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Abstract: The accelerating marks of climate change on coral-reef ecosystems, combined with the
recognition that traditional management measures are not efficient enough to cope with climate
change tempo and human footprints, have raised a need for new approaches to reef restoration.
The most widely used approach is the “coral gardening” tenet; an active reef restoration tactic based
on principles, concepts, and theories used in silviculture. During the relatively short period since
its inception, the gardening approach has been tested globally in a wide range of reef sites, and on
about 100 coral species, utilizing hundreds of thousands of nursery-raised coral colonies. While
still lacking credibility for simulating restoration scenarios under forecasted climate change impacts,
and with a limited adaptation toolkit used in the gardening approach, it is still deficient. Therefore,
novel restoration avenues have recently been suggested and devised, and some have already been
tested, primarily in the laboratory. Here, I describe seven classes of such novel avenues and tools,
which include the improved gardening methodologies, ecological engineering approaches, assisted
migration/colonization, assisted genetics/evolution, assisted microbiome, coral epigenetics, and coral
chimerism. These are further classified into three operation levels, each dependent on the success
of the former level. Altogether, the seven approaches and the three operation levels represent a
unified active reef restoration toolbox, under the umbrella of the gardening tenet, focusing on the
enhancement of coral resilience and adaptation in a changing world.

Keywords: climate change; reef restoration; gardening; ecological engineering; assisted
migration/colonization; assisted genetics/evolution; assisted microbiome; epigenetics; chimerism

1. Introduction

Decades of continuous and substantial global climate change impacts, together with accumulated
anthropogenic footprints on coral reefs, have demonstrated that, excluding a few remote reef sites,
all major reefs suffer from accrued degradation, and a complete reshuffling of their biological diversity
as they transform into less diverse ecosystems [1–3]. The abundance of corals and reef dwelling
organisms has been impacted by escalating pressures and is continuously diminishing, while goods
and services are failing [3] and biodiversity diminishes at ever growing rates, which are currently
at 0.5–2% per year [4,5]. Climate change drives ocean warming and acidification, impacts overall
physiological traits, triggers large-scale coral bleaching events, fuels tropical storms [6], slows reef
calcification and growth, and impairs natural recruitment [7]. Moreover, devastating impacts are
rapidly increasing in scale and intensity, bringing coral reefs to heightened eroded states globally,
and affecting a decline in their ecological resilience capacities and adaptation to changing climate
conditions. Globally, coral reef communities will most likely be in a state of flux for years to come (as
many are already in), driven by different climate change drivers [8] with multiple stressors that act in
tandem [9] and increase the risk of phase shifts into algal dominated reefs. Only a few reef sites exhibit
some resistance to global climate change drivers [10].
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As in other marine and terrestrial ecosystems, the rates of impact of climate change on species
and populations are accelerating worldwide, calling for new forms of intervention. Furthermore,
with the recognition that traditional measures (such as the creation of MPAs, reducing specific
anthropogenic impacts, etc.) are not sufficient to cope with the combination of climate change/human
footprints [4,11–13] the gloomy status of global reef ecosystems ignited the need for novel approaches
that may accurately offset and mitigate the destructive impacts of global climate change, with alternative
effective reef management and reef rehabilitation approaches. The initial idea was that these new
approaches would be used to complement conservation efforts, allowing current reefs to provide
ecosystem services under a range of future environmental conditions.

Probably the most effective among the emerging ideas, and the most widely used method,
is the “gardening” approach for active reef restoration. This approach is based on ‘principles’,
concepts and theories used in silviculture [13–19]. Taking into consideration coral reefs’ inability
to naturally recuperate without human intervention, the “gardening” concept, a fully employed
active reef restoration, is a two-step process (the nursery phase dedicated to the development of large
stocks of coral colonies in mid-water floating nurseries, followed by the transplantation phase where
nursery-farmed coral colonies, which have reached suitable sizes, are out-planted onto degraded reef
areas). The active “gardening” concept has emerged as an effective method [20], replacing the former
less successful restoration approaches that focused on transplantation of coral colonies from a donor
site onto a damaged site [13,21].

The terms ‘active’ and ‘passive’ restoration originated from forestation practices, which reflect two
disparate broad categories [22]. ‘Active’ restoration is where human surrogate activities and practices
directly help ecosystems recuperate or improve their state, while ‘passive’ restoration is when no
human intervention is taken upon the reefs themselves, instead it focuses on reducing/eliminating
anthropogenic impacts, allowing natural recuperation to lead the way to recovery [22,23]. One of the
major benefits of active restoration is its critical role in reversing trajectories in ecosystems that are
caught in dilapidated states [20,24]. Following this underlying principle, all key successful approaches
for reef restoration (Table 1) use the ‘active restoration’ tactic, some of which harness natural processes
such as assisted migration, epigenetics and coral chimerism (Table 1).

