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Abstract: Free-floating bodies are commonly modelled using Cummins’ equation based on linear
potential flow theory and including non-linear forces when necessary. In this paper, this methodology
is applied to a body pitching around a fixed hinge (not free-floating) located close to a second
bottom-fixed body. Due to the configuration of the setup, strong hydrodynamic interactions
occur between the two bodies. An investigation is made into which non-linear forces need to be
included in the model in order to accurately represent reality without losing computational efficiency.
The non-linear forces investigated include hydrostatic restoring stiffness and different formulations
of excitation forces and quadratic drag forces. Based on a numerical comparison, it is concluded
that the different non-linear forces, except for the quadratic drag force, have a minor influence on
the calculated motion of the pitching body. Two formulations of the quadratic drag force are shown
to result in similar motions, hence the most efficient one is preferred. Comparisons to wave basin
experiments show that this model is, to a large extent, representative of reality. At the wave periods
where the hydrodynamic interactions between the bodies are largest, however, the amplitudes of
motion measured in the wave basin are lower than those calculated numerically.
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1. Introduction

Wave energy converter (WEC) developers need to prove the economic viability of their concepts
and need to get funding to complete the technology development. So, despite the large number of
wave energy concepts, only a few are grid-connected commercialized in the world. Wave energy
devices have to be economically viable, which depends on their performance. The techno-economical
assessment is as important as the evaluation of the technology readiness [1].

The principle of wave energy conversion is based on the ability for a body to absorb the
incoming wave energy, which depends straightforwardly on its hydrodynamic design. According to
Reference [2], symmetric bodies, such as heaving point absorbers and pitching flaps, have a theoretical
limit in wave energy absorption of 50%. However, for a non-symmetric bodies, such as Salter’s duck
concept (invented and developed since 1974 [3]), the absorption ratio can be close to 100%.

Salter’s duck is, according to the categorization defined in Reference [4], a non-symmetric rotating
floating wave activated body. Floating Power Plant’s WEC [5], the case-study in this paper, is also a
non-symmetric rotating floating wave activated body but it is part of a hybrid concept that combines
wind power and wave energy conversion (see Figure 1, left). Floating Power Plant (hereafter FPP) is a
close-to-market technology that has been under development since 1995. The pioneering technology
was the P37 device, Poseidon, which was a 1:25-scale prototype tested offshore in Denmark during four
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different periods from 2008 until 2013. The P37 was the first device in the world to provide electricity
to the grid from wind and wave resources simultaneously.

The FPP device is the result of several years of research, wave flume, wave basin and offshore
testing [6,7]. The FPP full-scale device is a floating foundation for a wind turbine in which four WECs
are integrated into the semisubmersible platform. The device is designed so that each pitching WEC
(patented) interacts with the supporting semisubmersible structure, amplifying its motion within the
design wave frequency range. In the original design (1995), each WEC rotated about the horizontal
plane but at this early stage they had a very simplistic wedge-like geometry, and their interaction
with the substructure was limited to the axis about which they rotated. As hydrodynamic multi-body
models were very limited at the time, the development process was largely dominated by physical
testing of variations of the design. Since then, the design has been modified and optimized according
to the experience and knowledge gathered through the years of research.

The objective of numerical models for WECs is to simulate hydrodynamic loads and body motions
under different sea conditions. For hybrid or multi-body devices that co-locate different systems on
the same structure, the objective is twofold: to simulate loads and motions and to understand the
interactions that may occur between the different components that make up the technology.

There is no software that has proven valid for all or the majority of the problems that modelling
WECs presents. Wave energy developers use different software packages or codes to simulate the
performance of WECs in operational and extreme conditions. In addition, there is a very limited
amount of experimental data that has been published and is high enough quality for code validation.
However, some research groups, like OES Task 10 [8], are working towards the goal of building
confidence in numerical estimations of loads and power production [9]. There are three categories to
group the variety of approaches to simulating WECs: linear codes, quasi-linear codes and non-linear
codes [10]. Linear codes are based on linear potential flow theory, computationally inexpensive and
numerically stable, over-simplistic in many cases. Quasi-linear codes (or weakly non-linear codes)
are based on linear theory but include some non-linear effects. These non-linear effects commonly
include some or all of instantaneous hydrodynamic forces, quadratic drag loads or the non-linear
power-take-of forces [11–13]. Finally, codes that account for strong non-linearities include both fully
non-linear time domain boundary element models and computational fluid dynamics models (CFD).
Although the accuracy is highest for fully non-linear codes, quasi-linear codes may be preferable due
to the reduction in computational time.

There exist some software packages for wave energy converters, such as the open-source
WEC-Sim [14] or the commercial code WaveDyn, developed by DNV-GL. One of the challenges
they face, and that is addressed in this paper, is the interaction between moving bodies that are closely
located. Particularly, pitch motion is the degree of freedom that shows the biggest discrepancies
between codes according to a WEC code comparison project [15]. Further to this, limitations to
WEC-Sim have been reported when trying to validate the numerical model of pitching closely spaced
bodies by comparison to physical test data [16].

The numerical model presented in this paper solves Newton’s second law with a quasi-linear
approach. Varying levels of non-linearity are included and compared. By comparison to experimental
data, the authors suggest a model based on a compromise between accuracy and computational effort.
Floating Power Plant is the case study. Hence, the aim of this paper is twofold. First, to establish a
numerical model based on radiation-diffraction solver to calculate hydrodynamics and motions of the
pitching body. And secondly, to use the model to evaluate the influence of the multi-body interactions
on the dynamic response of the pitching body. The physical data used to validate the numerical model
in this paper is based on a simplified representation of the FPP device. In the simplified setup, a single
WEC and a fixed structure located in close proximity are considered, see Figure 1. Large interaction
effects between the WEC and fixed structure are seen in the experimental data, although the motion of
the platform and possible interactions between neighbouring WECs are excluded.
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Figure 1. Left: Floating Power Plant (FPP) conceptual design, which consists of a wind turbine, 4 wave
energy converters (WECs) (in red), a semisubmersible platform (in yellow) and a mooring system.
Right: Model scaled single, pitching WEC (in red), with a fixed substructure representative of the
semisubmersible (“bottom box”, in yellow). The rotation shaft is always above the still water line.

2. Research Question

This paper compares linear and non-linear formulations of hydrodynamic and hydrostatic moments
acting on a pitching hinged device in close proximity to a bottom-mounted substructure. Linear theory
predicts strong interactions between the two bodies due to the setup, and these interactions were also
observed during wave basin experiments. The objective of the study is to conclude on a numerical
model that provides a good balance between accuracy and computational cost based on comparison
with experimental data. The experimental data comes from wave basin experiments planned to provide
high-quality data for numerical model validation. The method used (both experimental and numerical)
isolates the different moments acting on the device: hydrostatic moments through slow motion tests,
radiation moments through free decay tests and diffraction moments through fixed-device tests. Once
the formulation of the numerical model is decided, its suitability for simulating reality is checked with
the full problem of a freely-responding pitching body in regular waves.

3. Numerical Model Description

Figure 2 shows the profile of the model of the FPP’s wave energy converter (WEC) used during
the experimental campaign. The origin of the body coordinate system is located at the middle of
the rotation shaft. The origin of the global coordinate system is located at the still water line directly
underneath the origin of the body coordinate system. The pitch angle of rotation, θ, is defined by the
inclination of the hinge-arm relative to the horizontal x-axis. The particle motion is calculated referred
to the global coordinate system, which has the z′ coordinate at the still water line.

