamics of the arm is measured in the horizontal
plane XOZ and the vertical plane XOY, respectively. The values of the vertical force Y and the pitching
moment N measured at the different linear velocity v in the OY direction are shown in Table 4.

Table 4. Measurements of vertical force Y and pitching moment N at different linear velocity v.

v (m/s) Y (N) N (N·m)

−0.1714 −0.0373 0.0677
−0.1200 −0.0235 0.0673
−0.0860 −0.0135 0.0670
−0.0340 0.0003 0.0660

0 0.0104 0.0658
0.0340 0.0190 0.0652
0.0860 0.0331 0.0649
0.1200 0.0420 0.0640
0.1714 0.0545 0.0628

The position derivatives Yv and Nv are the first derivative coefficients of the linear velocity v, so the
least squares curve fitting of the vertical force Y and the pitching moment N in viscous hydrodynamics
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to the linear velocity v is performed, as shown in Figures 5 and 6. The derivative value at the median 0
points of the line velocity v is taken as the position derivative.
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Same as above, the values of the lateral force Z and the yaw moment M measured at the different
linear velocity w in the OZ direction are shown in Table 5.

Table 5. Measurement of the lateral force Z and the yaw moment M at the different linear velocity w.

w (m/s) Z (N) M (e−5·N·m)

−0.1740 −0.0364 −4.8199
−0.1390 −0.0280 −2.5920
−0.1050 −0.0184 1.5570
−0.0700 −0.0100 2.0860
−0.0350 −0.0025 2.1628

0 0.0066 4.1640
0.0350 0.0165 5.4699
0.0700 0.0250 8.9650
0.1050 0.0328 9.3461
0.1390 0.0430 12.3140
0.1740 0.0526 16.7242

The position derivatives Zw and Mw are the first derivative coefficients of the linear velocity w,
so the least squares curve fitting of the viscous hydrodynamic lateral force Z and the yawing moment
M to the linear velocity w is performed, as shown in Figures 7 and 8. The derivative at 0 point of the
median line velocity w is taken as the position derivative.



J. Mar. Sci. Eng. 2019, 7, 261 8 of 11

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 8 of 11 

 

 
Figure 7. Fitted curve of lateral force Z and linear velocity w. 

 
Figure 8. Fitted curve of yaw moment M and line speed w. 

The positional derivatives could be obtained as shown in Table 6 below: 

Table 6. Position derivatives of the manipulator in viscous hydrodynamics. 

vY  vN  wZ  wM  

1.4352 −0.1472 1.3520 0.0117 

Since the manipulator studied in this paper is a single DOF, only the viscous hydrodynamics are 
measured when it rotates around the OZ axis. UDF is applied to adjust the rotational velocity of the 
arm. The measurement conditions of the rotation derivatives are shown in Table 7. 

Table 7. Solving cases of rotational derivatives. 

α  −10°–10° 
β  0° 
r 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0 (rad/s) 
V 0 m/s 

This paper calculates the hydrodynamics of the rotating underwater manipulator when the flow 
is stationary. The arm rotates in the XOY plane. The angular velocity r is adjusted according to Table 
7, and the instantaneous viscous hydrodynamics of the arm during the rotation from −10° to 10° 
around the OZ axis are measured. The measured vertical force Y and pitching moment N are shown 
in Table 8. 

Table 8. Measurements of vertical force Y and pitching moment N at different angular velocities r. 

r (rad/s) Y (N) N (N·m) 
0.5 0.0033 0.0444 
0.75 0.0113 0.0731 
1.0 0.0182 0.1023 
1.25 0.0306 0.1462 

Figure 7. Fitted curve of lateral force Z and linear velocity w.

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 8 of 11 

 

 
Figure 7. Fitted curve of lateral force Z and linear velocity w. 

 
Figure 8. Fitted curve of yaw moment M and line speed w. 

The positional derivatives could be obtained as shown in Table 6 below: 

Table 6. Position derivatives of the manipulator in viscous hydrodynamics. 

vY  vN  wZ  wM  

1.4352 −0.1472 1.3520 0.0117 

Since the manipulator studied in this paper is a single DOF, only the viscous hydrodynamics are 
measured when it rotates around the OZ axis. UDF is applied to adjust the rotational velocity of the 
arm. The measurement conditions of the rotation derivatives are shown in Table 7. 

Table 7. Solving cases of rotational derivatives. 

α  −10°–10° 
β  0° 
r 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0 (rad/s) 
V 0 m/s 

This paper calculates the hydrodynamics of the rotating underwater manipulator when the flow 
is stationary. The arm rotates in the XOY plane. The angular velocity r is adjusted according to Table 
7, and the instantaneous viscous hydrodynamics of the arm during the rotation from −10° to 10° 
around the OZ axis are measured. The measured vertical force Y and pitching moment N are shown 
in Table 8. 