Table 1. The seven major research avenues added to the gardening approach for the creation of a
climate adaptation toolkit (chosen references from the literature).

Avenue Types of Coral Adaptation Citations

Improved gardening
methods

Development of various nursery types, adapted for a wide range of
needs, improving coral self-attachment; using coral fragments without

polyps; clustering of transplants improves outcomes; choosing
favorable/improved substrates/coating, caging for recently settled

spat—to enhance early post-settlement survival; spat feeding in ex situ
nurseries for enhanced growth/survival; improved nursery

maintenance by using environmentally friendly antifouling; increasing
stocks of larvae from brooding coral species; improving seeding

approaches; techniques for improved survival of coral propagules.

[25–44]

Ecological
engineering

Use of herbivorous fish/invertebrates for improved nursery
maintenance; animal-assisted cleaning; engineering of larval supply

through transplantation of nursery-farmed gravid colonies;
transplantation of ecological engineering species; development of larval
hubs and ‘artificial spawning hotspots’; tiling the reef; nubbin fusions

for enlarged colonies; micro-fragmentation; serially positioning
nurseries to create new mid-water coral biological corridors through

stepping stone mechanisms; using dietary habits of grazers as biological
controls of fouling macroalgae; large scale restoration acts; enhanced

calcification/survival rates via seawater electrolysis.

[1,25–28,32,39,45–61]

Assisted
migration/colonization

Moving species outside their historic ranges may mitigate loss of
biodiversity in the face of global climate change. [62–64]
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Table 1. Cont.

Avenue Types of Coral Adaptation Citations

Assisted
genetics/evolution

Enhanced coral adaptation, manipulating of algal symbionts to increase
coral resistance to bleaching; using temperature tolerant genotypes;
applying interspecific and intraspecific hybridization; using coral

nurseries as genetic repositories.

[57,64–71]

Assisted microbiome

Adaptation by changing bacterial communities living in tissues, mucus
layers and substrates to settle at the shortest timeframe of days/weeks;

coral “microbial-therapy” and microbiome inoculation; improved
nutrient cycles; contributing to coral host tolerance of thermal stress.

[72–75]

Epigenetics
Creation of novel alleles and traits that can better withstand

environmental changes; developing resistance towards adverse
conditions.

[46,76–83]

Chimerism

Enhanced growth and survival of spat/small colonies; countering the
erosion of genetic and phenotypic diversity; high flexibility of chimeric

entities on somatic constituents following changes in environmental
conditions; the chimera synergistically presents the best-fitting

combination of genetic components to environmental challenges;
facilitating the healing of exposed coral skeletons

[84–91]

Since the short period that has elapsed since its inception, the employment of the gardening
approach in a wide range of reef sites worldwide, has by now earned its credentials for (a) farming
coral colonies from a large number of coral species (~ca 100) in mid-water nurseries, including massive,
branching and encrusting forms; (b) establishing unlimited stocks of coral colonies in underwater
nurseries; (c) the successful transplantation off nursery farmed coral colonies onto denuded reef
areas, and (d) ensuring the low cost of farming and transplanting coral colonies [1,17]. However,
this approach still lacks credibility in simulating restoration scenarios and trajectories that target
specific goals. As such, additional restoration approaches were suggested and some have already been
tested (Table 1), altogether creating a novel active reef restoration toolbox. Here, I’ll summarize some
of the major aspects and the hierarchy of these reef restoration avenues and approaches, which form
the first toolbox to be used for enhancing coral resilience and coral adaptation in a changing world.

2. Defining the Toolbox

While active reef restoration techniques and their underlying fundamental principles are still
under development, this discipline is challenged by the realization that reefs are already in transition,
driven by differential species responses to environmental change, and that corals in the ‘reef of
tomorrow’ should adapt to altering environmental conditions. The above infers that current basic
methods for reef restoration are still insufficient to secure a future for coral reefs. This has prompted a
surge in active restoration initiatives that can be divided into seven major research avenues added to
the gardening approach (Table 1); each avenue is formulated in such a way as to guide an effective reef
restoration tactic. Together they form a new reef restoration toolkit.

