
Journal of

Marine Science
and Engineering

Article

Parallel Implementation of a PETSc-Based
Framework for the General Curvilinear Coastal
Ocean Model

Manuel Valera 1,* , Mary P. Thomas 1,2 and Mariangel Garcia 1,3 and Jose E. Castillo 1

1 Computational Science Research Center, San Diego State University, San Diego, CA 92182-1245, USA;
mthomas@sdsc.edu (M.P.T.); mariangel.garcia@tecnico.ulisboa.pt (M.G.); jcastillo@sdsu.edu (J.E.C.)

2 San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093-0505, USA
3 Marine Environment and Technology Center (MARETEC), 1049-001 Lisbon, Portugal
* Correspondence: mvalera-w@sdsu.edu; Tel.: +1-619-724-3073

Received: 24 April 2019; Accepted: 10 June 2019; Published: 13 June 2019
����������
�������

Abstract: The General Curvilinear Coastal Ocean Model (GCCOM) is a 3D curvilinear, structured-mesh,
non-hydrostatic, large-eddy simulation model that is capable of running oceanic simulations.
GCCOM is an inherently computationally expensive model: it uses an elliptic solver for the dynamic
pressure; meter-scale simulations requiring memory footprints on the order of 1012 cells and terabytes
of output data. As a solution for parallel optimization, the Fortran-interfaced Portable–Extensible
Toolkit for Scientific Computation (PETSc) library was chosen as a framework to help reduce the
complexity of managing the 3D geometry, to improve parallel algorithm design, and to provide
a parallelized linear system solver and preconditioner. GCCOM discretizations are based on
an Arakawa-C staggered grid, and PETSc DMDA (Data Management for Distributed Arrays)
objects were used to provide communication and domain ownership management of the resultant
multi-dimensional arrays, while the fully curvilinear Laplacian system for pressure is solved by the
PETSc linear solver routines. In this paper, the framework design and architecture are described
in detail, and results are presented that demonstrate the multiscale capabilities of the model and
the parallel framework to 240 cores over domains of order 107 total cells per variable, and the
correctness and performance of the multiphysics aspects of the model for a baseline experiment
stratified seamount.

Keywords: high performance computing; HPC; PETSc; parallelization; scalability; parallel
performance; streams; curvilinear; non-hydrostatic; ocean modeling; GCCOM

1. Introduction

As computational modeling and its resources becomes ubiquitous, numerical solutions to
complex equations can be solved with increasing resolution and accuracy. At the same time, as more
variables and processes are taken into account, and spatial and temporal resolutions are increased
to model real field-scale events, models become more complex yet resource efficiency remains an
important requirement. Multiscale and multiphysics modeling encompasses these factors and relies
on High-Performance Computing (HPC) resources and services to solve problems effectively [1].
The models used for atmospheric and ocean studies are examples of such applications.

In atmospheric and ocean studies, one of the major challenges is the simulation of coastal ocean
dynamics due to the vast range of length and time scales required: tidal processes and oceanic currents
happen in fractions of days; wavelengths are scale lengths of kilometers; mixing and turbulence
events need to be resolved at the meter or submeter scale; and time resolution is in terms of years to
minutes or seconds. Consequently, field scale simulations need to cover both sides of the time/space

J. Mar. Sci. Eng. 2019, 7, 185; doi:10.3390/jmse7060185 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0001-8766-2450
http://dx.doi.org/10.3390/jmse7060185
http://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/7/6/185?type=check_update&version=2

J. Mar. Sci. Eng. 2019, 7, 185 2 of 26

spectrum while preserving accuracy, forcing the use of highly detailed grids of considerable size.
The General Curvilinear Coastal Ocean Model (GCCOM) is a 3D, curvilinear, large-eddy simulation
model designed specifically for high-resolution (meter scale) simulations of coastal regions, capable of
capturing nonhydrostatic flow dynamics [2].

Another major challenge is the need to solve for nonhydrostatic pressures. Ocean and climate
models are generally hydrostatic, limiting the physics they are able to capture, and large scale, so that
they are computationally efficient enough to make forecasts in reasonable run-times. Historically, these
models have opted to solve the more computationally efficient, but less accurate, hydrostatic version
of the Navier–Stokes equations because simulating nonhydrostatic processes using the Boussinesq
approximation is computationally intensive, as these models require solving an elliptic problem [3–5].
However, advances in HPC systems and algorithms have enabled the use of nonhydrostatic solvers
in ocean models including GCCOM [6], MITgcm [7], SUNTANS [8], FVCOM [9], SOMAR [10],
and KLOCAW [11].