Table 8. Measurements of vertical force Y and pitching moment N at different angular velocities r. 

r (rad/s) Y (N) N (N·m) 
0.5 0.0033 0.0444 
0.75 0.0113 0.0731 
1.0 0.0182 0.1023 
1.25 0.0306 0.1462 

Figure 8. Fitted curve of yaw moment M and line speed w.

The positional derivatives could be obtained as shown in Table 6 below:

Table 6. Position derivatives of the manipulator in viscous hydrodynamics.

Yv Nv Zw Mw

1.4352 −0.1472 1.3520 0.0117

Since the manipulator studied in this paper is a single DOF, only the viscous hydrodynamics are
measured when it rotates around the OZ axis. UDF is applied to adjust the rotational velocity of the
arm. The measurement conditions of the rotation derivatives are shown in Table 7.

Table 7. Solving cases of rotational derivatives.

α −10◦–10◦

β 0◦

r 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0 (rad/s)
V 0 m/s

This paper calculates the hydrodynamics of the rotating underwater manipulator when the flow
is stationary. The arm rotates in the XOY plane. The angular velocity r is adjusted according to Table 7,
and the instantaneous viscous hydrodynamics of the arm during the rotation from −10◦ to 10◦ around
the OZ axis are measured. The measured vertical force Y and pitching moment N are shown in Table 8.
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Table 8. Measurements of vertical force Y and pitching moment N at different angular velocities r.

r (rad/s) Y (N) N (N·m)

0.5 0.0033 0.0444
0.75 0.0113 0.0731
1.0 0.0182 0.1023
1.25 0.0306 0.1462
1.5 0.0399 0.1750
1.75 0.0492 0.2181
2.0 0.0592 0.2613

The rotational derivatives Yr and Nr are the first derivative coefficients of the angular velocity r,
similar to the solution method of the position derivatives. The least squares curve fitting of the vertical
force Y and the pitching moment N in viscous hydrodynamics to the angular velocity r is performed,
as shown in Figures 9 and 10. The derivative at the median angular velocity r of 1.25 rad/s is taken as
the rotation derivative.
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The rotational derivatives could be obtained as shown in Table 9 below:

Table 9. Rotation derivatives of the manipulator in viscous hydrodynamics.

Yr Nr

0.4043 3.0869

The coupled derivative is the second-order viscous hydrodynamic coefficient of the arm under
complex motion conditions. Through the transient iterative calculation of the motion of the manipulator
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at different α and β angles and various angular velocities, the viscous hydrodynamics of each motion
state are measured, and many coupling derivatives are obtained by least-squares regression analysis.
The coupling derivative solution conditions are shown in Table 10 below.

Table 10. Solving cases of coupling derivatives.

α 0◦, ±2◦, ±5◦, ±7◦, ±10◦

β 0◦, ±2◦, ±4◦, ±6◦, ±8◦, ±10◦

r 0.5 rad/s, 1 rad/s
V 1 m/s

The coupled derivatives are obtained by regression analysis, and the obtained coupled derivatives
are processed without dimensioning. The values of the parameters are as shown in Table 11.

Table 11. Coupling derivatives of the manipulator in viscous hydrodynamics.

Xuu −0.6960 Xvv −3.8896
Xww −74.4904 Xrr 44.8128
Xvr −275.0688 Yv|v| 1.172
Yr|r| −6.2688 Yv|r| 31.6064

Zw|w| 13.0336 Zvv 2.1088
Zrr −0.0512 Zvr −0.1264
Kv −0.0011 Kv|v| −0.0160
Kr 0.1515 Kr|r| 0.0256

Mw|w| −1.0816 Mvv 0.0144
Mrr 0.0384 Mvr −0.2144
Nv|v| 32.9184 Nr|r| −25.0688
Nv|r| 130.4128

5. Conclusions

The hydrodynamics of underwater manipulators during operation are complex and difficult
to predict. It is analyzed that components of the hydrodynamics include inertial hydrodynamics
caused by acceleration and viscous hydrodynamics caused by friction. This paper takes viscous
hydrodynamics as the research target.

According to the research on dynamics of AUV (Autonomous Underwater Vehicle), ROV(Remote
Operated Vehicle) and ships in other references, the viscous hydrodynamic model of the manipulator
is analyzed in the form of Taylor expansion, and the viscous hydrodynamics are measured by using a
single-DOF manipulator to simulate the underwater motion, and the viscous hydrodynamic coefficients
among the model are calculated via regression analysis. An accurate viscous hydrodynamic model is
obtained to predict viscous hydrodynamics of manipulators during operation at any attitude.

This model is the basis for the feedforward control and is helpful to study control stability of
underwater manipulators. We believe that although the simulations in this paper were performed for
single-DOF manipulators, the modeling method may be extended for the manipulator with multi-DOF
and more complicated shapes as is in the case of real underwater manipulators.
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