2.1. Improved Gardening Methodologies

As coral transplants show improved survival the larger they become, the early notion guiding
the gardening approach was to develop coral colonies to a size that will significantly reduce
mortality at transplantation sites. The midwater floating nurseries allow reduced competition
for resources (substrate, light), better protection against predation pressures, provide improved
conditions for reduced sedimentation and continuously increased water flow conditions for improved
nutrition [26–28]. The working rationale has favored the demand for low-cost, low-tech reef
restoration methodologies, with simple technical requirements that could be ubiquitously implemented
anywhere worldwide [13–16,21]. This however is not sufficiently satisfactory, and the basic techniques
that have been developed to maximize coral survival and productivity were supplemented by
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additional methodologies and technical approaches, all bundled under the title of ‘improved gardening
methodologies’ (Table 1).

The literature in Table 1 reveals examples from a wide ranging, and continuously increasing, list of
technological advancements, on almost every aspect of the coral gardening approach. This includes
the development of various nursery types, adapted for a wide range of needs (such as the regular
‘bed’ nursery, the rope nursery, depth-adjustable nursery, nursery housing stock of large colonies,
the larval dispersion hub nursery, and more (Figure 1) [1,26–28,45,46]; enhanced efficiencies for nursery
maintenance, sustainability and yields (such as improved maintenance, harnessing herbivory by fishes
and invertebrates as a parameter for positive maintenance feedbacks; spat feeding in ex situ nurseries
for enhanced growth/survival; improved nursery maintenance by using environmentally friendly
antifouling; caging for recently settled spat—to enhance early post-settlement survival; the use of coral
fragments that lack polyps; the increasing stocks of larvae from brooding coral species; techniques
for the improved survival of coral propagules), and more. The same goes for the transplantation
phase, that has been augmented with improved methodologies, such as the development of different
attachment procedures, improving coral self-attachment to substrates, clustering transplants for
improved growth/survival outcomes, choosing favorable/improved substrates and coating materials,
improved seeding approaches for enhanced settlement and early post-settlement survival, new seeding
methodologies, augmenting post-transplantation growth and survival of juveniles via nutritional
enhancement, maintaining/enhancing genotypic diversity, and more. While not yet tested for direct
resilience and adaptation, the accumulated results suggest that improved gardening protocols not
only enhance growth and survival at the nursery stage, but may have additional impacts on growth,
survival and reproduction for years post-transplantation (e.g., [39,46,47]).
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corals (usually mono-species cultures) are directly farmed on the nursery base. (a) a short period after 
inception, where most of the mesh-base of the nursery is still seen (Acropora formosa, Bolinao, the 

Figure 1. Three types of midwater floating nurseries, the first step of the “gardening” tenet. Nurseries
are adapted for various transplantation needs and practices. (a,b), the regular ‘bed’ nursery, where corals
(usually mono-species cultures) are directly farmed on the nursery base. (a) a short period after inception,
where most of the mesh-base of the nursery is still seen (Acropora formosa, Bolinao, the Philippines).
(b) a ‘bed’ nursery completely covered with Montipora digitata colonies (Bolinao, the Philippines). (c) a
classical floating nursery. The nursery substrate is made of a rope net (sized 10 × 10 m). Coral nubbins



J. Mar. Sci. Eng. 2019, 7, 201 5 of 18

are glued onto plastic pins (9 cm long, 0.3–0.6 cm wide leg, and 2 cm diameter “head”) and are inserted
into plastic nets stretched over PVC frames (30 × 50 cm). Frames with corals are tied to the nursery
substrate (Eilat, Israel). This type of nursery allows for a pre-planned transplantation protocol, where
each coral colony has its own ‘pot’ (the plastic pin) and the transplantation protocol considers the
attached pin, with limited stress to the growing coral. An established nursery attracts fish and reef
associated invertebrates recruited from the plankton. (d) Rope nursery (Bolinao, the Philippines).
This nursery accommodates small coral fragments inserted within the rope threads, creating an easily
constructed nursery bed that is transplanted together with the developing corals. Photos: a,b,d = G.
Levy, c = S. Shafir.

2.2. Ecological Engineering

Ecological engineering is defined as: “the design of sustainable ecosystems that integrate
human society with its natural environment for the benefit of both” [92]. It involves not only
the restoration of ecosystems that have been noticeably altered by either anthropogenic impacts
and/or global climate change drivers, but also reflects the emerging scientific discipline that is
associated with the development of sustainable new and/or hybrid ecosystems, which have human
and ecological significance, providing (when possible) equivalent levels of goods and services as the
original ecosystems.

As noted earlier [17] the active gardening approach can be regarded as a ubiquitous ecological
engineering platform for reef restoration measures performed on a global scale, having properties
that incorporate ecological engineering aspects and tools under a common scientific umbrella
(e.g., [39,46,47,84]), including the use of species (corals, fish, other invertebrates) that are allogenic and
autogenic ecosystem engineers. This is of specific importance since climate change drivers may hinder
the ecological engineering capacities of scleractinian corals as primary reef ecosystem engineers [93].
Clearly, this requires a comprehensive understanding of the engineering capabilities that may be
associated with reef restoration approaches, and of the ways ecological engineering species function as
reef ecosystem engineers.