A differentiating feature of these models is the method used to solve the nonhydrostatic pressure:
the pressure can be either solved in the physical grid after taking the divergence of the momentum
equation (Boussinesq), or reconstructed from the equation of state when density is chosen as the main
scalar argument. In GCCOM, the pressure is solved on a fully 3D (not 2D plus sigma coordinates)
computational grid (a normalized representation of the physical grid) that is created after applying
a unique, general 3D curvilinear transformation to the Laplacian problem [2]. All computations are
performed on the computational grid, which increases the accuracy of the results. The curvilinear
coordinates formulation enforces the computational grid to be unitary and orthogonal, thus simplifying
the boundary treatment and ensuring minimal energy loss by transforming any boundary geometry to
an unitary cube, which in practice reduces the application of boundaries to a plane (or edge) of this
cube. In contrast, the typical approach of approximating the grid cell to the problem geometry loses
energy in the boundary proportional to the grid resolution. A detailed comparison of the GCCOM
model with other non hydrostatic ocean models functionalities can be found in [12].

One other defining characteristic of some of these nonhydrostatic models is the HPC framework
used: many use the Message Passing Interfae (MPI) framework (in some cases enhanced by using
OpenMP, or accelerated using GPU resources), parallel file IO, and have large teams developing
advanced multiphysics modules. Typically, these models are often nested within large, global, weather
prediction models such as those used in disaster response situations, which is a long-term goal of
this project. GCCOM is a modern model: written in Fortran 95; modular; employing NetCDF to
manage the data. The first parallel version of an earlier GCCOM model (UCOAM) used a customized
MPI-based parallel framework that scaled to a few hundred cores [13]. The UCOAM model has also
been used for nesting inside the California ROMS global ocean model [14,15]. Having demonstrated
the multiscale and multiphysics capabilities of GCCOM [12], the next phase of development requires a
more advanced HPC framework in order to speed up development and testing and allow us to work
with more realistic domains and algorithms. These factors motivated the decision to migrate the model
to a more advanced HPC framework.

One additional factor in our project is the size of the team, and the level of effort needed to
produce and support this type of model. Often the larger model projects are optimized for specific
hardware that may not be portable. These models often require large development teams. One of the
goals of the GCCOM project is to deliver a portable model that can run in a heterogeneous computing
environment and proves useful to smaller research teams, but would someday scale to run inside of
larger models. As the GCCOM model evolved, the PETSc (Portable-Extensible Toolkit for Scientific
Computing) model was chosen to improve the scaling and efficiency of the model and to improve
access to advanced mathematical libraries and tools [16–18]. The results presented in the paper justify
the time and effort required to accomplish these objectives.

In this paper, the outcome of this approach is presented. The background of the model, motivation
for parallelization, the parallel approach, and the choices for the underlying software stack are

J. Mar. Sci. Eng. 2019, 7, 185 3 of 26

described in Sections 2.1, 2.2, and 2.4. The methodology and specifics of the test case used to validate the
parallel framework are described in Section 2.5 and the validated results showing that the parallelized
model produces correct results are presented in Section 3.1. The parallel performance is presented in
Section 3.2 with results showing that the prototype model scales with the PETSc framework and to
the maximum size of the HPC system used for these tests. Section 3.3 contains results demonstrating
the multiscale and multiphysics capabilities of the model. Conclusions and future work are discussed
in Section 4.

