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Abstract: The dynamic characteristics of a bottom-fixed offshore wind turbine (OWT) under
earthquakes are analyzed by developing an integrated analysis model of the OWT. Further,
the influence of the interactions between the rotor and support system on the structural responses of
the OWT subjected to an earthquake is discussed. Moreover, a passive control method using a tuned
mass damper (TMD) is applied to the OWT to control the responses under earthquakes. The effects of
the mass ratio, location and tuned frequency of the TMD on controlling structural responses of the
OWT under different recorded seismic waves are studied.
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1. Introduction

Earthquakes are potential risk factors for offshore wind farms in the coastal regions of China,
such as the Bohai bay. High capacity offshore wind turbines (OWT) will be constructed along the coast
of China in the next five years, where they may be subjected to high intensity earthquakes. Hence,
earthquake loads would be one of the dominant loads to consider for OWT designs in such regions.

Bazeos et al. [1], Witcher [2], Hänler et al. [3], Zhao and Maisser [4] adopted the suggested
load combinations in the OWT design standards of GL and DNV to perform the seismic analysis
of OWTs. Bazeos et al. [1] considered the pseudostatic aerodynamic loads suggested by Riziotis
and Madsen [5] and seismic loads in the stability analysis of the tower of wind turbines (WTs).
Witcher [2] applied the corrected aeroelastic interaction model of the WT to perform the analysis
under combined seismic and wind loads, and the states of the WTs under operation, emergency
shutdown, and parked cases were modelled. Hänler et al. [3], Zhao and Maisser [4] modelled the
soil-foundation interaction in the analysis and proved the importance of the higher mode shapes in
earthquake analyses.

Moreover, the dynamic model tests of the OWT under combined seismic, wind, and wave
loads were also performed by Prowell et al. [6,7], Zheng et al. [8], and Wang et al. [9,10].
Prowell et al. [6,7] investigated the responses of an OWT under seismic and wind loads, and proved
that aerodynamic damping can reduce the global response to some degree in the FA direction.
Zheng et al. [8] experimentally researched the interaction of seismic and wave loads, and recommended
that proper combinations of these loads should be applied in the seismic analysis of OWTs to obtain
realistic structural responses. Wang et al. [9,10] performed a series of model tests of OWTs under
combined seismic, wind, and wave loads, discovered the aerodynamic and hydrodynamic damping
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effects, and concluded that the aerodynamic and hydrodynamic loads may have comparable effects on
the responses when the peak ground acceleration (PGA) of the seismic excitation is small.

On the other hand, Penzien et al. [11] recommended that proper plastic response
should be considered in the seismic analysis of offshore structures. Therefore, Kim et al. [12],
Nuta et al. [13], and Sadowski et al. [14] investigated the inelastic response of OWTs under seismic
loads. Kim [11] performed the seismic fragility analysis of OWTs considering the non-linear effects of
soil-pile interaction and suggested that the applied ground motion should be calculated for each soil
layer to obtain equitable fragility curves of the structure. Nuta et al. [13] investigated the probability
of damage in tubular steel towers at varying seismic hazard levels, defined the fragility curves
of the towers by considering different damage states in the analysis, and proved that large safety
factors must be considered in the design against the phenomenon of overloading under seismic loads.
Sadowski et al. [14] researched the responses of the tower under seismic loads with respect to geometric
imperfections and discussed the influence of the imperfections on the capacity of the structure.

In the research on OWTs under seismic loads, the scholars gradually realised that proper structural
control strategies should be applied to the WTs to reduce the responses under earthquakes. Some
researchers have applied passive control methods using tuned mass dampers (TMDs), multiple tuned
mass dampers (MTMDs), and tuned liquid column dampers (TLCD) on the OWTs to reduce the
structural responses under the operating aerodynamic and hydrodynamic loads. In the studies of
Stewart and Lacker [15], an optimal TMD was mounted on the OWT to reduce the responses of fixed
and floating OWTs; however, the control effect of TMD was found to be insignificant on the monopile
OWT due to the discrepancies between the dominated frequency of the response under wave load
and the TMD’s tuning frequency. Dinh and Basu [16] investigated the control effects of MTMD on
a spar-type floating OWT and proved that the damping of TMD is insignificant to the reduction of
structural responses, and the TMD should be tuned around the dominated frequencies of the structural
responses to achieve significant control effects. Colwell and Basu [17] conducted numerical analyses
and discovered that the fatigue life of the tower of OWT could be increased by the implantation of
TLCD on the structure.

In this paper, the structural responses of a Pentapod OWT under different seismic waves are
analyzed based on an integrated seismic analysis model in FAST to research the dynamic characteristics
of the OWT under earthquake loads. Subsequently, a TMD is mounted on the OWT with the intention
of reducing the structural responses under earthquakes. Finally, the influence of the TMD parameters
on the structural responses control of the OWT under different seismic waves are discussed.

2. Theories for the Seismic Analysis of OWT

2.1. Seismic Analysis of an Integrated OWT Model

Generally, the equation of motion for structures subjected to earthquake loads can be written
as follows:
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where [M], [C], and [K] are the structural mass, damping, and stiffness matrices, respectively; {
..
u (t)},

{
.
u (t)}, and {u(t)} are the vectors of structural acceleration, velocity, and displacement, respectively;
and

{ ..
ug

}
is the vector of input ground acceleration.

For the seismic analysis of OWTs, the rotor and nacelle are commonly simplified as concentrated
masses in Equation (1), hence the flexibility of the rotor and interaction between the rotor and support
system are neglected. To compute response of OWTs more accurately, an integrated coupling analysis
model suitable for computing responses of OWTs subjected to earthquakes is suggested. Based on the
combined modal and multibody dynamics formulation, the model of rotor nacelle assembly (RNA) is
established by twelve degrees of freedom (DOFs). The flexibility of the drive-shaft system is modelled
by three DOFs; nine DOFs are used to model the motion of the rotor system in the flapwise and
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edgewise directions, respectively [18]. Hence, the interactions of the rotor, servo, and support system
are taken into account in the updated seismic analysis of OWTs.