Figure 2. Left: Body coordinate system (x, y, z) and global coordinate system (x′, y′, z′) of the pitching
WEC. Wave propagation is in the x′ direction. Right: Top view of panel centroids of (half) WEC and
selected slice.
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3.1. Geometry Definition

The geometry of the WEC is defined from physical measurements and drawn in MultiSurf
using patches defined by B-splines and C-splines, which are continuous smooth surfaces in space.
This geometry is analysed by WAMIT using the higher-order method [17]. To implement forces
external to WAMIT, the body is discretized into a series of planar panels. The planar panels are initially
output from WAMIT as a list of cartesian coordinates of the vertices of quadrilateral panels. Each
quadrilateral panel is then subdivided into two triangular panels. Suppose a triangular panel has three
vertices (v1, v2, v3) defined by cartesian coordinates [18]. The centroid, unit normal vector and surface
area of the triangular planar panel are then defined by

~x = [x, y, z] =
1
3

3

∑
i=1

vi (1)

~n = [nx, ny, nz] =
(v2 − v1)× (v1 − v3)√

‖v2 − v1‖2‖v1 − v3‖2 − ‖(v2 − v1) · (v1 − v3)‖2
(2)

S =
1
2
‖(v2 − v1)× (v1 − v3)‖, (3)

where ‖‖ is the absolute value and × the cross product [19].
Where body-surface integration is calculated, a discrete integral is performed in which it is

assumed that point forces act at the centroid of each triangular panel. The panel centroids and their
normal vectors are defined initially for an angle of the body equal to zero according to the body
coordinate system given in Figure 2. The following rotation matrix is then used to calculate the new
components if the WEC rotates an angle θ about the origin of the body coordinate system [20]:

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (4)

With the aim of speeding up the calculations that use panel centroids, only a portion or slice in the
y direction of the WEC is used. A width ratio is applied afterwards to scale up the volume and loads
to the actual size of the body. Figure 2 presents a top view of half of the WEC in blue, and the slice of
the WEC used to make the model more efficient in red. Even though the hinge-arms can get slightly
submerged for some rotation angles, neglecting them in this simplification does not significantly
change the total submerged volume (the difference is less than 3% when fully submerged) or the
geometry that defines the hydrodynamic coefficients. The WEC gets out of the water when it rotates
more than 20.5 degrees anticlockwise and gets fully submerged when pitches 19 degrees clockwise.

3.2. Equation of Motion

The equation governing the hydrodynamic response of the WEC is Newton’s second law:

JẌ5 = Mgrav + Mbuoy + Mrad + Mexc + Mc + Mdrag + M f b, (5)

where J is the mass moment of inertia in pitch (around the y axis), Ẍ5 is the angular acceleration of the
body in pitch, Mgrav is the gravitational moment, Mbuoy is the buoyancy moment, Mrad is the radiation
damping moment, Mexc is the wave excitation moment, Mc is the control moment provided by the
power-take-off, Mdrag is the quadratic drag moment and M f b is the friction moment from the bearings.
In this paper, the power-take-off only provides a load to set the initial position of the WEC during
decay tests, although it is used to measure the hydrostatic moment during slow-motion tests and the
wave excitation loads during fixed-WEC experiments.

The numerical model baseline is a set of data of hydrodynamic coefficients calculated using the
commercial fluid-structure interaction software WAMIT. WAMIT uses a boundary element method to
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determine the hydrodynamic coefficients using linear wave theory. The baseline dataset includes the
hydrodynamic coefficients for a range of wave frequencies and for different body positions, which
are defined by the angle of inclination of the WEC. Under the assumptions of linear wave theory,
the amplitudes of motion are assumed to be small, so that the variation in the submerged geometry is
negligible. The hydrodynamic quantities corresponding to the pitch degree of freedom of the WEC
at the position θ = 5 degrees, which is very close to the hydrostatic equilibrium position, are shown
in Figure 3 for different wave periods. As the figure illustrates, strong hydrodynamic interactions
occur with the inclusion of the bottom-fixed second body. The only unaffected parameter is the
Froude-Krylov moment since it depends only on the undisturbed dynamic pressure over the wetted
surface of the WEC. The inclusion of the bottom box close to the pitching WEC spans the natural
pitch frequency of the WEC, as linear theory predicts and as it has been observed during experiments.
A more detailed analysis of the hydrodynamic coefficients calculated by WAMIT for this WEC is
included in Reference [21].

Figure 3. Hydrodynamic quantities evaluated presented in frequency domain using WAMIT for pitch
(5th degree of freedom): Am, added mass; B, radiation damping; FFK , Froude-Krylov force modulus;
FSC, scattered force modulus; FEXC, excitation force modulus; and RAO, the response amplitude
operator. T, is the wave period. Blue lines are data for WEC only, and red lines are data for WEC with
bottom box.

In contrast to the assumptions of linear theory, the amplitude of motion of the FPP’s WEC is not
necessarily small. Further to this, the geometry of the WEC is non-uniform, meaning larger amplitudes
of motion would result in significant changes in the submerged geometry and water-plane area.

3.3. Model Versions

Different formulations of the moments of the dynamic equation of motion are compared, in which
varying levels of non-linearity are considered.

3.3.1. Water Surface Elevation: η

The complex amplitude for the free surface elevation is given by

η̂ =
H
2

(
e−ikx′ cos β−ikx′ sin β+ϕ

)
, (6)

where H is wave height, ω is angular frequency; k is the wavenumber, x′ is coordinate in the wave
propagation direction, β is the angle between the positive x-axis and the direction of propagation of
the incident wave and ϕ is a phase shift. The real part of Equation (6) defines the water free surface
elevation η.
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A phase of ϕ = 0 results in a cosine wave at x′ = 0. For heading cosine waves, β = 0 degrees and
Equation (6) simplifies to

η(x′, t) = <
(

η̂eiωt
)

, (7)

which can be written as
η(x′, t) =

H
2

cos(−ikx′ + ωt). (8)

3.3.2. Radiation Moment: Mrad

The radiation moment has been included as a memory function approximated using Prony’s
method in the time domain model [22].

Mrad = −A∞(θ0)Ẍ5(t)−
∫ t

0
K(t− τ)Ẋ5(τ)dτ, (9)

where A∞(θ0) is the infinite frequency added mass for the WEC’s rest position θ0, Ẍ5 is the pitch
acceleration, K is the retardation function, t is time and Ẋ5 the pitch velocity.

The first term, −A∞(θ0)Ẍ5(t), represents the contribution to the force that is in phase with the
body acceleration. The second,

∫ t
0 K(t− τ)Ẋ5(τ)dτ, is the convolution term that accounts for the fluid

memory effects. K can be calculated in the time domain from the application of Fourier Transform
using the frequency dependent radiation damping coefficients (B) for the rest position of the WEC,

K(t) =
2
π

∫ ∞

0
B(ω, θ0)cos(ωt)dω. (10)

3.3.3. Hydrostatic Moment: Mhyst

In general terms, the linear hydrostatic stiffness moment, Mhyst, is a linearization of the sum
between the buoyancy and gravity moments.