2. Materials and Methods

2.1. The General Curvilinear Coastal Ocean Model (GCCOM)

The General Curvilinear Coastal Ocean Model (GCCOM) is a coastal ocean model that solves
the three-dimensional Navier–Stokes equation with the Boussinesq approximation, a Large Eddy
Simulation (LES) formulation is implemented with a subgrid-scale model, capable of handling
strongly stratified environments [12]. GCCOM features include: an embedded fully 3D curvilinear
transformation, which makes it uniquely equipped to handle non-convex features in every direction
including along the vertical axis [2]; a full 3D curvilinear Laplacian operator that solve a 3D
nonhydrostatic pressure equation that accurately reproduces features resulting from the interaction
of currents and steep bathymetries; and ability to calculate solutions from the sub-meter to the
kilometer ranges in one simulation. With these key features, GCCOM has been used to simulate coastal
ocean processes with multiscale simulations ranging from oceanic currents and internal waves [15]
to turbulence mixing and bores formation, all in a single scenario [19], as well as the use of data
assimilation capabilities [20], including thermodynamics and turbulence mixing on high-resolution
grids, up to meter and sub-meter scales. Additionally, a key goal of the GCCOM model is to study
turbulent mixing and internal waves in the coastal region, as a way to bridge the work of regional
models (e.g., ROMS [21] or POP [22]), and global models (e.g., MPAS [23], HYCOM [24]), all the way
to the sea–land interface.

GCCOM was recently validated for stratified oceanographic processes in [12] and has been
coupled with ROMS [15] using nested grids to obtain greater resolution in a region of interest,
using approaches that are similar to the work of other coupled ocean model systems. In [25], an overset
grid method is used to couple a hydrostatic, large scale, coastal ocean flow model (FVCOM or
unstructured grid finite volume coastal ocean model) with a non-hydrostatic model tailored for
high-fidelity, unsteady, small scale flows (SIFOM or solver for incompressible flow on overset meshes).
This method presents a way to offset the computational cost of a single, comprehensive model capable
of dealing with multiple types of physics. GCCOM is similar to SIFOM in the curvilinear transformation
and multiphysics capabilities, but they differ in the basic grid layout (staggered vs. non-staggered
grids) and in the numerical methods each one applies to solve the Navier–Stokes equations. In addition,
GCCOM has been taking strides in its development so it does not need to couple with a large-scale
model to capture multiscale processes. Instead, GCCOM includes the entire domain in the curvilinear,
nonhydrostatic, multiphysics capable region, where we handle thermodynamics, hydrostatic and
nonhydrostatic pressure and equation of state density distributions at the same time. In this sense,
GCCOM is a model capable of supporting both multiphysics and multiscale calculations at high
computational costs. Recently, the PETSc-based GCCOM model has been coupled with SWASH [26] to
simulate surface waves and overcome the limitations of the rigid lid [27]. SWASH is a numerical tool
used to simulate free-surface, rotational flow and transport phenomena in coastal waters, we used the
hydrostatic component to capture and validate surface wave heights in a seamount testcase.

GCCOM development began with [28] introducing the 3D curvilinear coordinates transformation,
along with practical applications including the Alarcon Seamount and Lake Valencia waters [29,30].
Later, the model was revised by [2] to add thermodynamic processes, the UNESCO Equation of
State, and use of a simple Successive Over–Relaxation (SOR) algorithm to solve the non-hydrostatic

J. Mar. Sci. Eng. 2019, 7, 185 4 of 26

pressure [31] on an Arakawa-C grid [32], and an upgrade of the model to Fortran 95. In order to
accelerate convergence, the authors in [33] implemented an elliptic equation solver for pressure that
used the Aggregation-based Algebraic Multigrid Library (AGMG) [34]. Additionally, an MPI-based
model with the SOR solver was also developed around the same time by [35]. All of these development
efforts demonstrated improvements in model accuracy and speedup, but there were still limitations
running GCCOM because of the amount of time spent in the pressure solver.

After studying options available for parallelizing the pressure solver, the Portable Extensible
Toolkit for Scientific Computing, PETSc [16–18] was chosen because of its ability to handle the
complexities of the Arakawa-C staggered grid, its large collection of iterative Krylov subspace methods,
and its ability to interface with other similar libraries. An additional benefit is that PETSc has been
selected be part of the DOE Exascale computing project [36], which will allow our model to scale to
very large coastal regions at high resolutions, and model developers can expect that the PETSc libraries
will have long-term support.