Significantly different from the wind and wave loads, earthquakes are typical wide-band stochastic
processes. A seismic module is added to the coupled model of the OWT under wind and wave
loads in FAST, as shown in Figure 1. FAST is a time-domain numerical tool to capture the coupled
aero-hydro-servo-elastics response of OWTs. According to Figure 1, it can be seen that the FAST is mainly
consist of AroDyn, HydroDyn, ServoDyn, ElastoDyn and SubDyn modules for the coupled analysis of
bottom fixed OWTs. AeroDyn and HyoDyn is the aero- and hydro-dynamics module, respectively.
The mechanical control strategies of the OWT shall be implemented in the ServoDyn module, such as
the variable speed control, blade pitch control and the emergency shutdown. The responses of the
blades and the tower shall be analyzed based on the ElastoDyn module. Meanwhile, the finite element
model of the substructure of the bottom fixed OWT is established in the SubDyn module by the linear
beam element.
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For the recompiled FAST with the seismic module, the earthquakes can be the user-provided input
or the synthetically generated time histories based on the suggested earthquake response spectrum.
The user input seismic waves can be supplied in terms of acceleration, velocity or displacement. For the
synthetic time histories, the artificial seismic wave is generated based on the user specified parameters.
The earthquakes can be applied in any combination of three directions specified in the global coordinate
system as shown in Figure 2, such as the two horizontal and one vertical direction.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 4 of 23 

 

 
Figure 2. The global coordinate system in FAST. 

2.2. Integrated Model of OWT for Seismic Analysis 

The reference OWT structure is redesigned by combined the NREL 5-MW baseline WT [19] and 
a practical Pentapod OWT substructure constructed in the eastern coastal regions in China as shown 
in Figure 3a. The rating power of the practical OWT is identical with the NREL 5 MW baseline WT. 
The sectional geometries of the tower such as both the diameter of the tower of the practical and 
baseline wind turbine are also same. So the Pentapod substructure of the practical OWT can be 
directly applied to the baseline wind turbine, as shown in Figure 3a. While the height of the 
substructure is redesigned in order to satisfy the hub height of the baseline wind turbine, and the 
dimensions of the redesigned Pentapod is shown in Figure 3b,c. Meanwhile, the dynamic 
characteristics and ultimate capacities of the reference OWT is checked based on the DNV GL 
standards [20] in order to ensure the safety of the structure. 

Further, the integrated coupling analysis model of the reference OWT is established in FAST 
with the updated Seismic module. The schematic diagram of the fully coupled analysis model under 
the seismic loads is shown in Figure 4. 

 
 

 

(a) Practical Pentapod substructure (b) Vertical view (c) Plan view 

Figure 3. Dimensions of the reference OWT. 

Figure 2. The global coordinate system in FAST.

The procedure for the coupled analysis of OWTs can be summarized as follows.



J. Mar. Sci. Eng. 2019, 7, 224 4 of 24

In procedure 1, the seismic module receives the parameters of the numerical model of the OWT,
such as the mass of the rotor blades, tower, and substructure, from the ElastoDyn and SubDyn modules
of FAST.

In procedure 2, the seismic module reads the histories of the recorded seismic waves or synthesised
seismic waves according to the parameters in the input files.

In procedure 3, the seismic module calculates the relevant seismic loads and delivers it to the
ElastoDyn module of FAST at every time step when the simulation time reaches the threshold time of
earthquake occurrence.

2.2. Integrated Model of OWT for Seismic Analysis

The reference OWT structure is redesigned by combined the NREL 5-MW baseline WT [19] and a
practical Pentapod OWT substructure constructed in the eastern coastal regions in China as shown
in Figure 3a. The rating power of the practical OWT is identical with the NREL 5 MW baseline WT.
The sectional geometries of the tower such as both the diameter of the tower of the practical and
baseline wind turbine are also same. So the Pentapod substructure of the practical OWT can be directly
applied to the baseline wind turbine, as shown in Figure 3a. While the height of the substructure is
redesigned in order to satisfy the hub height of the baseline wind turbine, and the dimensions of the
redesigned Pentapod is shown in Figure 3b,c. Meanwhile, the dynamic characteristics and ultimate
capacities of the reference OWT is checked based on the DNV GL standards [20] in order to ensure the
safety of the structure.

Further, the integrated coupling analysis model of the reference OWT is established in FAST with
the updated Seismic module. The schematic diagram of the fully coupled analysis model under the
seismic loads is shown in Figure 4.

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 4 of 23 

 

 
Figure 2. The global coordinate system in FAST. 

2.2. Integrated Model of OWT for Seismic Analysis 

The reference OWT structure is redesigned by combined the NREL 5-MW baseline WT [19] and 
a practical Pentapod OWT substructure constructed in the eastern coastal regions in China as shown 
in Figure 3a. The rating power of the practical OWT is identical with the NREL 5 MW baseline WT. 
The sectional geometries of the tower such as both the diameter of the tower of the practical and 
baseline wind turbine are also same. So the Pentapod substructure of the practical OWT can be 
directly applied to the baseline wind turbine, as shown in Figure 3a. While the height of the 
substructure is redesigned in order to satisfy the hub height of the baseline wind turbine, and the 
dimensions of the redesigned Pentapod is shown in Figure 3b,c. Meanwhile, the dynamic 
characteristics and ultimate capacities of the reference OWT is checked based on the DNV GL 
standards [20] in order to ensure the safety of the structure. 

Further, the integrated coupling analysis model of the reference OWT is established in FAST 
with the updated Seismic module. The schematic diagram of the fully coupled analysis model under 
the seismic loads is shown in Figure 4. 

 
 

 

(a) Practical Pentapod substructure (b) Vertical view (c) Plan view 

Figure 3. Dimensions of the reference OWT. Figure 3. Dimensions of the reference OWT.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 5 of 23 

 

 
Figure 4. Schematic of the integrated analysis model of the reference OWT under earthquakes. 