Linear Hydrostatic Moment

Assuming small amplitudes of motion (small changes in waterplane area), the hydrostatic
moment is:

Mhyst(5) = −ζ(5,5)X5 = Mgrav(5)(θ0) + Mbuoy(5)(θ0), (11)

where ζ(5,5) is the (5, 5) component of the linear hydrostatic stiffness coefficient matrix, X5 is the
body’s displacement in the 5th degree of freedom and Mgrav(5)(θ0) and Mbuoy(5)(θ0) are the gravity
and buoyancy torque at the WEC’s rest position.

When the assumption of small amplitudes of motion is no longer valid, the hydrostatic moment
can be calculated by computing gravity torque and buoyancy torque separately.

Gravity Moment, Mgrav:

The gravity torque depends on the body position defined by the angle of rotation θ (Figure 2).
The gravity torque can be estimated at the rest position (θ = θ0), and at the instantaneous body position
(θ = θi) when using a nonlinear approach.

Mgrav(5)(θ) = m(1,1)gCOGx(θ), (12)

where m is the (1, 1) is the mass of the WEC and COGx is the x coordinate of the centre of gravity.
The gravity moment is equal to the magnitude of the gravity force, which is a vertical force, multiplied
by the perpendicular distance between its line of action and the axis of rotation. Since the gravity force
is a vertical force, the moment arm is equal to the horizontal component of the centre of gravity, COGx.
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Buoyancy Moment, Mbuoy:

Decomposing the body surface into N number of panels ([23,24]), the force due to the hydrostatic
pressure in each panel is calculated as in (13),

~Fj = [F(x′ ,j), F(y′ ,j), F(z′ ,j)] = PstatS~n, where Pstat = −ρgz′, (13)

where S is the surface area,~n is the unit normal vector of panel j and z′ the vertical coordinate of the
panel centroid. The integration of the pressure over the body surface results in a non-zero force in the
vertical direction (the horizontal forces cancel on a closed surface). The buoyancy force, an upward
vertical force exerted by the fluid opposing the weight of the WEC, is given by Fbuoy = ∑N

j=1 F(z′ ,j).
The moment due to the static water pressure in roll, pitch and yaw can be found by:

~Mbuoy =
N

∑
j=1

(
[x′, y′, z′]× [F(x′ ,j), F(y′ ,j), F(z′ ,j)]

)
, (14)

where [x′, y′, z′] are the cartesian coordinates of the jth panel and × represents cross product. In this
paper, only the moments in pitch are required, hence Equation (14) reduces to

Mbuoy(5) =
N

∑
j=1

(
z′F(x′ ,j) − x′F(z′ ,j)

)
. (15)

The buoyancy torque can be estimated at the rest position (θ = θ0), and at the instantaneous body
position (θ = θi) when using a nonlinear approach.

3.3.4. Excitation Moment: Mexc

Excitation moment is the moment on the body around the hinge due to the incident and
scattered waves. It can be defined as the sum of Froude-Krylov and scattering moment, or by
convolving the instantaneous water surface elevation with the impulse response function of the linear
excitation moment.

Froude-Krylov, MFK:

Froude-Krylov forces are based on the formulation of the undisturbed dynamic pressure according
to linear theory. Under the assumption of linear wave theory, the undisturbed dynamic pressure due
to heading regular waves with angular frequency ω at a point in the fluid (x′, y′, z′) is given by

P[1]
dyn = ρg

cosh (k (z′ + d))
cosh(kd)

η(x′, t), (16)

where ρ is water density; g, gravity acceleration; k, wave number; d, water depth and t is the time,
respectively. With the instantaneous water surface elevation η(x′, ω, t) as in Equations (6) to (8).

Under the assumptions of linear wave theory, variations in volume due to changes in the water
surface elevation are not accounted for. Equation (16) is therefore only valid for z′ ≤ 0. To include the
wave kinematics above the still water line, Wheeler stretching is applied as in Reference [25] to give an
alternative formulation for the dynamic pressure,

P[2]
dyn = ρg

cosh

(
k

(
z′ − η

1 + η
d
+ d

))
cosh(kd)

η(x′, ω, t), (17)
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where η is the water surface elevation η(x′, ω, t) as in Equations (6) to (8). Then, using a similar process
as the calculation of the buoyancy moment in pitch (Equations (13) to (15)), the Froude-Krylov moment
in pitch is given by

MFK(5) =
N

∑
j=1

(
z′PdynSnx − x′PdynSnz

)
. (18)

where S is the surface area and (nx, ny, nz) is the unit normal vector of panel j.
The different versions of the numerical model calculate Equation (18) with Pdyn calculated as

either P[1]
dyn (Equation (16) ) or P[2]

dyn (Equation (17)). Where Pdyn = P[1]
dyn, the submerged body geometry

is calculated either at the rest position (θ0) or at the instantaneous position (θi). Where Pdyn = P[2]
dyn,

the submerged body geometry is calculated at the instantaneous position (θi).

Scattering Moment:, Msc:

Using WAMIT output values for the scattered moment amplitude (‖Msc(5)‖) and phase (ϕsc(5)),
the equation of the scattered moment in pitch can be written as

Msc(5) = <(‖Msc(5)‖e
iϕsc(5) η̂eiωt), (19)

where η̂ is the complex amplitude of the water surface elevation as in Equation (6).
For a nonlinear approach, the WAMIT baseline dataset is interpolated to approximate the

scattered moment for the instantaneous body position. The WAMIT dataset consists of data for
angles of inclination between −9 and 17 degrees, with an angle increment of 0.2 degrees (data for
127 different angles). The WAMIT values of the scattered moment are computed for a steady state
system. Dynamically passing through an angle is clearly not the same as reaching steady state
oscillating about that angle. However, this approach accounts for changes in submerged geometry,
allowing the scattered moment to be dependent on the submerged body geometry, as Froude-Krylov
is. This is particularly important to ensure that the scattering moment tends to zero as the submerged
volume tends to zero.

Implementation of Measured Water Surface Elevation

As opposed to assuming a simple cosine wave, it can be advantageous to directly input the
measured waves from physical tests. To do this, the excitation moment is calculated by performing
the convolution of the impulse response function of the linear theoretical excitation moment (MIRF

exc )
with the measured water surface elevation ( ηEXP). The time varying excitation moment is given by
Reference [26],

Mexc(t) = MIRF
exc (t)ηEXP(t) =

∫ ∞

−∞
MIRF

exc (t− τ)ηEXP(τ)dτ. (20)

The impulse response function of the excitation moment, MIRF
exc , is calculated by taking the inverse

Fourier transform of the frequency domain excitation moment,

MIRF
exc (t) = <

(
1

2π

∫ ∞

−∞
M̂exc(ω)eiωtdω

)
. (21)

The complex amplitude of the linear excitation moment M̂exc(ω) is determined for the hydrostatic
rest position of the WEC using WAMIT.
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3.3.5. Quadratic Drag Moment: Mdrag

The quadratic drag model is based on Morison formulation and uses the relative velocity between
the WEC and the fluid. It uses a mesh-approach, which is based on panels that define the geometry of
the absorber, as described in Section 3.1. Two methods to calculate the quadratic load are presented:
the first is the exact method, which computes the instantaneous quadratic loading at each submerged
body surface panel by calculating the relative velocity between the panel and the fluid velocity.
The second is an approximate quadratic drag load, which approximates the submerged body surfaces
by a single flat panel and computes the instantaneous quadratic load using the relative velocity
between this panel and the fluid velocity.