A prototype PETSc hybrid model was developed by [37], in which the pressure solver was
parallelized and inserted into the existing model. As expected, the implementation had performance
limitations: the rest of the model was solved in serial and was not PETSc based, which has documented
performance issues; and the Laplacian system vectors needed to be scattered at each iteration, solved,
and then gathered back to the main processor where the rest of routines were runing. The approach,
although not optimal, presented promising results: the computational time of the floating point
operations performed inside the pressure solver routine scaled by the number of processors on a
single node. Total run-time was dominated by the time required to transfer data between processors
before and after the floating operations. A scatter and gather call at each iteration drove up the
communication time, and the decrease in computation time inside the pressure solver routine did not
offset it. To address these issues, a full parallelization strategy was developed by [38] through the use
of PETSc DM/DMDA (Data Management for Distributed Arrays) objects [18]. DM/DMDA objects are
domain decomposition tools that distribute arbitrary 3D meshes among processors. By using proper
domain decomposition, and linear system parallel solving, full PETSc-based parallelization of the
model has been completed (see Section 2.4).

2.2. The PETSc Libraries

PETSc is a modular set of libraries, data structures, and routines developed and maintained by
Argonne National Laboratory and a thriving community around the world. Designed to solve scientific
applications that are modeled by partial differential equations, PETSc has been shown to be particularly
useful for computational fluid dynamics (CFD) problems. PETSc libraries support a variety of different
numerical formulations, including finite element methods [39], finite volume [40] or finite difference
as is the case for the GCCOM model. The wide array of fundamental tools for scientific computing, as
linear and nonlinear, solvers and the parallel domain distribution and input/output protocols native
to it, make it one of the strongest choices to port a proven code into a parallel framework. PETSc makes
also possible to use GPUs, threads and MPI parallelism in a same model for different effects, further
optimizing code performance. As of today, PETSc is supported by most of the XSEDE machines many
large-scale NSF and DOE HPC systems in the US and it has become a fundamental tool in the scientific
computing community.

The PETSc framework is designed to be used by large scale scientific applications. In fact, it is
one of the software components that is on the list of the Department of Energy’s Exascale Computing
Roadmap [36]. Part of the exascale initiative is to develop “composable” software tools, where
different PDE-based models can be directly coupled. PETSc will be developing libraries that will
couple multiphysics models at scale. When properly implemented, PETSc applications will be capable
of running multilevel, multidomain, multirate, and multiphysics algorithms for very large domains
(billions of cells) [41,42]. Our expectation is that, by using PETSc for the parallel data distribution
model and MPI communications, the parGCCOM model will be capable of scaling to very large

J. Mar. Sci. Eng. 2019, 7, 185 5 of 26

numbers of cores and problem sizes and to support a wide variety of physics models via the PETSc
libraries. In addition, PETSc supports OpenMP and GPU acceleration, which will be useful for
application optimization.

In this paper, the strategies used to parallelize the GCCOM model using the PETSc libraries are
presented, with the result that the model attains a reasonable speed up and scale in MPI systems up to
240 processors so far (the max number of processors on the system where these tests were run), while
demonstrating preservation of the solution by testing with baseline experiments such as stratified
seamount as seen in Section 3.1. In this manner, we want to emphasize the effort saved by using an
established HPC toolkit, while still preserving the unique features of our model.

2.3. PETSc Development in GCCOM

A prototype PETSc-GCCOM hybrid model was developed by [37], in which the pressure
solver was parallelized and inserted into the existing model. As expected, the implementation had
performance limitations, since the rest of the model was solved in serial, and the Laplacian system
vectors needed to be scattered at each iteration, solved, and then gathered back to the main processor
where the rest of routines were running. The approach, although not optimal, presented promising
results: the computational time of the floating point operations scaled by the number of processors
inside the pressure solver routine. The total run-time was dominated by the time required to transfer
data between processors before and after the floating operations. A scatter and gather call at each
iteration drove up the communication time, and any decreases in the computation time inside the
pressure solver routine did not offset the gather-scatter increases.

To address these issues, a full parallelization strategy was developed by [38] that utilizes the
PETSc DM/DMDA (Data Management for Distributed Arrays) objects [18,43]. Data Management (DM)
objects are used to manage communication between the algebraic structures in PETSc (Vec and Mat)
and mesh data structures in PDE-based (or other) simulations. PETSc uses DMs to provide a simple
way to employ parallelism via domain decomposition using objects known as Data Management for
Distributed Arrays (DMDA objects [43]. DMDAs control parallel data layout and communication
information including: the portion of data belonging to each processor (local domain); the location
of neighboring processors and their own domains; and management of the parallel communication
between domains [16].

In the GCCOM model, DMDA objects are used for all domain data decomposition and linear
system parallel solving. This approach towards parallelization of the model is described below
(in Section 2.4).