Both scientific notions, ‘ecological engineering’ and ‘ecosystem restoration’, while representing
distinct disciplines [94], are widely used together in terrestrial environments to repair a number of
deterioration scenarios [92,94,95]. While ‘ecological engineering’ provides more predictable outcomes
with higher functionalities associated with the chosen ecosystem services, ‘ecological restoration’ tends
to produce higher diversity outcomes, which are aimed at long-term recovery of lost ecosystem services.
Principles of both disciplines are primarily intermingled in large scale restoration efforts [94]. Focusing
on coral reef ecosystems, ecological engineering tactics, together with restoration of degraded reef
habitats, are increasingly recognized as valuable tools, primarily in association with the gardening
approach [17,21,39,46,47,84]. It has been also suggested [47] that integrating functional considerations
into transplantation acts, such as in the use of allogenic and autogenic engineer species, could improve
the impacts of restoration on reef biodiversity.

The literature in Table 1 offers examples from the wide-ranging and increasing number of ecological
engineering approaches, covering various aspects of the coral gardening tenet. The prevailing belief
predicts that herbivory by fishes and invertebrates (primarily sea urchins and gastropods) is the
cornerstone of the developed complex ecological networks that suppress macroalgal cover, minimize
coral–algal competition, increasing coral growth and recruitment and dictating coral-dominated reefs’
health levels. As a result, much attention has been devoted to the use of herbivorous organisms for
improved nursery maintenance, for animal-assisted cleaning and for adapting dietary habits of grazers
as biological controls of fouling macroalgae in coral nurseries [25–27,61]. As a matter of fact, in the
Eilat (Red Sea) nursery, herbivores like the fish Siganus rivulatus and the sea urchin Diadema setosum
controlled algal growth by virtue of intensive grazing [25]. This becomes even more relevant with the
forecasted global climate change impacts on grazing kernels (e.g., [96]). In the same way, coralivorous
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species in the Eilat nursery [28] could be effectively eliminated by a top down control reliant on fish
predation (mainly Thalassoma rueppellii and T. lunare).

The recently developed ecological engineering approaches are also engaged in various reproductive
activities and planula larvae aspects. Examples are the engineering of larval supply through
transplantation of nursery-farmed gravid colonies [46], the establishment of coral nurseries as larval
dispersion hubs and as ‘artificial spawning hotspots’ [1,17,44,47,97], and the enhancement of larval
survival/growth under nursery conditions [32,33,58]. Several entire-reef ecological engineering aspects
involved are for example: the selection of coral species for reef restoration while considering their
autogenic/allogenic engineering properties [39], serially positioning nurseries to create novel mid-water
biological corridors for larval recruitment through stepping stone mechanisms [17], enhancing
calcification and survival rates through electrolysis in seawater [48–50], micro-fragmentation of coral
colonies for various purposes such as tiling the reefs, and the creation of large colonies within short
time periods [53,59,60] versus nubbins/spat fusions for enlarged colonies [53,84], and more. All the
above mentioned may enhance efficiency rates of the gardening restoration approach in combating the
impacts of global climate change [98].

2.3. Assisted Migration/Colonization

Climate change is causing spatial-temporal shifts in environmental conditions, challenging
species that are unable to relocate to suitable environments, thus increasing their risk of extinction.
Human directed (Table 1) and natural movements of coral species outside their historic ranges
(‘assisted migration/colonization’ and ‘natural range expansion’, respectively) into more favorable
sites, may mitigate the loss of biodiversity in the face of global climate change [62]. Indeed, natural
poleward range expansion of corals has been widely documented, from recent fossil records where
Acropora-dominated reefs extended along the Florida coast as far north as Palm Beach County [99]
and from Australian Pleistocene reefs [100], to the last 80 years of national records from Japanese
temperate areas, where key reef formation species revealed speeding poleward range expansions of up
to 14 km/year [101,102] and to coral species range extensions in the Eastern and Western Australian
coasts [103,104]. While these and other studies support the notion that gradual warming seems to
drive range extensions of tropical reef fauna into temperate areas, other studies [105] noted that the
dose of photosynthetically available radiation over winter can severely constrain such latitudinal coral
habitat expansions.