(a) Exact formulation of quadratic drag forces

The quadratic force opposes the velocity of the WEC. To select which submerged panels contribute
to the quadratic drag force the condition that has to be met is that the angle defined by the panel
normal vector and the panel velocity vector is less than 90 degrees. A quadratic drag force in the
translational modes can be implemented as follows,

~Fdrag = [Fdragx′
, Fdragy′

, Fdragz′
] = −

N2

∑
j=1

1
2

ρCd ~Ap(j)(~̇xj − ~uj)|~̇xj − ~uj|, (22)

where Cd is the drag coefficient, ~Ap(j) the vector of projected areas, ~̇xj the velocity vector and
~uj the undisturbed fluid velocity vector in the (x′, y′, z′) directions at the centroid of the jth
panel. N2 is the total number of contributing submerged panels. Further details can be found in
Reference [27].

At t = ti, the angles of inclination of the WEC are known at t = ti and at the previous time step
t = ti−1. These angles are used to calculate the instantaneous location of the centroids of the
panels (see Section 3.1) at t = ti and t = ti−1. The cartesian coordinates defining these positions
are used to calculate the translational panel velocities using the following equation.

~̇x|ti =
~x(ti)−~x(ti−1)

ti − ti−1
. (23)

For heading waves the fluid velocity in the y direction is uy = 0, and the horizontal and vertical
velocity components are given by:

ux = <
(

H
2

gk
ω

cosh(k(z′ + d))
cosh(z′ + d)

e−i(kx−ωt)
)

(24)

uz = <
(

i
H
2

gk
ω

sinh(k(z′ + d))
cosh(z′ + d)

e−i(kx−ωt)
)

(25)

The corresponding moments in roll, pitch and yaw are

~Mdrag =
N2

∑
j=1

(
[x′, y′, z′]× [Fdragx′

, Fdragy′
, Fdragz′

]
)

, (26)

where [x′, y′, z′] are the cartesian coordinates of the jth panel and × represents cross product.
(b) Approximated formulation of quadratic drag forces

In order to simplify and improve the computational efficiency, three simplifications to
Equation (22) are applied. The first simplification is that the instantaneous submerged body
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surface area is approximated by single flat panel (Figure 4). The second simplification is that the
fluid velocity is neglected. The third simplification is that the drag forces are only computed when
the WEC is pitching clockwise (when the WEC rotates in the opposite direction the projected
area is small hence the quadratic drag forces can be neglected).

Figure 4. Geometry used to calculate the approximate quadratic drag forces.

Applying these three simplifications, Equation (22) reduces to,

~Fdrag = −1
2

ρCd~S∗p~̇x‖~̇x‖, (27)

where ẋi represents translational velocity of the centroid of the single panel in the (x′, y′, z′)
directions and S∗p is the projected surface area of the flat panel.

3.3.6. Friction in the Bearings, M f b

The friction moment in the bearing around the rotation shaft can be modelled as dry friction.
The friction in the bearings is approximated as a constant moment of magnitude K f b, opposing the
WEC’s motion:

M f b = −K f bsign(θ̇). (28)

3.3.7. Numerical Model Solver

The equation of motion is solved in the time domain in Simulink using a fixed-step ODE3 solver
with fixed-step size of 0.001 s. Inputs and outputs are processed in Matlab.

4. Wave Basin Experiments

4.1. Laboratory Setup

The data used for model validation in this paper comes from 1:30 scaled tests performed at
Aalborg University in “The deep 3D wave basin”. The scaled model WEC is a 1:30 simplification of
a double-width full-scale WEC. The main dimensions of both the FPP conceptual design and scale
model WEC are included in Table 1. In the wave basin setup, the distance between the rotation shaft
and the bottom box is 400 mm, the bottom plate is 1210 mm wide and 640 mm long, the gap between
the side walls and the WEC is 36 mm and the clearance between the back of the WEC and the inclined
back wall is 20 mm. The inclined back wall is 214 mm high measured from the horizontal surface of
the bottom box (“bottom plate”), so it does not protect the back of the WEC from wave reflections from
the beach. For confidentiality reasons, more detailed information about the geometry and physical
properties is not provided.
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Table 1. Main dimensions of FPP conceptual design and model scaled WEC.

Semisubmersible WEC WEC Scale Model

Length main body 86.5 m Length main body 10.8 m Length main body 343.5 mm
Length hinged arms 99.3 m Width 18.3 m Width 1105.0 mm
Width 36.0 m Height 11.0 m Height 423.0 mm
Height 25.0 m Length hinged arms 6.2 m Length hinged arms 228.5 mm
Water depth >45.0 m Water depth 650.0 mm

The wave basin has the dimensions of 15.7 m long, 8.5 m wide and 1.5 m deep. Dimensions of the
wave basin and location of the WEC are shown in Figure 5.

Figure 5. Left: Bird’s eye view of position of bottom box in wave basin set up for heading waves
(measurements in mm). Right: Photo of the setup in the basin with the beach in the background.

The wave elevation is measured by 16 wave gauges that are placed in the basin, see Figure 6.
Twelve wave gauges are placed along the centre line of the basin: 6 in front of the WEC, numbered
1–6 (2 pairs of 3 gauges); and 6 behind the WEC, numbered 11–16 (2 pairs of 3). The setup, with the
multiple wave gauges along the centre line, allows for accurately separating incident and reflected
waves using 2D wave analysis (along the length of the basin). The remaining 4 wave gauges, numbered
7–10, are placed by the side of the WEC, which allows for the investigation of 3D effects of diffracted
and radiated waves (across both the length and the width of the basin).

Figure 6. Plan view of the position of the 16 wave gauges in the basin. Measurements are in mm and
referred to the centre of the front of the bottom box.
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Figure 7 shows the setups of two test configurations that are used for experimental validation in
this paper. In both configurations, the rotation shaft for the WEC is fixed in space by attachment to
a fixed beam (Figure 7). The first configuration (WEC only), consists of the WEC alone. The second
configuration (WEC+BB) includes, in addition, the fixed substructure, also called “bottom box” or
“BB”. The bottom box consists of two side-walls, a back wall and a bottom plate. The width of the WEC
is 1105 mm and the clearance between the inner surface of the side-wall and the outer sides of the
WEC (port and starboard) is 36 mm.

Figure 7. Left: Photo showing the WEC in the wave basin (“WEC only” setup). Right: Photo of the
setup that consists of WEC and fixed substructure (“WEC+BB” setup). The location of the WEC is the
same in both setups.

4.2. Wave Basin Experimental Data

The different tests performed for the validation and comparison of the numerical model
versions include:

4.2.1. Undisturbed Waves

When waves are generated in the basin, some reflection effects from the beach occur. In order to
decompose the measured free surface elevation into incident and reflected waves at the WEC position,
the following procedure is used:

1. Waves are generated and measured in the basin without the WEC in place (undisturbed waves)
using the software “Awasys” from Aalborg University, including active absorption.

2. A non-linear wave analysis is performed to separate incident and reflected waves using the
software “WaveLab” from Aalborg University [28]. WaveLab takes into account the propagation
speed of the waves in a non-linear manner.

3. The same waves are then repeated with the device in position.

4.2.2. Slow-Motion Experiments

The WEC is moved gently up and down and simultaneous measurements of the position and
control moment are acquired. The WEC is moved with a constant velocity of 0.24 deg/s using
the actuator.