2.4. Model Parallelization

In this section, we describe the key aspects of the model that impact the parallelization of the
model. This includes the use of the DMDA objects to manage data decomposition and message passing,
the location of the scalars and velocities on the Arakawa-C grid, the hydrostatic pressure-gradient
force (HPGF) and its impact on the data decomposition, the pressure calculations which dominate
the computations.

GCCOM uses finite difference approximations to solve differential equations on curvilinear grids
and are operated on via stencils. These grids need to be distributed across processors, updated
independently, and require special cases to handle the data communication where the local domain
ends. This set of operations are referred to as domain decomposition. Throughout the GCCOM code,
specific DMDAs are created to manage the layout of multidimensional arrays for the velocities (u,v,w)
and the temperature, salinity, pressure, and density (T,S,P,ρ) scalars. Each of the velocity components
and the scalars are located at positions in the staggered grid that require special treatment in order to
be distributed and updated correctly, and is described in more detail in Section 2.4.1.

Another key PETSc component that is utilized in the GCCOM model is the linear system solver.
PETSc provides a way to apply iterative solvers for linear systems using MPI. At the same time, the most

J. Mar. Sci. Eng. 2019, 7, 185 6 of 26

computationally intensive part of the GCCOM model involves solving a fully elliptic pressure-Poisson
system. This approach is unique among most CFD models because it embeds the fully 3D curvilinear
transformation in the solver. Details of this Laplacian are discussed in Section 2.4.4. The strength
of using the PETSc libraries to solve linear systems lies in the ability to experiment with dozens of
different iterative solvers and preconditioners. Another advantage of using PETSc is being able to
use PETSc with well known external packages such as Trilinos, HYPRE and OpenCL [44–46] with
minimal changes.

These key PETSc elements, domain decomposition and linear system solvers, provide the
foundations needed to develop the core parallel framework of the GCCOM model, and help to
keep development effort to a minimum. This proved to be very helpful for the small development
team involved in this effort.

2.4.1. The Arakawa-C Grid

GCCOM defines the locations of its vectors and scalars on an Arakawa-C grid, where the
components of flow are staggered in space [32]. In the C-grid, the u-velocity component of velocity
is located at the west and east edges of the cell, v-velocity is located at the north and south edges,
and pressure and other scalars are evaluated at cell centers (see Figure 1). Similarly, the w component
will be in the front face of the 3D cube, going inwards. This staggered grid arrangement becomes the
first challenge of the parallel overhaul because, for the DMDA objects, every component is regarded as
co-located and are referenced by their lower-left grid point.

Figure 1. Diagram of the Arakawa C-grid, in which the velocity components u, v, and w are staggered
by half a grid spacing. Scalars such as salinity S or temperature are located in the center.

The grid staggering results in different array layouts which depend on each variable position
(u, v, w, p), which in turn creates different sizes for each layout. For example, there is one more
u-velocity point in the horizontal direction than the v-velocity. Similarly, there is an extra v-velocity
in the vertical direction compared to the u-velocity. Even though the computational ranges differ for
each variable in the serial model, the arrays used by the parallel model were padded so that they
would be the same dimensions. Note that this method is also used in the Regional Ocean Modeling
System (ROMS) [47]. Table 1 describes the computational ranges and global sizes of each variable.
The variables gx, gy, gz correspond to the full grid size in x,y,z and the fact the interior range is not the
full array size counts for the number of ghost rows in each direction (e.g., gx− 2 has two ghost rows in
that direction).

J. Mar. Sci. Eng. 2019, 7, 185 7 of 26

Table 1. Sizes and computational ranges of variable layouts on domain Ω = [gx × gy× gz] where
gx, gy, gz are the total grid dimensions in each direction.