2.3. Load Cases for Seismic Analysis of OWT 

Presently, the semi-integrated analysis method is widely adopted to design and check OWT on 
the base of the linear combination of seismic, wind and wave loads recommended by the DNVGL 
[21] and IEC [22] standards, indicating that the interactions of seismic, wind and wave loads are 
neglected. However, an integrated model of OWT under earthquakes is established to carry out 
sophisticated analysis in the paper. Then, the dynamic response of a parked OWT with multi-year 
mean water level under seismic excitations is studied in order to reveal the dynamic characteristics 
of the structure under the seismic cases, as shown in Figure 4. 

As listed in Table 1, the dynamic characteristics and structural responses of the OWT in the 
standstill condition under the recorded seismic waves are investigated. Based on the geological 
conditions, requirements of the standards [22], and the seismic fortification intensity of the offshore 
wind farm, the parameters of the recorded seismic excitations are determined and applied in the 
integrated analysis of OWTs. Figure 5a shows the acceleration time histories of the selected seismic 
excitations, such as the El Centro, Taft, Northridge, and Chichi waves. From the figure, it can be 
observed that the Chichi wave has the largest peak ground acceleration (PGA), which is 0.37 g. The 
Fourier amplitudes of the selected seismic waves are shown in Figure 5b. The Figure demonstrates 
that the seismic excitations comprise of abundant frequency components in the range of 0.1–10 Hz, 
which includes the lower natural frequencies of general offshore structures. 

The seismic excitations listed in Table 1 are applied in the F–A direction which is consistent 
with the X axis in the global coordinate system as shown in Figure 2. 

  
(a) Time histories (b) Fourier amplitudes 

Figure 5. Measured seismic excitations. 

  

Figure 4. Schematic of the integrated analysis model of the reference OWT under earthquakes.



J. Mar. Sci. Eng. 2019, 7, 224 5 of 24

2.3. Load Cases for Seismic Analysis of OWT

Presently, the semi-integrated analysis method is widely adopted to design and check OWT on the
base of the linear combination of seismic, wind and wave loads recommended by the DNVGL [21] and
IEC [22] standards, indicating that the interactions of seismic, wind and wave loads are neglected.
However, an integrated model of OWT under earthquakes is established to carry out sophisticated
analysis in the paper. Then, the dynamic response of a parked OWT with multi-year mean water level
under seismic excitations is studied in order to reveal the dynamic characteristics of the structure
under the seismic cases, as shown in Figure 4.

As listed in Table 1, the dynamic characteristics and structural responses of the OWT in the
standstill condition under the recorded seismic waves are investigated. Based on the geological
conditions, requirements of the standards [22], and the seismic fortification intensity of the offshore
wind farm, the parameters of the recorded seismic excitations are determined and applied in the
integrated analysis of OWTs. Figure 5a shows the acceleration time histories of the selected seismic
excitations, such as the El Centro, Taft, Northridge, and Chichi waves. From the figure, it can be
observed that the Chichi wave has the largest peak ground acceleration (PGA), which is 0.37 g.
The Fourier amplitudes of the selected seismic waves are shown in Figure 5b. The Figure demonstrates
that the seismic excitations comprise of abundant frequency components in the range of 0.1–10 Hz,
which includes the lower natural frequencies of general offshore structures.

The seismic excitations listed in Table 1 are applied in the F–A direction which is consistent with
the X axis in the global coordinate system as shown in Figure 2.

Table 1. Load cases for the seismic analysis of offshore wind turbine (OWT).

Seismic Waves PGA (g) State Winds and Waves Seismic Direction

El Centro 0.21 Parked - In F-A direction
Taft 0.16 Parked - In F-A direction

Northridge 0.13 Parked - In F-A direction
Chichi 0.37 Parked - In F-A direction
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3. Structural Responses of the OWT under Seismic Loads

3.1. Dynamic Characteristics of OWT

The fully coupled analysis model of the reference OWT is created in FAST based on the parameters
of the NREL 5-MW baseline WT and the geometries of the Pentapod substructure. An equivalent pile
model is used to model the pile-soil interaction in the fully coupled analysis model. The length of the
equivalent pile is assigned as 18.26 m, which is 8.3 times the pile diameter, based on the similarity of
the fundamental frequency. Dynamic characteristics of the fully coupled model are analyzed by the
free-decay testing method.
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The free-decay testing method is an extensively used method to calculate the natural frequencies
of structures. Based on the free-decay testing method, an initial displacement or rotation angle of the
structure shall be designated, then the natural frequencies of the structure can be determined based on
the Fourier amplitudes or power spectral density functions of the decayed histories of the structural
displacement or acceleration.

During the study, an initial displacement is designated at the blade tip, tower top and tower base,
respectively. The natural frequencies of the blades and the integrated structure are derived based on
the decayed accelerations of the blades and the tower. Figure 6 shows the Fourier amplitudes of the
decayed histories of the blade tip and tower accelerations, and the corresponding analysis results are
listed in Table 2.
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Table 2. Natural frequencies of the integrated analysis model of the reference OWT in FAST.

Order of the Frequency Values (Hz) Note

1st OWT 0.305 In F-A direction

1st Flap 0.690 First blade collective flap mode

2nd OWT 0.742
In F-A direction3rd OWT 1.544

4rd OWT 1.824

2nd Flap 2.029 Second blade collective flap mode

5th OWT 2.521
In F-A direction6th OWT 3.640

7th OWT 4.620

3.2. Acceleration Responses

In this section, comparisons of tower accelerations under different types of seismic excitations are
carried out. The recorded El Centro and Taft seismic waves were applied to the parked OWT along
the FA direction, which is perpendicular to the rotating plane of the OWT. Moreover, the threshold
time for the activation of the seismic loads was considered in the analysis to account for the stochastic
nature of the seismic waves. The threshold value was 150 s for the seismic analysis of a parked OWT,
and the total simulation time was 400 s.

Variations in the dynamic amplification factors (DAFs) with the height of the tower under different
seismic excitations are recorded, as shown in Figure 4, to investigate the influence of the seismic
excitation type. The DAF under earthquake loads can be expressed as Equation (2).