4.2.3. Decay Tests

The WEC is lifted (or pushed down) using the actuator, which is set to provide a constant moment
in order to keep the WEC away from its static position for a few seconds before releasing it. An example
of a (repeated) decay test is shown in Figure 8a. As illustrated, when repeating the decay tests for the
same conditions, very similar motions are observed. The difference between target and measured
moment provided by the actuator is presented in Figure 8b, where the irregularities in the measured
moment are due to friction effects.
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(a) Decay tests with absorber released at t = 5s for the
setup of WEC only.

(b) Target and measured control moment corresponding
to the first decay test.

Figure 8. Example of data for decay tests for the case of WEC only, (a) shows the repeatability of the
experiment, and (b) shows the difference between target and measured control moment due to friction.

4.2.4. Fixed WEC Experiments

The actuator applies a control moment to the WEC in order to obtain a fixed target position despite the
influence of the incoming waves. The target position corresponds to the static, neutrally-buoyant position
of the WEC. The measured control moment during these tests is directly the wave excitation moment [29].

The non-linear model calculates Froude-Krylov moment defined in Equation (18) with Pdyn

calculated as either P[1]
dyn (Equation (16)) or P[2]

dyn (Equation (17)). Where Pdyn = P[1]
dyn (non-linear

model), the submerged body geometry is calculated at the instantaneous rotation angle (θi). Where
Pdyn = P[2]

dyn (non-linear model with Wheeler stretching), the submerged body geometry is calculated
at the instantaneous position (θi). In the non-linear model, the scattering moment is interpolated for
the instantaneous angle of the WEC.

Using the formulation to calculate excitation moments that considers the instantaneous body
position of the WEC (non-linear model) supposes a difference in amplitude of the excitation moment
compared to linear theory of up to 4%. This difference goes up to 7% when Froude-Krylov formulation
includes Wheeler stretching as well.

The comparison between excitation moments in free motion simulations is done for regular waves
with wave period equal to the resonant period of the WEC and for two wave heights—the one used as
target wave height for the experiments, and a wave height two times bigger. Time-series of the results
are included in Figure 9 and normalized results by the wave amplitude are included in Figure 10.
The largest wave height makes the WEC to rotate within the limit angles that allow it to not leave the
water and to keep the top surface out of the water in order to facilitate the numerical modelling.

(a) (b)

Figure 9. Numerical results of setup of WEC only from linear theory, non-linear model
with instantaneous body position, and non-linear model with instantaneous body position with
Wheeler stretching. (a) Regular wave with target wave height used in experiments (R02). (b) Regular
wave with a larger wave height (same wave period as R02) that would allow the WEC to rotate within
the recommended motion interval of the WEC.
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Figure 10. Zoomed normalized results from Figure 9a,b. The first figure shows the wave amplitudes
normalized by the wave amplitude of the smaller wave (aw1), whereas the excitation moments, Mexc

are normalized by the corresponding wave amplitudes that originated them.

4.2.5. Regular Waves

The undisturbed waves, wave excitation and free motion experiments are performed for 16
different regular waves with periods between 0.667 and 2.5 s with a target wave height of 4 cm, defined
in Table 2. Figure 11 shows how these waves are classified according the applicability of wave theories
defined in [30]. In the figure, the ratio between the parameters H0/(gT2

p) and d/(gT2
p) indicates that all

the waves are non-linear, belonging to the region where the suitable wave theory is Stokes 2nd order,
except from the 3 shortest waves, that correspond to Stokes 3rd order. The ratio between water depth d
and wavelength λ, shows that the waves used in these experiments correspond to either intermediate
water depth or deep-water definition, and the relation between wave height and wavelength indicates
the steepness of the wave. None of the waves included in the tests correspond to the linear theory
description, thus stressing the objective of this paper, which is to check the suitability of a numerical
model based on linear potential wave theory.

Table 2. Regular waves used for undisturbed waves, fixed WEC and free motion in regular waves experiments.

Wave condition R01 R02 R03 R04 R05 R06 R07 R08

T (s) 2.500 2.000 1.667 1.429 1.250 1.176 1.111 1.053

H/2 (m) 0.019 0.020 0.019 0.019 0.019 0.019 0.020 0.021

Wave condition R09 R10 R11 R12 R13 R14 R15 R16

T (s) 1.000 0.952 0.909 0.870 0.833 0.769 0.714 0.667

H/2 (m) 0.021 0.023 0.021 0.022 0.021 0.021 0.023 0.023
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Figure 11. Left: Identification of wave theory according to the validity of several theories for periodic
water waves, boundaries defined as in [30]. Right: wave steepness values corresponding to the regular
wave tested. H0 stands for wave height; d for water depth; g is gravity acceleration; Tp is wave period;
and λ is wave length.

Figure 12 illustrates the measured experimental data used. The first subplot includes the calculated
incident and reflected waves at a position vertically below the hinge. The incident and reflected
waves have been calculated using WaveLab using the wave gauges data from the undisturbed waves
experiments. The second subplot, data from the free motion experiments in regular waves. Finally,
the third one, from the wave excitation experiments. All three experiments are performed for the same
target wave.

Figure 12. Wave basin experiments for a regular wave of period T = 1 s and height H0 = 0.04 m
(R09). eta is wave elevation calculated from undisturbed waves experiments; Pitch, the angle measured
from free motion experiments, where the rest position was at 5 degrees approx.; and Mc is the control
moment measured during wave excitation experiments.

4.2.6. Free Motion in Regular Waves

The WEC is allowed to move freely in the waves, without the addition of a control moment.
Figure 13 illustrates a frequency domain comparison of the response amplitude operator (RAO)
obtained using the different models. The RAO represents the ratio between the amplitude of motion
and the wave amplitude. The numerical model that considers linear hydrodynamic forces (“Linear”,
blue dotted line in Figure 13) calculates Froude-Krylov forces using Equation (16) for the hydrostatic
rest position of the WEC and Equation (18), scattered forces as in Equation (19) for the rest angle,
and gravity and buoyancy forces as in Equations (12) to (15), again for the hydrostatic rest position.
The second version of the numerical model is a linear numerical model that includes in addition the
approximated quadratic drag that is given by Equation (27) (“Quasi-linear”, rust-coloured dotted line
in Figure 13). Finally, results from a non-linear model are included for comparison (“Non-linear”,
yellow-dotted line in Figure 13). The non-linear numerical model considers instantaneous forces
stand for formulation of Froude-Krylov forces as in Equations (17) and (18), scattered forces as in
Equation (19) for the instantaneous WEC position, buoyancy force as in Equations (13) to (15) for the
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instantaneous WEC position, gravity force as in Equation (12) for the instantaneous WEC position,
and the exact formulation of the quadratic drag force defined by Equations (22) to (26).

(a) Response Amplitude Operator for WEC only.
Quasi-linear and non-linear models use Cd = 2
as drag coefficient.

(b) Response Amplitude Operator for WEC+BB.
Quasi-linear and non-linear models use Cd = 2
as drag coefficient.