As for assisted migration/colonization, this conservation strategy has been considered not only
for the relocation of species, populations, genotypes, and/or phenotypes to sites beyond their historical
distribution, but also for species whose ranges have become highly fragmented [62]. While some
studies suggest that assisted colonization is viable due to the introduction of novel, and/or relaxed
selection, such operations may lead to an unintended evolutionary divergence [106], which is known
to generally yield a low success rate [107] and which is further less effective for species that rely
on photoperiodic and thermal cues for development [108]. All the above mentioned is associated
with reduced ecosystem services and diminished ecological complexity as characteristics of this
approach [17]. An additional criticism raised is that the employment of assisted colonization with rare
or endangered species (like the Caribbean Acropora species; also, the introduction of pathogens and
predators to new locations) poses a great risk for them as well as for the recipient locations [109].

Harnessing the natural phenomenon of coral colonies that raft on floating objects for thousands
of kilometers [110], and the natural range expansion of coral species, human intervention through
assisted colonization is considered a part of the toolkit of active reef restoration [1,17]. Claims have
been made [63,64] that Arabian/Persian Gulf corals, which are already surviving in thermal conditions
forecasted to prevail in the future in most tropical reefs, can be considered as a source for assisted
migration to the tropical Indo-Pacific. Inter-population hybridizations of gravid colonies adapted to
cooler versus warmer temperature areas (such as in the case of Acropora millepora from the Great Barrier
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Reef, Australia [111]) may also be a promising candidate for the assisted migration management
of offspring.

2.4. Assisted Genetics/Evolution

Assisted evolution/genetics has recently been defined as: “a conservation strategy that involves
manipulating the genes of organisms in order to enhance their resilience to climate change and
other human impacts” [112]. Assisted evolution/genetics has come to the forefront because climate
change has been shown to outpace natural rates of evolution. This may span a wide range of
aspects that target either the coral colonies and/or their algal symbionts, including: enhanced coral
adaptation; manipulation of algal symbionts to increase coral resistance to bleaching; use of temperature
tolerant genotypes to mitigate new environmental challenges; applying interspecific and intraspecific
hybridization efforts; using coral nurseries as genetic repositories; and more (Table 1). With regards to
the topic of this manuscript, gaining a better understanding of adaptation at the genetic level would
clearly benefit coral restoration projects [113,114]. Over the short and intermediate terms, corals may
adapt to changing environmental conditions by transforming holobiont (coral-algal) properties [65]
whereby algal symbiont communities are changed into types/species/clades that enhance the stress
tolerance of the host coral. In the long term, changes may occur within the genetic blueprint of the coral
colonies, through supportive breeding plans within populations, outcrossing between populations and
hybridization between closely related species.

Resulting from the exceptional genetic variability that naturally exists within the endosymbiotic
dinoflagellate algae of the family Symbiodiniaceae, much of the assisted evolution/genetics work has
been concentrated on manipulating algal species residing within tissues of coral colonies from the
same species. This is based on the rationale that seeding less resilient corals with temperature adapted
algal variants would provide a management/restoration tool to reduce bleaching and mortality of
corals subjected to temperature stress [67,69,71,113,115]. However, it must be emphasized that while
the literature attests that corals may naturally experience changes in symbiont communities following
bleaching episodes, directed manipulations of adult corals in favor of more thermos-tolerant symbionts
have only been achieved in the laboratory to date [116].

Following the observation that naturally resilient corals are scarce, genetic manipulation of coral
communities under stress conditions is suggested more and more. This includes moving more resilient
coral colonies to vulnerable areas within and outside of their species distribution areas, associated
with the assisted migration/colonization tenet [63,64,111,112]. Another approach is the adoption of
breeding programs within populations, outcrossing between populations and hybridizing closely
related species [70]. The current research, however, is still at the proof-of-concept stage. While natural
hybridization is known in some scleractinian corals, such as the genus Acropora, the applicability
of this approach, the fitness of offspring from such outcrossing/hybridization programs in the field,
as well as the establishment of successful F2 progenies and their reproductive activities, are all yet to
be investigated.

Another assisted genetics/evolution approach is based on the understanding and evidence [81]
that coral populations in current reefs embrace a reservoir of alleles preadapted to a wide range of
future challenges, such as higher temperatures. This outcome is still poorly documented in measurable
parameters and effects. However, the findings point to the potentiality for a rapid evolutionary response
to climate change, and the legitimate inclusion of this phenomenon as an efficient restoration tool.
This is also connected to the suggestion of using coral nurseries as repositories for genetic material that
would have otherwise been lost from reef sites, preserving genotypes for future restoration efforts [66].
All the above mentioned is in addition to the consideration of coral nurseries as applied tools to capture
and harvest coral larvae, to increase genetic diversity or to grow mature breeding corals for larval
production and the seeding of degraded reefs [1,17,32,33,44,47,58,97].
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2.5. Assisted Microbiome

The assisted microbiome tenet, aligned with the assisted genomics/evolution view, is led by
the coral probiotic hypothesis [72] for enhancing the adaptation potential of corals to changing
environmental conditions through changes in associated bacterial communities. Using this tenet as
adaption and restoration tools (Table 1), it has been suggested that microbiome manipulation may
alter the coral phenotypes, and subsequently the entire colonies’ fitness to withstand environmental
challenges [73–75,117].