DAF =
PSA
PGA

, (2)
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where PSA is the peak acceleration response at a location, e.g., the maximum or minimum values of
the acceleration time histories at the nacelle; PGA is the peak ground acceleration, e.g., the PGA of El
Centro seismic wave = 0.21 g, as shown in Figure 5a.

Compared to the other seismic waves, the Northridge seismic wave stimulates the maximum
DAFs along the height of the tower, as shown in Figure 7, and the maximum DAF under the Northridge
wave is about 6.36, as listed in Table 3, at an elevation of 60 m on the tower. Statistics of the acceleration
time histories at the tower top and the maximum tower accelerations corresponding to the maximum
DAFs under different seismic waves are listed in Table 3. It can be observed that the Chichi seismic
wave stimulates the maximum tower acceleration due to its high PGA. On the other hand, the PGA of
the Northridge seismic wave is comparatively smaller than that of the El Centro and Chichi seismic
waves; however, it stimulates significant accelerations at the tower top, comparable to the responses
under the El Centro and Chichi seismic waves.
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Figure 7. Dynamic amplification factors (DAFs) along the tower height under seismic excitations.

Table 3. Maximum values of the nacelle and tower acceleration time histories.

Maximum Values
Seismic Excitations

El Centro Taft Northridge Chichi

Peak ground acceleration (PGAs) (m/s2) 2.06 1.57 1.27 3.63
Nacelle acceleration (NAAs) (m/s2) 1.58 0.97 0.75 2.87

DAF of NAA 0.77 0.62 0.59 0.79
Acceleration at the tower top (TTAs) (m/s2) 4.66 2.82 6.84 7.28

DAF of TTA 2.26 1.80 5.39 2.01
Maximum acceleration along the height of the

tower (MTAs) (m/s2) 5.82 3.62 8.08 9.29

DAF of MTA 2.83 2.31 6.36 2.56

The dynamic characteristics of the accelerations at the tower top and the maximum tower
accelerations are illustrated in Figure 8. The following results can be obtained:

(1) Other than the first two natural frequencies of OWT, the higher-order frequency components
dominate the tower accelerations under earthquakes, especially for the Northridge seismic wave.

(2) For the nacelle accelerations of the OWT under seismic excitations, the responses are mainly
dominated by the first two natural frequencies of the OWT.

(3) Under the El Centro and Taft seismic waves, the fifth natural frequency of the OWT dominates
the tower accelerations, as shown in Figure 8a,b.

(4) Figure 8c demonstrates that the higher-order frequency components are stimulated under the
Northridge seismic wave, which influence the tower accelerations significantly.

(5) Under the Chichi seismic wave, the influence of the first three natural frequencies of the OWT on
the tower accelerations is non-negligible, as shown in Figure 8d.
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From these comparisons, the dominant frequencies of tower accelerations are found to vary
significantly due to the aforementioned differences between the seismic waves.

3.3. Mudline Bending Moment

Figure 9a,b show the mudline bending moments under different seismic excitations. Compared
to the other three seismic excitations, it can be seen that the Chichi seismic wave stimulates the
largest bending moments, which can be attributed to the significant PGA of the Chichi seismic wave.
The dynamic characteristics of bending moments in the frequency domain are shown in Figure 9c,d.
Different results can be found by comparing them with the dynamic characteristics of the tower
accelerations. The second mode shape of the OWT dominates the bending moments, unlike the
responses of the tower accelerations shown in Figure 7. Moreover, for the Chichi seismic wave,
the influence of the blade’s first flap mode of the rotor system cannot be neglected, as shown in
Figure 9d.
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4. Vibration Control of OWT using TMD

4.1. Governing Equation of Motion of OWT with TMD

During the study, a TMD is added to the tower of the OWT based on the released TMD
module [23] in FAST. So the passive control method of TMD is applied to control the response of OWT
under the seismic cases, as shown in Figure 1. The coupled governing equation of motion of OWT
with TMD under earthquakes can be written as:

[M]
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u(t)

}
+ [C]

{ .
u(t)

}
+ [K]

{
u(t)

}
− {E}

(
CTMD

.
uTMD + KTMDuTMD

)
= −[M]

{ ..
ug

}
(3)

MTMD
..
uTMD(t) + CTMD

.
uTMD(t) + KTMDuTMD(t) = −MTMD

..
uOWT(t), (4)

where MTMD, CTMD, and KTMD are the mass, damping, and stiffness of the TMD, respectively; {
..
uTMD(t)

}
,

{
.
uTMD(t)}, and {uTMD (t)} are the parameters of TMD’s acceleration, velocity, and displacement,
respectively; {E} is a unit vector that represents the location of the TMD on the OWT; and

..
uOWT(t) is

the corresponding velocity of the OWT with respect to the location of the TMD.
The selection of parameters of TMD will determine control effect on the OWT responses under

earthquakes. The optimal design standards of TMD suggested by Zhou [24] and Connor [25] can be
expressed as Equations (5) and (6).

fopt =
(1 + 0.5µm)

1
2

(1 + µm)
(5)

ζopt = 0.5
√
µm, (6)
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where f opt is the optimized frequency ratio of TMD, f opt = f TMD/f OWT; f TMD is the tuning frequency of
TMD; f OWT is the selected natural frequency of OWT; µm is the mass ratio, µm = MTMD/MOWT; MOWT

is the mass of OWT; and ζopt is the optimized damping ratio of TMD.
Then, the parameters of TMD can be calculated by µm, f opt and ζopt based on Equations (7)–(9).

MTMD = µm ·MOWT (7)

fTMD = fopt fOWT; KTMD = MTMD(2π fTMD)
2 (8)

CTMD = 4πζopt fTMDMTMD. (9)

4.2. Design of TMDs for OWT under Earthquakes

The parameters of the tuning frequency, locations and mass are essential for designing TMD.
According to the dynamic characteristics of the Pentapod OWT under earthquakes, the first two natural
frequencies of the OWT which are the dominant frequencies of the tower accelerations and mudline
bending moments, are designated as the tuning frequencies of TMDs. Meanwhile, the nacelle and
the tower base were selected as the alternative locations for TMDs, as shown in Figure 10. Further,
the mass ratios such as 1%, 2% and 3% were selected to determine the optimized parameters of TMD
in Equations (5) and (6). The upper limit of the TMD’s mass ratio was selected as 3%, which is a
recommended value for the motion control of offshore structures under earthquakes by Zhou [24].
Table 4 lists the calculated parameters of the TMD based on the optimal design formulas and the
suggested mass ratios. As listed in Table 4, the tuning frequency of TMD is slightly different from the
selected natural frequency of OWT due to the influence of f opt, such as the tuning frequency of TMD01
is 0.303Hz, and the corresponding natural frequency of OWT is 0.305 Hz.