Figure 13. Comparison of the calculated the response amplitude operators (RAOs) for the WEC setup
(a) and WEC+BB setup (b) for varying wave period (T) using different numerical models. The solid
blue line (“WAMIT”) and the dotted blue line (“Linear”) are the RAOs calculated with potential theory.
“Quasi-linear” refers to the model where all forces are linear except a simplified quadratic drag moment
and “Non-linear" to the model where all forces are non-linear except radiation damping moment”.

The biggest difference between numerical models corresponds to the natural period of the WEC.
The numerical model that includes linear forces and the simplified version of quadratic drag force
(“Quasi-linear”) introduces an overestimation in motion of up to 12% compared with the most exact
model (“Non-linear”) for the wave conditions simulated, but it is 20 times faster. Simulating 10 s of
WEC motion takes 7.5 s using the quasi-linear model, whilst it takes 150 s using the non-linear one.
The computational effort of the quasi-linear numerical model makes it to be the most optimal even
though the calculated motions can have an error of up to 12% compared to the non-linear model.

4.2.7. Quadratic Drag Moment

The approximated formulation of the quadratic drag moment included in the quasi-linear model
provides a good match with the more exact formulation included in the non-linear model, as Figure 14a
shows. The simplification of the quadratic drag forces has a negligible effect in the pitch motion.
Figure 14b presents the sensitivity of the quasi-linear model to the drag coefficient value. The |RAO|
curves presented in this figure are calculated from time domain simulations using the fast Fourier
transform to both the free surface and the pitch motion, and then calculating their ratio. The simulated
theoretical regular waves are defined by the parameters included in Table 2.
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(a) Time domain simulation of the quasi-linear mo-
del with the exact and approximated formulation
of quadratic drag for WEC in free motion due
to a theoretical regular wave (R02).

(b) Response Amplitude Operator for WEC only from
time domain simulations. Quasi-linear models use
the approximated version of quadratic drag and drag
coefficients of Cd = 1, Cd = 2 and Cd = 3

Figure 14. Comparison between exact and approximated formulation of quadratic drag forces in time
domain (a) and representation of the effect of the quadratic drag coefficient in the pitch motion in
frequency domain calculated from time domain simulations (b).

5. Results

5.1. Wave Reflections and Repeatability

Wave reflections in the basin and the repeatability of the wave generation are important.
The presence of the WEC affects the waves in the basin due to reflections, and also the motions
of the WEC influences the waves due to radiated waves. In addition, the wave generator is not perfect
in reproducing the waves (although the standard deviation of the significant wave heights for tested
waves is only 0.3%). In order for these effects to have minimum influence on the results, the actual
measured waves in each test are used. For this purpose, data measured by all the wave gauges is used
to calculate the incident and reflected wave time series at specified positions (i.e., at the origin of the
coordinate system of the WEC, which is at the centre of the bearing) using WaveLab.

Figure 15 presents data from one of the wave gauges during three different experiments under
regular waves conditions: undisturbed waves, fixed WEC with WEC only and fixed WEC when
the bottom box is installed as well. Figure 15a shows how the waves are affected by the presence
of bodies in the basin. For the first seven seconds, the measured waves are very similar due to the
capability of repeatability of the wave maker. After this initial time, diffracted and reflected waves
make the measurements disagree between experiments. In order to simplify the validation of the
numerical model process, only heading waves are considered. The measured data used for validation
is chosen from the interval of time where there are no reflected waves from the beach of the wave
basin. Figure 15b presents the calculated incident wave after performing the reflection analysis with
WaveLab. The results from WaveLab show good agreement between the calculated incident waves for
two different experiments (undisturbed waves and fixed WEC) for the first part of the experiments
where wave reflections have not occurred yet or are negligible.
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(a) (b)

Figure 15. Example of measured data for the same target regular wave simulated during three different
experiments (undisturbed waves, fixed WEC and fixed WEC (with bottom box)) and corresponding
calculated incident wave for two of these experiments. (a) Water surface elevation measured during
undistur-bed wave experiments and fixed-WEC experiments for the wave condition R06. (b) Calculated
incident wave for undisturbed waves and fixed-WEC experiments using WaveLab for the wave
condition R06.

5.2. Modelling of Hydrostatics and Friction

The hydrostatic stiffness is close to linear with the WEC angle for angles of inclination between−5
and 10 degrees (maximum 2% discrepancy), see Figure 16. However, excluding the situations where
the WEC is either fully submerged or out of the water (where the hydrostatics become more constant),
the assumption of linear hydrostatics is reasonable (maximum 10% discrepancy at the highest angle of
inclination). The hydrostatic rest position corresponds to the angular position with zero hydrostatic
moment. In this case the rest angle is θ0 = 4.9 degrees.

Figure 16. Hydrostatic moment calculated using a linear approach (Equation (11)) and a nonlinear
approach (Equations (12) to (15)).

During the slow-motion tests, the acceleration is zero and the velocity is constant but negligible, as
seen in Figure 17a. Under these conditions, the dynamic equation of motion (Equation (5)) reduces to

−Mc = Mgrav + Mbuoy + M f b. (29)

The exact measured moment, Mc, at a specific angle during the slow-motion tests depends on the
direction of rotation, up to 2 Nm deviation (see Figure 17b, where the double green line represents
measured data in both directions of rotation of the WEC). The dependence on the direction of rotation
comes from dry friction (Equation (28)) and possibly also due to small variations in Mgrav, since the
rotation of the WEC affects the position of connection cables, making them lie more or less on the
device and affecting its weight [31]. The magnitude of the variations in Mgrav is unknown, so Equation
(29) is satisfied for values of K f b between 0.4 and 1 within M f b (Equation (28)). These values of K f b are
estimated based on the experimental data.
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(a) (b)

Figure 17. Data and results from hydrostatic tests. (a) Measured motion of the WEC (Pitch) and
hydro-static moment (Mhyst) from the slow-motion tests. (b) Calculated hydrostatic moment using
non-linear and linear formulation compared to measured values. The different plots correspond to
different intervals of angular position.

5.3. Decay Tests Simulations

In decay tests, there is no excitation moment due to waves, hence Equation (5) reduces to

JẌ5 = Mgrav + Mbuoy + Mrad + Mc + Mdrag + M f b. (30)

The pitch motion calculated using Equation (30) with values of Cd = 2 within Mdrag (Equation (27))
and K f b = 0.4 within M f b (Equation (28)) results in close match to experimental measurements
(Figure 18). The value of Cd = 2 has been chosen to provide a good match with experimental data
and taking as reference values found in literature [32]. The influence of the friction in the bearing is
presented in Figure 19a.

(a) (b)

Figure 18. Experimental (“Exp”) and simulated (“Sim”) decay tests comparison at two different starting
positions (“Up” and “Down”). The quasi-linear numerical model computes moments linearly except
from an approximated quadratic drag moment. The model inputs a drag coefficient Cd = 2 and a
constant moment due to friction in the bearings calculated with K f b = 0.4 Nm. (a) Experimental and
numerical results of decay tests for the case of WEC only. (b) Experimental and numerical results of
decay tests for the case of WEC with bottom box.