Variable Size Interior Range

Velocity u (gx)× (gy− 1)× (gz− 1) 0 : gx− 1, 0 : gy− 2, 0 : gz− 2
Velocity v (gx− 1)× (gy)× (gz− 1) 0 : gx− 2, 0 : gy− 1, 0 : gz− 2
Velocity w (gx− 1)× (gy− 1)× (gz) 0 : gx− 2, 0 : gy− 2, 0 : gz− 1
Pressure (gx− 1)× (gy− 1)× (gz− 1) 0 : gx− 2, 0 : gy− 2, 0 : gz− 2

Temperature (gx− 1)× (gy− 1)× (gz− 1) 0 : gx− 2, 0 : gy− 2, 0 : gz− 2
Density (gx− 1)× (gy− 1)× (gz− 1) 0 : gx− 2, 0 : gy− 2, 0 : gz− 2

One of the main features of the GCCOM model is the embedded fully 3D curvilinear
transformation, capable of handling any kind of structured grid (i.e., rectangular, sigma, curvilinear)
to be solved in the computational domain by these transformation metrics (a partial discussion
of the transformation metrics is discussed in Section 2.4.4). The downside of this approach is
a significant increase in memory allocation, since full sized arrays need to be stored for each of
the transformation metrics. In GCCOM, the metrics arrays are associated with the location of the
aforementioned variable layouts. This provides an opportunity to minimize overhead: the model
arrays are grouped by variable layouts and similar functions inside the code. Similarly, other GCCOM
modules such as Sub–Grid Scale (SGS) calculations and stratification (thermodynamics) handling,
follow the same parallelization treatment. Table 2 shows the total number of DM objects (layouts) used
by GCCOM and the associated variables.

Table 2. GCCOM Data Managment Objects (DMs) and variable layout used.

Name Number of DMs Variable Layout

daGrid 3 p
daSingle 1 p

daConstants 6 p
daSgs 1 p

daLaplacian 3 p
daMetrics 3 u,v,w
daCenters 3 p

daPressureCoeffs 10 p
daDivSgs 3 u,v,w

daDummy 1 p
daVelocities 3 u,v,w

daScalars 1 p
daDensity 1 p

Each of these DMs control the domain distribution independently, and each spawn the full sized
arrays that become the grid where the finite difference calculations are carried out. In total, more than
100 hundred full sized arrays are used inside the model on different occasions, but around 60 of them
remain in active memory because they are part of the core calculations, and all of them are distributed
thanks to the use of these structures.

2.4.2. Domain Decomposition

Domain decomposition refers to dividing a large domain into smaller subdomains so that it can
be solved independently on each processor. However, Grid operations with carried dependencies
from one grid point to the next (self recurrence) are difficult to parallelize on distributed grids, thus
truncating parallel implementation in this direction. In GCCOM, there are two such reasons that
prevent domain decomposition in arbitrary directions: grid size and the calculation of the hydrostatic
pressure-gradient force (HPGF) algorithm. For some of the experiments in GCCOM, the number of

J. Mar. Sci. Eng. 2019, 7, 185 8 of 26

points in the y-direction is the minimum 6, used to simulate 2D processes, which in turn makes it too
small to partition. The case of the parallelization of the HPGF is discussed next.

2.4.3. Hydrostatic Pressure-Gradient Force

The hydrostatic pressure-gradient force (Equation (1)) is calculated as a spline reconstruction
and integral along the vertical (z-direction), which is updated at every time step as a fundamental
step in the main GCCOM algorithm [12]. The requirement for vertical integration enforces a recursive
computation inside the loop, i.e., subsequent values depend on previously calculated vertical levels,
as can be seen in Equation (5) in which h is dependent of the whole column above itself. This set of
Equations (1)–(5) describe a spline reconstruction of the hydrostatic pressure pH over the z-column
using a fourth-order approximation for fk(ξ) = ∂ρ(ξ)/∂x, by a series of coefficients (∆k, dk) defined by
the local change in vertical coordinate h = zk+1 − zk:

∂pH
∂x

=
∂

∂x

∫ 0

z
gρdz̃, (1)

f (ξ) = f (0) + f (1)ξ + f (2)
ξ2

2
+ f (3)

ξ3

6
, (2)

f (0) = fk, f (1) = dk, (3)

f (2) =
6∆k − 2dk − 4dk

h
, f (3) =

6dk + 2dk+1 − 12∆k
h2 , (4)

h = zk+1 − zk, ∆k =
fk+1 − fk

h
, dk =

2∆k∆k−1
∆k + ∆k−1

. (5)

As seen, the self-recurrence lies inside the algorithm and thus cannot be automatically detected
by PETSc, resulting in a crash. The solution applied is not to partition data in the z-direction, which
is easily done in PETSc by the command line -da_processors_z 1, another strength of the library.
The result is that each processor stores and calculates the pressure-gradients on their respective
sub-domain, effectively a vertical column. While this strategy enables the use of the HPGF, it also
limits the parallelism available to solve the equations, a limitation that we will need to overcome in
future developments of the model.