Table 4. Optimized parameters of tuned mass dampers (TMD) for the vibration control of OWT under
seismic excitations.

TMD No.
Optimised Parameters Parameters of TMD

TMD
Locationµm (%) f opt ζopt

MTMD
(kg)

f TMD
(Hz)

KTMD
(N/m)

CTMD
(N/ms−1)

TMD 01 1.0 0.993 0.05 14,897 0.303 52,148 2787
NacelleTMD 02 2.0 0.985 0.07 29,795 0.300 102,769 7826

TMD 03 3.0 0.978 0.09 44,692 0.298 151,923 14,272

TMD 04 1.0 0.993 0.05 14,897 0.303 52,148 2787
Tower
base

TMD 05 2.0 0.985 0.07 29,795 0.300 102,769 7826
TMD 06 3.0 0.978 0.09 44,692 0.298 151,923 14,272

TMD 07 1.0 0.993 0.05 14,897 0.736 311,315 6810
NacelleTMD 08 2.0 0.985 0.07 29,795 0.734 613,518 19,120

TMD 09 3.0 0.978 0.09 44,692 0.726 906,962 34,871

TMD 10 1.0 0.993 0.05 14,897 0.736 311,315 6810
Tower
base

TMD 11 2.0 0.985 0.07 29,795 0.734 613,518 19,120
TMD 12 3.0 0.978 0.09 44,692 0.726 906,962 34,871
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Figure 10. Schematic of the alternative locations for the tuned mass dampers (TMD) mounted on
the OWT.

Table 5 lists the load cases used for investigating the influence of TMD parameters on the reduction
in the structural responses of the OWT under seismic excitations. To investigate the influence of PGA
on the control effects of TMD, El Centro seismic waves with different PGAs are also considered as cases
T1–T48, as listed in Table 5.

Table 5. Load cases for the vibration control of OWT under earthquake load.

Case No. Seismic excitation State of OWT TMD No.

T1–T12 El Centro (0.1 g)

Parked

TMD01–12
T13–T24 El Centro (0.15 g) TMD01–12
T25–T36 El Centro (0.2 g) TMD01–12
T37–T48 El Centro (0.4 g) TMD01–12
T49–T60 Taft TMD01–12
T61–T72 Northridge TMD01–12
T73–T84 Chichi TMD01–12

4.3. Influence of Seismic Waves with Varying PGAs on Vibration Control

4.3.1. Control Effect of TMD on the NAA

According to the dynamic characteristics of nacelle acceleration (NAA) under the El centro seismic
wave shown in Figure 8, the frequency component of 0.305 Hz and 0.742 Hz is discovered to be the
dominant frequencies of the response which is the first two natural frequencies of OWT, respectively.
Meanwhile, the influence of the second order natural frequency is discovered to be more prominent.

So the reduction of the nacelle acceleration under such seismic case achieved by the TMD with
the tuning frequency of the second natural frequency of the OWT is presented in order to investigate
the effectiveness of TMD, such as the reducing of the structural responses achieved by TMD10–TMD12.
On the other hand, in order to research the influence of the PGA of seismic waves on the control effect
of TMD, El Centro seismic waves with different PGAs are also applied to the model. The reduction
in the NAA time histories are illustrated in Figure 11, it can be seen that TMD10 reduces the NAA
significantly under the El Centro seismic wave of PGA 0.1 g. With the increase in the PGA, the control
effects of TMD decreases, as shown in Figure 11b; however, the reduction in NAA is still prominent.

Further details on the influence of the PGA on the control effect of TMD can be understood from
Figure 12. Variations in the statistics of NAAs controlled by TMD01–03 and TMD10–12 under El Centro
seismic waves with varying PGAs are shown in Figure 11, which tuning frequency is the fundamental
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and second order natural frequency of the OWT, respectively. The term reduction ratio in the Figures
can be defined as,

Reduction ratio =
(Statistics− StatisticsTMD)

Statistics
× 100% (10)

where Statistics is the maximum or minimum value or the standard deviation of the structural responses
of the OWT without TMD and StatisticsTMD is the corresponding maximum or minimum value or
standard deviation of the responses reduced by the TMD.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 12 of 23 
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Figure 11. Reduction in nacelle acceleration (NAA) by TMDs under El Centro seismic wave.

Initially, the ineffectiveness of TMD01 can be observed from the slight reduction in the statistics,
as shown in the Figure 12. TMD03 is found to be more effective in reducing the maximum values
when the PGA of the El Centro seismic wave is 0.1 g, as shown in Figure 12a. However, the control
effects of TMD03 decrease significantly with the increase in the PGA of the El Centro seismic wave;
e.g., the reduction ratios of TMD03 for the maximum values of NAAs are 12.8% and 9% under the
El Centro seismic waves of PGAs 0.1 and 0.4 g, indicating that the control effects of TMD03 weaken
remarkably with the increasing of the PGA of El Centro seismic wave.

Further, Figure 12b demonstrates that TMD10–12 are more efficient in reducing the standard
deviations of NAAs, and the maximum reduction ratio of the standard deviations of the responses
exceeds 40%. Influence of the PGAs of seismic waves can also be discovered for such effective TMDs
that the reducing ratio of TMD10 decreases to only 29% under the El Centro seismic wave with the
maximum PGA.
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4.3.2. Control Effect of TMD on the Mudline Bending Moment

The influence of the PGAs on the control effect of bending moment is studied in this section.
Figure 13 illustrates the reduction in the time histories of bending moments under El Centro seismic
waves of PGAs 0.1 and 0.4 g.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 13 of 23 
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Figure 13. Reduction in bending moments by TMDs under El Centro seismic wave.