While at present little is known about the mechanisms related to the “probiotic” protection
provided by the coral microbiome, and a key uncertainty exists about the feasibility of manipulating
microbes to enhance coral tolerance [73], microbial symbionts were suggested as contributors to the
physiology, development, health and immunity of corals, and as a tool to facilitate nutrient cycling and
nutrition in general [116,117]. Following this rationale, the manipulation of microbiome communities
has been suggested as a key strategy to ‘engineer’ coral phenotypes. However, the ecosystem
functioning of bacteria inoculation necessitates further work, as targeted actions are problematic to
design without the needed baseline studies [116].

2.6. Epigenetics

Organism responses to any environmental challenge develop through either genetic change
(e.g., allele frequency alternations between generations, mutational accumulation) and/or nongenetic
(i.e., epigenetics) processes. Epigenetics refers to external modifications in genes (e.g., methylation,
acetylation, histone modifications and small RNAs; without any modification in gene sequences)
that cause change in gene expression. The literature attests that many of the environmentally
induced epigenetic changes are, as a matter of fact, heritable [118], thus facilitating the acceleration of
adaptation processes.

It is generally assumed that epigenetics allows corals a greater ability to buffer the impacts of
environmental changes and of various stress conditions (Table 1), by fine-tuning gene expression,
thereby providing additional time for genetic adaptation to occur. A recent study [83] has revealed that
epigenetics significantly reduced spurious transcription in the Indo-Pacific coral Stylophora pistillata,
diminishing transcriptional noise by fine-tuning gene expressions and causing widespread changes in
pathways regulating cell cycle and body size, with impacts on cell and polyp sizes as well as skeletal
porosity. In a similar way, probable epigenetic signatures (a) imposed diminished bleaching responses
when comparing two of the most severe episodes (17 y period) of global-scale seawater temperature
anomalies [79], and (b) assisted transplanted gravid coral colonies to release an order of magnitude
more coral larvae than local colonies for at least 8 reproductive seasons post transplantation ([46];
unpubl.). Coral epigenetics as a management tool, alleviating impacts of global climate change on reef
corals, and as a potential tool for improving reef restoration outcomes, has further gained support
from studies showing links between coral adaptation and epigenetics [46,77–83].

Interestingly however, epigenetic changes may also be induced under ‘healthy’, more pampered
situations, such as under parental care and improved nutrition [119–121]. Various epigenetic impacts
have already been suggested to develop in coral colonies or coral fragments subject to different
environmental conditions [46,77,83,84], most interesting of all are the impacts on heightened long-term
coral reproductive capabilities [46]. Thus, favorable biological and physical conditions at the nursery
stage, including: optimal light conditions, increased water flow, minimized sedimentation, enhanced
planktonic supply, reduced intra- and interspecific competition, and controlled corallivory [15,26–28,
45,58,122], may impose lasting epigenetic changes on fitness and on ecological traits of transplanted
corals, enhancing their ability to counter global climate change impacts and other less-favorable
environmental conditions. It should be noted however that while meriting further experimental
investigation, the discipline of epigenetics and epigenetic impacts in corals is still in its infancy.
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2.7. Coral Chimerism

A new potential tool in reef restoration (Table 1) that stems from the phenomenon of coral
chimerism (Figure 2 [85]). The coral chimera is a biological entity that simultaneously consists of cells
originating from at least two sexually-born conspecifics, a natural tissue transplantation phenomenon
intermingling complex ecological and evolutionary mechanisms and concepts [123,124]. With regards
to reef restoration, coral chimerism is presented as one of the best applied tools for accelerating
adaptive responses to global climate change impacts [85], thus improving reef restoration tactics.
The adaptive qualities are based on the suggestion that coral chimerism counters the erosion of
genetic and phenotypic diversity, by presenting high flexibility on somatic constituents following
changes in environmental conditions. This enables all partners in a chimera to synergistically present
the best-fitting combination of genetic components to the environment [85,123,124]. In most cases,
chimerism in corals is restricted to specific short windows at early ontogenic stages [125,126] and
chimeric impacts are evident from early stages of development [86].
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The literature documents a wide range of ecological advantages and benefits incurred to coral
chimeras. Chimerism endows the chimeric entity, primarily at early life-history stages, with an instant
survival advantage, like enhanced growth rates by virtue of the abrupt increase in size when the two
organisms merge [84,86–88], and facilitation of the healing of exposed coral skeletons by enhanced
preferential gregarious settlement of coral planulae [89]. The development of asexual chimeric coral
planulae [90] together with the phenomenon of planulae fusion in the water column [88,91] may further
mitigate the loss of genetic diversity of small colonizing populations [85,90].