2.4.4. Laplacian Transformation

GCCOM solves the full nonhydrostatic 3D Navier–Stokes equations as follows:

∂~u
∂t

+ ~u · ∇~u = − 1
ρ0
∇p− gρ

ρ0
~k−∇ ·~~τ, (6)

∂T
∂t

+ ~u · ∇T = ∇ · (kT∇T), (7)

∂S
∂t

+ ~u · ∇S = ∇ · (kS∇S), (8)

∇ · ~u = 0, (9)

ρ = ρ(T, S, p). (10)

Here, ~u = (u, v, w) are velocities, gρ
ρ0
~k is gravity acceleration, ~~τ our stress tensor solved by Large

Eddie Simulation, ρ is a equation of state and kT,S diffusivity constants for temperature and salinity.
The Boussinesq approximation [48] is applied to Equation (6) by taking the divergence and

substituting ∇~u as in Equation (9). This step cancels every term other than the pressure p from

J. Mar. Sci. Eng. 2019, 7, 185 9 of 26

Equation (6), leaving a homogeneous Laplacian problem to solve as in Equation (11), which by itself is
computationally expensive to solve, as we will discuss in the rest of this section:

∇2 p =
∂2 p
∂x

+
∂2 p
∂y

+
∂2 p
∂z

= 0, (11)

∇2 p = L(p)− L(x)

[
ξx

∂p
∂ξ

+ ηx
∂p
∂η

+ ζx
∂p
∂ζ

]

− L(y)

[
ξy

∂p
∂ξ

+ ηy
∂p
∂η

+ ζy
∂p
∂ζ

]
(12)

− L(z)

[
ξz

∂p
∂ξ

+ ηz
∂p
∂η

+ ζz
∂p
∂ζ

]
.

The GCCOM Laplacian in curvilinear coordinates is formulated in [29]; note that we are following
notation from [31], the operator L() is defined in Equation (13), where a, b, c, d, e, q are coefficients
related to the curvilinear transformation [12] that are defined in terms of the Jacobian J and generalized
in two sets of coordinates by their even commutation: {x, y, z} as {1, 2, 3}, and {ξ, η, ζ} as {A, B, C},
a general rule for the derivatives can be defined as in Equation (14), where we have adopted a compact
differential representation, i.e., A1 = ∂ξ

∂x ,

L() = a
∂2()

∂ξ2 + b
∂2()

∂η2 + c
∂2()

∂ζ2 + 2

[
d

∂2()

∂ξ∂η
+ e

∂2()

∂ζ∂η
+ q

∂2()

∂ξ∂ζ

]
, (13)

A1 =
∂ξ

∂x
= J(2B3C − 2C3B). (14)

By applying these elements to the transformed Laplacian operator and discretizing using
2nd-order finite difference, Equation (15) becomes the discretized transformed Laplacian operator in
general curvilinear coordinates [33],

∇2 p = − 1
2(∆2

ξ ∆2
η∆2

ζ)

{
4α(i, j, k)p(i, j, k)

+[β1(i, j, k) + β2(i, j, k)]p(i + 1, j, k)

+[β1(i, j, k)− β2(i, j, k)]p(i− 1, j, k)

+[λ1(i, j, k) + λ2(i, j, k)]p(i, j + 1, k)

+[λ1(i, j, k)− λ2(i, j, k)]p(i, j− 1, k)

+[τ1(i, j, k) + τ2(i, j, k)]p(i, j, k + 1)

+[τ1(i, j, k)− τ2(i, j, k)]p(i, j, k− 1)

−τxy(i, j, k)(p(i + 1, j + 1, k) + p(i− 1, j− 1, k))

+τxy(i, j, k)(p(i + 1, j− 1, k) + p(i− 1, j + 1, k))

−τyz(i, j, k)(p(i, j− 1, k− 1) + p(i, j + 1, k + 1))

+τyz(i, j, k)(p(i, j− 1, k + 1) + p(i, j + 1, k− 1))

−τxz(i, j, k)(p(i− 1, j, k− 1) + p(i + 1, j, k + 1))

+τxz(i, j, k)(p(i− 1, j, k + 1) + p(i + 1, j, k− 1))
}

,

(15)

J. Mar. Sci. Eng. 2019, 7, 185 10 of 26

where α, β1, β2, λ1, λ2, τ1, τ2, τxy, τyz, τxz are transformation coefficients found after algebraic
manipulation.