For TMD10, the bending moments under load case T10 (El Centro 0.1 g) and T56 (El Centro
0.4 g) is decreased significantly. Further detailed comparisons are depicted in Figure 14, based on
the reduction in the statistics achieved. It can be observed that the control effects of TMD10 and 11
are sensitive to the variations in PGA. The reduction ratios of the maximum values is comparatively
smaller than that of standard deviations, which can exceed 50%. Meanwhile, the reduction ratios of
TMD01 decrease significantly under the El Centro seismic wave of the highest PGA, and the control
effects cannot be improved even by increasing the mass of the TMDs under such seismic excitations.
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4.4. Influence of the Seismic Excitations on Vibration Control

4.4.1. Control Effect of TMD on NAA under Different Seismic Excitations

Figure 15 illustrates the reduction in NAAs by the TMD under different seismic excitations. It can
be seen that the reduction in NAA by TMD01 is rather insignificant under the Northridge seismic
waves, unlike that under the Chichi seismic waves, as shown in Figure 15a,c. Significant decrease
in the NAA is achieved by TMD07 under the Northridge seismic wave, as shown in Figure 15b.
The comparison of Figure 15c,d indicates that the control effects of TMD01 and 07 under the Chichi
seismic wave are nearly identical.



J. Mar. Sci. Eng. 2019, 7, 224 14 of 24

From the above discussions, it can be seen that the type of the seismic wave influences the control
effect of TMD significantly, which can be attributed to the characteristics in the frequency domains
of the responses. For the NAA under the Northridge seismic wave, the dominant frequency of the
response is the second natural frequency of the OWT. However, the nearly identical control effects of
TMD01 and 07 under the Chichi seismic wave can be attributed to the comparable influence of the first
two natural frequencies on the NAA under the Chichi seismic wave, as shown in Figure 8.

Figure 16 compares the effectiveness of TMD1–12 under the listed load cases of Table 5 based on
the reductions in the maximum values and standard deviations of the bending moment time histories.
As shown in Figure 16, using TMD, diverse control effects of the OWT under different types of seismic
excitations are observed; however, the effectiveness of the TMD in reducing the standard deviations
are reserved, especially for the Taft seismic wave. The reduction ratio of standard deviations of the
NAAs under the Taft seismic wave nearly reaches to 55%. Although TMD02 and 03 marginally reduce
the responses under the El Centro seismic wave, remarkable reduction ratios are obtained under the
Chichi seismic wave. Furthermore, Figure 15 illustrates that TMD07–09 can reduce the statistics under
the Taft and Northridge seismic waves significantly, while a more drastic reduction is found under the
Chichi seismic wave.
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4.4.2. Variations in Bending Moments by TMD under Different Seismic Excitations

Reduction in mudline bending moments by TMD under different seismic excitations is shown
in Figure 17. Trends similar to the control effects of TMD01 and 07 on the accelerations at the tower
top can be found for the reduction in bending moments under the Chichi seismic wave. The obvious
control effect of TMD10 on the bending moments under the Northridge seismic wave can be observed
from Figure 17b, indicating that the tuning frequency of TMD07 is the dominant frequency of the
response under that excitation. On the other hand, limited control effect of TMD01 is observed in
Figure 17a due to the significant discrepancies between the tuning frequency of TMD and the dominant
frequency of bending moments under the Northridge seismic wave. Furthermore, the reduction in the
bending moments in Figure 17d is more distinct than the results in Figure 17c, especially in the periods
of 190–250 s, indicating that under the Chichi seismic wave, more energy is captured by the second
natural frequency of the OWT, as shown in Figure 9d, which is the tuning frequency of TMD07.
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Variations in reduction ratios of bending moment statistics by TMD under different seismic
excitations are displayed in Figure 18. From the figure, it can be seen that TMD10–12 are more effective
in reducing the standard deviations of the bending moments under the Taft and Northridge seismic
waves, and the maximum reduction ratio exceeds 60%. Reduction ratios decrease significantly under
the Chichi seismic wave because the first two natural frequencies are both dominant frequencies of the
bending moments. Only one TMD designed with one tuned frequency such as the first or the second
order frequency of the OWT is installed in the OWT, which is not effective for controling the response
with more than one dominant frequency.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 16 of 23 
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4.5. Influence of TMD’s Mass Ratio on Vibration Control

4.5.1. Influence of TMD’s Mass Ratio on the Reduction in NAAs

TMDs with different mass ratios such as 1% (TMD04, 07, 10), 2% (TMD05, 08, 11) and 3% (TMD06,
09, 12), are also considered in the study to analyze the effects of mass ratios on their control effects.
Figure 19 illustrates the reduction in NAAs by TMD10 and 12 under the Taft and Chichi seismic waves.
From the Figure, it can be seen that the improvements in the control effects obtained by increasing
the mass of the TMD are trivial, though the mass ratio of TMD12 is increased threefold than that of
TMD10, as listed in Table 4.
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Figure 20 shows the variation of reduction ratio with respect to mass ratio of TMD. For the effective
TMD, it is found that the achieved reduction ratios can be improved by increasing the mass ratios,
however, an increase in the mass ratio of TMD cannot result in a proportional increase in the reduction
ratio. From Figure 20b, the reduction ratio of the standard deviations of NAAs under the Taft seismic
wave is 43.2% for TMD10 with 1% mass ratio and 52.4% for TMD12 with 3% mass ratio. Increment
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in the reduction ratio is only 9.2%, while the mass of the TMD is triple. For the ineffective TMD,
such as for TMD04–06; it can be seen that improvements cannot be obtained in the reduction ratios by
an increase in the mass ratios, such as for the reduction in the maximum values of NAAs shown in
Figure 20a.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 17 of 23 
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4.5.2. Influence of TMD’s Mass Ratio on the Reduction in Bending Moments

Influence of TMD with increased mass on the reduction in bending moments under the Taft and
Chichi seismic waves can be observed from Figure 21. The results similar to the reduction in NAAs
under the same load cases can be obtained for the reduction in bending moments. The expected control
effects cannot be achieved only by increasing the mass ratios of the TMD, especially under the Chichi
seismic wave.
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Figure 21. Reduction in bending moments by TMDs under Taft and Chichi seismic waves.