The phenomenon of coral chimerism (Figure 2) is probably one of the least explored potential
pathways corals take to buffer the impacts of capricious environmental conditions. Studying coral
chimerism is not a trivial task and much has to be investigated before a better understanding can be
achieved regarding this unique natural phenomenon and its inclusion in the coral restoration toolbox,
another added facet to the gardening approach for active reef restoration [1,17].

3. Discussion

Ecological restoration is broadly defined as: ‘the process of assisting the recovery of an ecosystem
that has been degraded, damaged, or destroyed’ [127], and is becoming the major ubiquitous strategy
for increasing ecosystem services, as well as for reversing biodiversity decline. As a relatively new
discipline it is fraught with hindrances, which is to be expected [128]. In contrast, the science of
restoration ecology (primarily the facets that deal with terrestrial ecosystems), has rapidly developed
over the past century, maturing into a cohesive body of theory that is backed by an established toolbox
of restoration practices. Notwithstanding the growing interest in ecological restoration, the added
challenges posed by climate change further reveal that the available adaptation toolkit associated with
ecological restoration is still meager [129]. This is also emphasized in the coral restoration arena, a field
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that has not yet developed to the level of scientific maturity comparable to that of terrestrial ecological
restoration [1,17].

On top of anthropogenic activities, climate change significantly challenges the concepts, practices
and outcomes of ecological restoration. It is now more than a decade since the realization that it
makes less sense to establish current restoration approaches on historical references, as they are all
under the influence of rapidly changing climate regimes. Although historical references are of interest,
they are less useful as ways to establish direct objectives [127]. Furthermore, the forecasted climate
change scenarios will pose further challenges, some of which are yet to be experienced. Additionally,
restoration efforts will have to address, in addition to restitution of biodiversity and ecosystem services,
the ecosystem’s resilience in the face of anticipated climate change scenarios [114,130].

This manuscript deals with the currently developing active reef restoration toolbox, used to
enhance coral resilience and adaptation in a changing world. Seven classes of avenues and
tools were described (Table 1) and discussed, including: the improved gardening methodologies,
ecological engineering approaches, assisted migration/colonization, assisted genetics/evolution,
assisted microbiome, coral epigenetics and coral chimerism. These tools are further classified into three
levels of operation (Figure 3), each is based on the success of the former level, altogether compiling the
most current active reef restoration toolbox. This toolbox is based on the rational and methodologies
developed for the ‘coral gardening’ concept [13–19,21,26–28].
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Figure 3. A theoretical illustration depicting how the seven classes of the suggested novel
avenues and tools (improved gardening methodologies, ecological engineering approaches,
assisted migration/colonization, assisted genetics/evolution, assisted microbiome, coral epigenetics,
coral chimerism), further classified into three operation levels, compiling a unified active reef restoration
toolbox, under the umbrella of the gardening tenet. Using the currently available restoration
methodologies (based on the gardening approach) reef statuses that are anticipated to decline (the
red trajectory towards the near future) are improving, or not ([the red trajectory towards the future]
depending on the level of stress imposed by anthropogenic activities and climate change drivers).
The next evolved level of progress in reef status is achieved by applying improved methodologies and
ecological engineering approaches. They may maintain an improved reef status, but not the desirable
advanced state. Yet, this level provides the ground for the operational level of ‘assisted’ approaches
and the apex operational level of epigenetics and chimerism approaches, altogether maximizing reef
statuses and enhancing coral resilience and adaptation in a changing world, developing to the ‘best to
be applied’ status with current research avenues, yet not approaching the primeval reef status.
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The basic and first level (Figure 3) includes two classes of tools, the improved gardening
methodologies and the ecological engineering approaches, which are aimed at further enhancing the
efficiency of the coral restoration approach, towards the development of sustainable ecosystems that
have human and ecological significance. The research in both classes of coral restoration tools, either on
the nursery or the transplantation phases, is highly active, performed in various reefs worldwide on a
wide range of coral species, and various new approaches and methodologies are frequently suggested
and tested. In addition to maximizing the survival and growth rates of corals in the nursery and after
transplantation, the new approaches (primarily the ecological engineering approaches) tackle major
issues in reef restoration. These include the phase-shifting of coral reef surfaces from turf algae back
to coral dominated layers [60], the creation, within very short time periods, of large coral colonies of
ecological importance [53,59,60], and the establishment of new biological corridors through stepping
stone mechanisms [17] just to name a few of the ramifying approaches.