The hinge height, which is the origin of the body coordinate system, is fixed relative to the seabed
with a target height of 50 mm above the still water surface. A difference in hinge height of 1 mm
actually corresponds to an accuracy in this hinge height of±2%. This accuracy corresponds to a change
in rest angle of about ±0.15 degrees and impacts the hydrodynamics. The location of the hinge is fixed
in space throughout all the experiments. However, the hinge height relative to the water level varies by
up to 2 mm due to daily variations in water depth in the wave basin (due to leakage). Figure 19b shows
how 1 mm of difference in water depth affects the simulated motion of the WEC. The accuracy in the
manual measurements and the differences due to changes in water depth is estimated to be ±1 mm.
The variations in water depth result in the slight differences between the modelled and experimental
initial positions (Figure 18a,b).
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(a) (b)

Figure 19. Importance of experimental inputs in decay test simulations. Results from quasi-linear
numerical model, which computes moments linearly except from an approximated quadratic drag
moment (Cd = 2). (a) Influence of the moment due to friction in the bearings, M f b, on the calculated
WEC motion during a decay test for the setup of only WEC. (b) Influence of 1 mm difference in water
depth, d, on the calculated absorber position during a decay test for the setup of only WEC.

5.4. Wave Excitation

When the WEC is held fixed at a constant angle of inclination by the actuator, the dynamic
equation of motion (Equation (5)) reduces to

−Mc = Mgrav + Mbuoy + Mexc. (31)

During these tests, the WEC is held at the hydrostatic rest position by the actuator. Hence,
the buoyancy and gravity moments cancel each other and the moment provided by the actuator is
equal to the excitation moment.

Excitation loads can be defined as the sum of Froude-Krylov and scattering loads. Froude-Krylov
loads are based on the formulation of the dynamic pressure on the WEC surface according to linear
theory, and therefore it is the same for the setup of WEC only and for WEC+BB. Scattering loads
are however different, making total excitation loads different as well. Figure 3 includes results from
WAMIT, showing that excitation forces are larger for the setup of WEC+BB, being the scattering force
contribution dominant over Froude-Krylov for the whole range of periods in this case.

The model used for comparison of excitation forces with experimental data is based on linear
formulation. Froude-Krylov and scattered moments are calculated based on the submerged volume
at the hydrostatic rest position defined by the still water line. To simulate the experiments, only the
undisturbed heading incident wave is taken into account, neglecting the reflection from the back of
the wave basin of both incident and scattered waves. Due to the simplification of neglecting reflected
incident and scattered waves, it is only reliable to compare the simulations with the measured excitation
signal recorded before reflection occurs. In this time window, a good match between experimental
data and the linear model is found for regular waves (Figure 20), being the time window chosen for
comparison represented by the vertical dashed lines.
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(a) (b)

Figure 20. Wave excitation measured during fixed-WEC experiments under regular waves conditions.
(a) Wave excitation measured during fixed-WEC experiments under regular waves for the setup of
WEC Only. (b) Wave excitation measured during fixed-WEC experiments under regular waves for the
setup of WEC with bottom box.

Time domain results are useful for comparison and validation with numerical modelling.
A frequency domain representation of the simulations under regular waves conditions is done by
calculating the ratio between the mean of the amplitude the excitation moment and the mean of the
amplitude of the wave amplitude in the time window where reflection is negligible. The amplitude of
the excitation moment and the wave amplitude are calculated through a “peak analysis”, by using
the peaks and the troughs of the signals in the selected time window. Fast Fourier transform is not
applied because the un-contaminated timeseries are extremely short, and frequency analysis in this
interval does not provide realistic results. The frequency domain representation of the results from the
“peak analysis” (Figure 21) can be misleading, specially for long waves. This is because results for long
periods are based on short time windows, where very few oscillations are considered and the steady
state has not been reached.

(a) (b)

Figure 21. Example of comparison between test results and numerical estimates of excitation moment
in pitch using WAMIT. (a) Results for Setup WEC Only. (b) Results for Setup WEC+BB.

5.5. Free motion in Regular Waves

The linear model has shown a good match with wave excitation experiments. During free motion
tests, wave excitation was not measured. But in this section the different numerical formulations
are compared.

The quasi-linear model showed that formulating moments with a linear approach translates into
an overestimation in motion. Even though this error appears to be large in the frequency domain as
shown in Figure 13, time domain comparison with experimental data shows an acceptable agreement
in motion amplitudes although a small phase shift occurs (Figure 22). However, for the setup of
WEC with bottom box, for the second natural frequency of the WEC calculated by linear theory (2 s),
the error in time domain is more noticeable (20%), as illustrated in Figure 23. This percentages differ
from those mentioned before because when using experimental data, for the long periods, the data
used does not correspond to steady state and that is a source of error to add to all the errors due to the
simplifications that the linear numerical considers.
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(a) Free motion of WEC in regular waves (R06).
Numerical model with Cd = 2 and K f b = 0.4 Nm.

(b) Free motion of WEC with BB in regular waves (R06).
Numerical model with Cd = 2, K f b = 0.4 Nm.

Figure 22. Comparison of time domain results to experimental data of the free motion of the WEC
for a wave period equal to the calculated resonant period of the WEC using linear theory (T = 1.2 s).
Results for WEC only (a) and WEC with bottom (b) box are included.

(a) Free motion of WEC in regular waves (R02).
Numerical model with Cd = 2 and K f b = 0.4 Nm.

(b) Free motion of WEC with BB in regular waves (R02).
Numerical model with Cd = 2, K f b = 0.4 Nm.

Figure 23. Comparison of time domain results to experimental data of the free motion of the WEC for
a wave period equal to the calculated resonant period of the WEC when there is the bottom box using
linear theory (T = 2 s). Results for WEC only (a) and WEC with bottom (b) box are included.

Data 4 extra experiments of free motion in regular waves with the wave conditions defined
in Table 3 is available for validation. Results from the quasi-linear model are compared to the
measured motion in Figure 24. Two different values of the quadratic drag coefficient are used in these
simulations. The effect of the quadratic drag coefficient in time domain is less noticeable than in the
frequency domain (Figure 14b). Unfortunately, data from fixed-WEC experiments is not available, so a
comparison of the excitation moments cannot be done.

Table 3. Regular waves used for free motion in regular waves experiments in order to analyse the
influence of increasing wave amplitude.

Wave condition R09 R17 R18 R19 R20

T (s) 1.00 0.95 0.98 0.99 0.98

H (m) 0.042 0.020 0.059 0.076 0.092
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Figure 24. Wave elevation (eta) and free motion (Displ.) of WEC+BB for different wave amplitudes.
“Experimental” data is compared to results from the quasi-linear model with Cd = 2 and Cd = 3, both
with K f b = 0.4 Nm.

To summarize the results of free motion in regular waves for both wave basin setups, (with and
without bottom box), the response amplitude operators corresponding to each regular wave tested are
included in Figure 25. The values of the amplitude of the RAO are calculated using the data within
time interval where the reflection is considered negligible. Examples of these time windows are shown
in Figures 22 and 23. The peaks and the troughs of the wave amplitude and the WEC motion in
this interval are used to calculate the ratio between the mean values of the pitch motion and wave
amplitude (|RAO|).

(a) Response Amplitude Operator for WEC only.
Numerical models use a moment due to friction in the
bearings of K f b = 0.4 Nm and drag coefficient Cd = 2.

(b) Response Amplitude Operator for WEC+BB.
Numerical models use a moment due to friction in the
bearings of K f b = 0.4 Nm and drag coefficient Cd = 2.