The influence of TMD’s mass ratio on the reduction in bending moments can be observed from
Figure 22. Remarkable control effects of TMD10–12 on the standard deviations of bending moments
under the El Centro, Taft, and Northridge seismic waves can be found. The reduction ratio of the
standard deviations by TMD10 and 12 under the Taft seismic wave were 51.8% and 61%, respectively.
However, the achieved increment in the reduction ratio of bending moments was only 9.2% for a triple
increase in the mass ratio of TMD.
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4.6. Influence of TMD’s Location on Vibration Control

4.6.1. Influence of TMD’s Location on the Reduction of NAAs

As shown in Figure 23, TMD08 and 11 are selected to demonstrate the influence of TMD’s location
on its control effects. It can be observed that the TMD mounted at the nacelle (TMD08) or tower base
(TMD11) decreases the NAAs under the Northridge seismic wave remarkably, as shown in Figure 23a.
Meanwhile, according to Figure 22b, the control effects are limited by comparing with the reducing of
the NAAs under the El Centro seismic wave, but the comparable control effects of the selected TMD08
and 11 under the Chichi seismic wave still can be discovered. So the nacelle and tower base would be
the alternative optimal locations for the TMD to control the NAAs under such seismic waves.
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Figure 23. Reduction in NAAs by TMDs under Northridge and Chichi seismic waves. 

The reduction ratios of standard deviations of NAAs are illustrated in Figure 24. From Figure 
24a, the reduction ratios of the standard deviations for the TMD installed at tower base or nacelle 
under the Northridge seismic wave are close for the corresponding cases such as TMD07 and 10, 
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the corresponding cases, the reduction ratios achieved by TMD08 and 11 under such seismic case are 
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Figure 23. Reduction in NAAs by TMDs under Northridge and Chichi seismic waves.

The reduction ratios of standard deviations of NAAs are illustrated in Figure 24. From Figure 24a,
the reduction ratios of the standard deviations for the TMD installed at tower base or nacelle under the
Northridge seismic wave are close for the corresponding cases such as TMD07 and 10, TMD08 and
11, TMD09 and 12. So the control effects are approximately same for the selected TMD’s locations.
According to Figure 24b, the reduction ratios of the standard deviations are different. For the
corresponding cases, the reduction ratios achieved by TMD08 and 11 under such seismic case are about
15.6% and 23.4%, respectively. Hence, the tower base is a more appropriate location than the nacelle
for mounting the TMD under the Chichi seismic wave.
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Figure 23. Reduction in NAAs by TMDs under Northridge and Chichi seismic waves. 
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4.6.2. Influence of TMD’s Location on Reduction in Bending Moments

The influence of TMD’s location on the reducing of the bending moment under the Northridge
and Chichi seismic wave is shown in Figure 25. According to the comparisons shown in Figure 25a,b,
it can be seen that approximately identical with the reducing of the nacelle accelerations under the
selected seismic waves, the comparable control effects of TMD 08 and 11 on the bending moment
under such seismic cases are also observed.
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Figure 25. Reduction in bending moments by TMDs under Northridge and Chichi seismic waves. 
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Meanwhile, the reduction ratios of the relevant statistics under such seismic cases by TMDs
with varying locations are shown in Figure 26. From Figure 26a, the reduction ratios of the standard
deviations of the response under the Northridge seismic wave achieved by TMD08 and 11 are about
27.2% and 39.7%, respectively. The reduction ratios of the standard deviations achieved by TMD09
and 12 are about 26.6% and 42.4%, respectively. Thus, the tower base is the more feasible location for
the control of the mudline bending moment by TMD under such seismic wave.

Similarly, under the Chichi seismic wave, the location of TMD07–09 improved the reduction in
the bending moment, as shown in Figure 26b. The reduction ratios of standard deviations achieved
by TMD11 is about 18.6%, which increased approximately 6.2% by changing the location of TMD
from nacelle for TMD08 to the tower base. So the locations of the TMD influence the control
effects significantly.

Therefore, both the nacelle and tower base are the appropriate places to mount the TMD to control
the motion of the OWT under earthquakes. Furthermore, the control effects of the OWT response by
TMDs mounted at the tower base are better than the ones at the nacelle.
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4.7. Influence of TMD’s Tuning Frequency on Vibration Control

4.7.1. Influence of TMD’s Tuning Frequency on the Reduction in NAAs

The tuning frequency of TMD is another essential parameter that should be emphasised in the
design of TMD. TMDs listed in Table 4 are selected to perform the investigation on the influence of
TMD’s tuning frequency on its control effects. From the table, the TMDs are divided into two categories
by the tuning frequencies. One is that the tuning frequency is the fundamental frequency of the OWT
such as TMD01–03 and TMD07–09; the other is that the TMDs designate the second order natural
frequency of the OWT as the tuning frequency such as TMD04–06 and TMD10–12.

The influence of the tuning frequency on the control effects of OWT under earthquakes are shown
in Figure 27. The significant discrepancies of the control effects between the TMDs with different tuning
frequencies is observed. From Figure 27a, the control effects of TMD03 under El Centro seismic wave
improved significantly by changing its tuning frequency from the fundamental frequency of the OWT
to the second order frequency, and the reduction ratios of the standard deviations achieved by TMD03
was increased from 12% to about 41.3%. Approximate improvements can also be discovered from
TMD04–06 and TMD10–12 under such seismic waves. So an effective method to improve the limited
control effects TMD01–06 is to adjust the tuning frequencies of such TMDs from the fundamental
frequency to the second order natural frequency of the OWT.