The second level (Figure 3) includes the three ‘assisted’ approaches (assisted migration/colonization,
assisted genetics/evolution, and assisted microbiome). This level of operation represents restoration
strategies and approaches that shift in theory and in practice from former approaches reliant on reference
points and historically based goals, towards a common focus on “process-oriented configurations” [130].
The assisted approaches are still either at a conceptual level, or first laboratory trials, and are challenged
by the need to guide the transition towards ecosystem states that can maintain key functions and values
in a changing environment. For example, the assisted migration/colonization approach as developed
may result in a new ecosystem with reduced services and diminished ecological complexity [17].
The assisted genetics/evolution approach is still at the proof-of-concept stage [116], while the assisted
microbiome approach and the suggested activities therein, are still problematic to design as they lack
the needed baseline studies [116]. The ‘assisted’ approaches hinge on successful active restoration
methodologies, such as nursery grown colonies and transplantation tactics. It is most likely that
much of the ‘assisted’ approaches will be shaped and intermingled in the future with other ecological
engineering approaches to form a toolkit, aimed at achieving an improved ecologically-based restoration
strategy. Thus, it is envisaged that neither one of the assisted approaches will stand by itself as an
independent restoration strategy.

The third operational level (Figure 3) includes the two approaches of coral epigenetics and
coral chimerism. While the success in either approach depends on the rationale and methodologies
developed for the ‘coral gardening’ concept, and on the supplementary ecological engineering toolkit,
each approach is based on a well-established biological phenomenon with considerable ecological and
evolutionary perspectives. Employing the coral epigenetics tool may provide extra tolerance in case of
subsequent re-exposure of the organism (or its progeny) to similar or even harsher conditions. At this
stage, most studies on the subject were performed under laboratory conditions or on evaluations of
coral responses from the field [77–79,81–83] but there is also documentation for novel phenotypic
attributes developed following human manipulation under field conditions (increased growth rates
of corals, long term enhancement of reproduction output [46]). Employing the coral chimerism tool
may further provide cumulative levels of adaptation, as they are expressed by a naturally occurring
phenomenon [84–91,125,126].

Coral chimerism (Figures 2 and 3) has already been discussed as a potential evolutionary rescue
instrument, reliant on the premise that it may compensate for the immediate need for genetic change [85].
In a similar way, an epigenetic modification can facilitate evolutionary rescue through the creation
of novel phenotypic variants [131]. Thus, both instruments may provide coral populations with
the resilience to persist through periods of environmental change. Both instruments, alone or in
combination, have the potential to facilitate faster adaptation rates and improved adaptation, than those
exhibited in traditional genetic mutations, and thus merit special attention.

It should be noted, however, that risks involved in the application of some of the tools are not
yet well defined and that the potential of unknown costs versus perceived benefits assigned to the
tools should be evaluated [106–108,116]. These include costs for selective breeding that may lead to
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reduced genetic variability, and for increased sensitivity of coral populations to other climate change
drivers, the introduction of pathogens and predators via coral transplantation [109], and for the
flawed allocation of limited human, institutional and financial resources [17,116]. Another topic not
addressed here is the scale of future restoration measures at the changing world. While the coral
gardening-toolbox could serve as a ubiquitous ecological engineering platform for restoration on a
global scale, it is yet facing the most imperative challenge to document restoration manipulations at
regional/global levels [17], to determine that the gardening approach indeed supports sustainable
coral reefs at large scales. Indeed, results already noted that large-scale coral restoration may have a
positive influence on coral survivorship [132], recruitment rates and juvenile density [56]. These acts
may further be aided by novel tools, like remote sensing technology [133].

Cumulatively, climate change and anthropogenic impacts pose major challenges for the
development of effective tools, not only assessing levels of degradation in reef ecosystems under varying
states of alteration, but also for the development of rationales and methodologies to efficiently restore
degrading reefs. Based on principles, concepts and theories from silviculture, the “gardening” concept
of active reef restoration [13–19,21,26–28] has not only laid the foundation for reef restoration, but is
now developing through several seemingly separate approaches (improved gardening methodologies,
ecological engineering approaches, assisted migration/colonization, assisted genetics/evolution,
assisted microbiome, coral epigenetics and coral chimerism) that are divided here into three operational
levels, altogether representing the unified active reef restoration toolbox under the umbrella of the
gardening tenet to focus on the development of coral resilience and adaptation in a changing world.
This may lead to new policies that will be integrated with other efforts to scale up reef restoration
efforts into a global measure embedded within integrated governance structures.
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