Figure 25. Response Amplitude Operators (RAO) for the WEC setup (a) and WEC+BB setup (b) for
varying wave period (T). The solid blue line (“Linear”) is RAO calculated with potential theory using
WAMIT and the red-cross line includes experimental results for regular waves (“Experimental data”).
“Quasi-linear” refers to the model where all forces are linear except a simplified quadratic drag moment.
The rust-coloured dotted line includes linear regular waves whereas the purple-dotted line implements
the measured wave profile from undisturbed wave experiments (“und. incident wave”).

As seen in Figure 25, the quasi-linear model gives different results depending on the input wave.
When using the undisturbed incident wave from the experiments, the RAO amplitudes decrease
significantly for long waves in comparison to linear theory, specially for the case of WEC with bottom
box. This is because the data used to calculate the RAO is reduced to a time window where the wave is
not fully developed and behaving in a non-linear manner, thus results are less reliable than those that
come from fully developed waves that behave in a more linear way. However, considering the actual
experimental wave makes the numerically calculated response to be more similar to the experimental
one, although still for long waves the difference between experimental and calculated RAO amplitude
is 40% for the longest period and 22% for the second longest period for the simulated wave conditions.
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6. Discussion

The numerical model solves the dynamic equation of motion of a pitching WEC, with and without
a bottom-fixed second body. Linear, quasi-linear and non-linear formulations of hydrodynamic
forces and motions were compared against each other and against experimental data when possible.
Experimental data is key to deciding which numerical model is more suitable for the case study
regarding both efficiency and accuracy. Due to the nature of laboratory experiments, there are some
uncertainties that make the exact determination of inputs to the numerical model difficult. The input
that affects the numerical model the most is water depth, since a 1 mm change in water depth alters the
angle of inclination of the WEC by ±0.15 degrees. This small change in angle affects the hydrostatics
of the system, as well as the hydrodynamics.

Hydrostatic stiffness was compared to results from slow-motion tests, added mass and radiation
damping to decay tests and wave excitation moments to fixed-WEC tests. In all these cases, results
from linear formulations, with the inclusion of an approximated formulation of quadratic drag for
decay tests, showed good agreement with measured moments despite the atypical body geometry.
For linear regular waves, the maximum difference in motion relative to the incoming wave between
the quasi-linear model and the non-linear was less than 12%. However, the quasi-linear model, for
which the computational effort is similar to the linear model, was 20 times faster than the non-linear
one. The quasi-linear model provides a close match to experimental data for the pitch motion of the
WEC, provided the WEC is alone in the wave basin. However, when the fixed substructure is in place,
the model overestimates the body motion for the longest waves tested (maximum 40%).

The experimental data used for comparison is less reliable for the case of long waves due to
reflection effects. Other codes like WEC-Sim, based on the same formulations as the models presented
in this paper, have been validated and calibrated [14,16,33] using wave basin experiments as well.
However, the published results do not include an experimental validation as complete as that presented
in this paper, which makes it difficult to use WEC-Sim for code to code comparison.

Although some reasons for the over-prediction of motion in long waves could be unreliable data,
viscosity or friction, it could also be due to resonance effects of the water trapped between the two
bodies. This resonance might magnify the forces acting on the bodies and, in this case, it would be
needed to include extra damping due to viscous effects to absorb this resonant energy. To improve the
agreement between potential theory and experimental data, some methods like the addition of flexible
lids on the free surface inside the gaps have been studied in [34]. The value of the damping parameter
that define these lids should be provided by experimental data. In addition, these flexible lids may
affect the excitation, added mass and radiation damping coefficients computed by the software WAMIT,
so excitation and radiation experiments are also required to confirm these values. Gap resonances have
been investigated in other studies, mainly for cases of side-by-side vessels, highlighting the dominating
linear behaviour of the system for the scaled geometries tested, and establishing a method to scale
linear viscous damping for different gap widths [35]. These approaches should be further studied.

The experimental data used in this paper is of extraordinary high quality; even so, some more
experiments could aid a deeper understanding of the behaviour of the device and validation and/or
calibration of the model. Some suggested tests are radiation tests, decay tests with different starting
positions, or free motion in regular waves with increasing steepness values for different wave periods.
Measurements of the water surface elevation in the gaps and over the bottom plate are also crucial to
determining resonances caused by the interaction between bodies.

7. Conclusions

Experimental data is crucial for validation of numerical models. This paper presents the method
used to validate a model of the dynamic equation of motion of a pitching body based on the validation
of the individual moments using experimental tests. Buoyancy and gravity moments were validated
with slow-motion tests, showing a good match. Decay tests were used to validate radiation moment
at the natural frequency of the body and to quantify the friction in the bearings. Excitation moments
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were validated using tests where the WEC was fixed, which allows for validation of these moments at
static position. The input wave to the numerical model strongly influences the model outputs. It is
therefore important to take care choosing the input wave and the time interval of experimental data to
compare against in order to validate the model. The experiments were planned with the main purpose
of numerical model validation, resulting in a high-quality dataset. However, testing in a wave basin
has some limitations and the most significant one in this case was that long waves are difficult to test
in this facility. Waves reflected at the beach reach the device before the waves are fully developed,
so the system does not reach a steady state. During the time that it takes for the waves to be fully
developed, the data corresponding to long waves is more difficult to interpret and use for validation.
Unfortunately, it is in this range of frequencies where interesting dynamic interactions occur between
the pitching body and the fixed surrounding substructure.

Linear, quasi-linear and non-linear models were considered in this paper. The non-linear model
includes gravitational, buoyancy, Froude-Krylov, scattered and quadratic drag moments calculated
for the instantaneous body position. The wave kinematics were extended above the still water line in
the calculation of buoyancy and Froude-Krylov moments. The formulation of the scattered moment
was approximated by the steady state moment for the instantaneous angle. The quasi-linear version
calculates moments in a linear manner except quadratic drag loading. The maximum difference
(less than 12%) between the RAO (Response Amplitude Operator) of the non-linear model and
the quasi-linear model is at the resonant frequency when simulating theoretical regular waves.
The non-linear model presented requires the fluid velocity profile to be known across the body surface
at each time step. Since the experimental waves are not sinusoidal this calculation is time consuming.
Only the linear and quasi-linear models were therefore used for data comparison. Despite the
non-conventional geometry of Floating Power Plant’s WEC, comparison to measured data shows that
its behaviour is unexpectedly linear. Linear theory captures the trends of the WEC’s motion with
frequency but not amplitude.

The quasi-linear numerical model (linear model with an approximated quadratic drag) is
recommended as a good balance of accuracy and efficiency for the wave conditions tested.
The quasi-linear model overestimates the motion of the pitching WEC when there is a surrounding
fixed substructure and long waves are simulated (40% for the longest way tested and 22% for the
second longest one). Yet, the quasi-linear model provides a good match with experimental data in all
other cases. As has been explained before, the long waves provide a very short time window of quality
data, so these results may not be totally reliable for validation. The author expects this overestimation
to be slightly reduced (up to 12%) if the non-linear model is used, yet the computationally effort
would be 20 times larger. It is indicative that the quasi-linear model is working, but simulations and
comparison with experimental data for larger wave amplitudes have to be done in further studies
to prove it. Potential phenomena causing the mismatch between numerical and experimental data
could be the dynamically varying gap between the two bodies, which could imply the need to include
a dynamic formulation of scattered forces, resonance effects of the water surface between the two
bodies and/or uncertainty on physical parameters such as bearing friction. More research is required
to identify the causes of the multi-body interaction effects for long waves.
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