From Figure 27b,c, the reduction ratio of the standard deviations under the Northridge seismic
wave achieved by TMD03 and 09 were about 10.7% and 33.3%, respectively; the reduction ratio of the
standard deviations under the Taft seismic wave achieved by TMD03 and 09 were about 5.8% and
42.7%, respectively. On the other hand, different from the above introduced seismic cases, it can be
discovered the comparable control effects of TMD01–03 and TMD07–09 on the NAAs under the Chichi
seismic wave, as shown in Figure 27d. So both the first two natural frequencies of the OWT are the
feasible tuning frequencies under such seismic case.
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4.7.2. Influence of TMD’s Frequency on the Reduction in Bending Moment

Figure 28 shows the influence of the TMD’s tuning frequency on the reduction of the bending
moment under the different seismic cases. From the Figure, the prominent control effects of the TMDs
are discovered when the second natural frequency of the OWT is designated as the tuning frequency.
Reduction ratios of standard deviations achieved by TMD12 and 06 under the El Centro seismic wave
were about 50.3 and 3.8%, respectively, as shown in Figure 28a. Although an optimum location and
prominent mass ratio are selected in the design of TMD06, the control effects on the bending moments
are trivial due to the discrepancy in the tuning frequency. If the tuning frequency of TMD06 is adjusted
from the fundamental frequency of the OWT to the second natural frequency, the increments in the
reduction ratio can reach 45%. Same tuning frequencies can also be applied to the TMD under the
Northridge seismic wave, according to Figure 28b. It can be seen that the reduction ratios of bending
moments achieved by TMD12 and 06 are 42.4% and 7.5%, respectively. Meanwhile, the same results
can be obtained for TMD01–03 and TMD07–09 under the El Centro, Northridge and Taft seismic wave.

On the other hand, it should also be noted that limited control effects of TMD are observed under
the Chichi seismic wave by comparing with reducing of the responses under the other seismic cases,
as shown in Figure 28d. From Figure 9d, it can be seen that in addition to the second natural frequency,
the influence of the fundamental frequency of the OWT is also non-negligible under such seismic load
cases. Hence, a TMD with single tuning frequency cannot effectively control the vibration of the OWT
under the Chichi seismic wave.



J. Mar. Sci. Eng. 2019, 7, 224 22 of 24

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 21 of 23 

 

4.7.2. Influence of TMD’s Frequency on the Reduction in Bending Moment 

Figure 28 shows the influence of the TMD’s tuning frequency on the reduction of the bending 
moment under the different seismic cases. From the Figure, the prominent control effects of the 
TMDs are discovered when the second natural frequency of the OWT is designated as the tuning 
frequency. Reduction ratios of standard deviations achieved by TMD12 and 06 under the El Centro 
seismic wave were about 50.3 and 3.8%, respectively, as shown in Figure 28a. Although an optimum 
location and prominent mass ratio are selected in the design of TMD06, the control effects on the 
bending moments are trivial due to the discrepancy in the tuning frequency. If the tuning frequency 
of TMD06 is adjusted from the fundamental frequency of the OWT to the second natural frequency, 
the increments in the reduction ratio can reach 45%. Same tuning frequencies can also be applied to 
the TMD under the Northridge seismic wave, according to Figure 28b. It can be seen that the 
reduction ratios of bending moments achieved by TMD12 and 06 are 42.4% and 7.5%, respectively. 
Meanwhile, the same results can be obtained for TMD01–03 and TMD07–09 under the El Centro, 
Northridge and Taft seismic wave.  

On the other hand, it should also be noted that limited control effects of TMD are observed 
under the Chichi seismic wave by comparing with reducing of the responses under the other seismic 
cases, as shown in Figure 28d. From Figure 9d, it can be seen that in addition to the second natural 
frequency, the influence of the fundamental frequency of the OWT is also non-negligible under such 
seismic load cases. Hence, a TMD with single tuning frequency cannot effectively control the 
vibration of the OWT under the Chichi seismic wave. 

  
(a) Standard deviations under El Centro (0.2 g) (b) Standard deviations under Northridge 

  
(c) Standard deviations under Taft (d) Standard deviations under Chichi 

Figure 28. Reduction ratios of bending moments under seismic excitations. 

  

Figure 28. Reduction ratios of bending moments under seismic excitations.

5. Conclusions

Based on the integrated analysis model, the structural responses and dynamic characteristics of a
Pentapod OWT under seismic excitations are studied. The influence of the rotor and the activation of
higher-order modes of the OWT under seismic excitations can be observed. Further, a TMD is mounted
on the OWT to control the structural responses under different seismic excitations. From the research,
the following conclusions can be drawn:

(1) From the results that the mudline bending moments are influenced by the mode of the rotor
blade, the influence of the rotor system on the motion of the support system cannot be neglected
in the seismic analysis of OWTs. Thus, it is of necessity to establish the integrated model of the
OWT to obtain reasonable structural responses under earthquakes.

(2) For the tower accelerations, the seismic excitations can stimulate higher-order frequency
components and it can become the dominant frequency for the structural responses, especially for
the seismic waves with abundant frequencies around the natural frequencies of OWTs, such as
the Northridge seismic wave.

(3) Using TMD, the influences of the PGA and type of seismic excitation on the control effects of the
OWT are investigated. It can be observed that these parameters of the input seismic wave can
influence the control effects of TMD remarkably.

(4) The parameters of TMD, such as the tuning frequency and location, are more essentials than
the mass ratio in the design of TMD. The higher-order dominant frequencies are proved as the
more effective tuning frequencies for reducing the structural responses of the OWT under seismic
excitations; e.g., TMD tuned with the second natural frequency of the OWT can achieve more
effective control than the TMD tuned with the fundamental frequency.

(5) The locations of TMD installed in nacelle or tower base are validated as the appropriate locations
to control the nacelle accelerations and bending moments of the OWT.



J. Mar. Sci. Eng. 2019, 7, 224 23 of 24

(6) The studies prove that the control effects of the TMD can be improved by increasing the mass of
the TMD only when an effective tuning frequency and location are adopted.

(7) Limited control effects of TMDs are observed when the structural responses are composed of
multi-dominant frequencies, such as the nacelle accelerations and bending moments under the
Chichi seismic wave. Additional tuning frequencies or more TMDs may be necessary to achieve
significant control effects under such load cases.
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