Now, the pressure can be solved entirely as a system of linear equations in the form Ax = b,
where A is the system matrix constructed by the position coefficients, b is the known pressure on each
point (Right Hand Side, or RHS), and x is the solution vector for pressure.

A peculiarity of this system is the inherent lexicographical ordering: the points of the 19-point
stencil follow a specific positioning pattern in the program memory, as seen in Figure 2: on each
xy-plane, points are sorted in the y-direction before the x-direction, then the points are sorted by planes
on the bottom z-axis first; this is the same as a front-to-back, bottom-up, ordering in the 3D stencil.
This bookkeeping is crucial to obtain the right dynamics out of the Laplacian.

Figure 2. Lexicograpical ordering of the 19-point stencil. Here, element 10 is the current point of
the stencil [38].

It is important to note that the coefficient matrix, A is large
(
[gx, gy, gz]× [gx, gy, gz]

)
, sparse,

and in general not singular, and non-symmetric [33]. This automatically eliminates methods that
directly invert the matrix to solve x = A−1b for large problem sizes. In GCCOM, this equation is
solved with the Generalized Conjugate Residual (GCR) method preconditioned with block Jacobi.
At this point, we are able to take advantage of the PETSc linear solver system which includes
a long list of solvers and preconditioners that can be accessed via command line arguments:
-ksp_type [solver] -pc_type [precond].

2.4.5. External Boundary Data

External boundary conditions are generated outside of GCCOM and stored separately in ASCII
files. They contain velocity data at the boundaries for planes in the x-direction (west and east) and
z-direction (north and south). Processors located on these boundaries read boundary condition data
into local memory. As we work with higher resolution meshes, this external file reading becomes
an obstacle to overcome and adds to the I/O overhead. Part of the required future work includes
updating these routines to read parallel NetCDF files.

2.5. Test Case Experiments

In this section, we describe the experiments used to validate the parallel framework of GCCOM.
The Seamount experiment was chosen for being the most comprehensive for the model, using most—if
not all—of the model capabilities at once.

J. Mar. Sci. Eng. 2019, 7, 185 11 of 26

2.5.1. Test System

Timings for test cases were primarily conducted on the Coastal Ocean Dynamics (COD) cluster at
the Computational Science Research Center at San Diego State University, a Linux based cluster with
the following features:

• 352 Intel Xeon Processor E5-2640 v4 (2.40 GHz) across 19 nodes,
• 7 nodes comprised of 16 processors each with 65 GB RAM per node,
• 12 nodes of 20 processors and 263 GB RAM per node,
• 40 GB/s Infiniband network interconnect,
• High Performance GPFS file system.

GCCOM is a memory intensive model: there are over 100 matrices that must be held in memory.
For the “small” test case run in these experiments, 6× 107 cells per array, the model requires on the
order of 2× 102 GB of storage plus the run-time overhead. Consequently, the test cases used for
this research were run on the large-memory nodes of the Coastal Ocean Dynamics (COD) system.
The COD system hosts 12 large memory nodes with 263 GB per node and 20 cores per node, for a total
of 240 available cores. The total memory is 20× 263 GB ≈ 104 GB.

The rest of the machine nodes were not able to run a problem of this size because of the memory
requirements of the model. As mentioned before, the scope of the research reported in this paper was
to validate the PETSC-based implementation of the model physics, and to defer optimizations to later
research. Of future interest will be to profile the memory consumed by the framework. Most of the
timing data was recorded using the built-in PETSc timers, which have been shown to be to be fairly
accurate and to have little or no overhead [16].

In addition, the model has been ported to the XSEDE Comet machine at the San Diego
Supercomputer Center, in preparation for running larger jobs and as a test to check the portability of
the model [49]. Comet currently has 1944 nodes with 320 GB/node, four large memory nodes with
1.5 TB of DRAM and four Haswell processors with 16 cores per node. Future plans include exploring
how the model performs on this type of system.

2.5.2. Stratified Seamount

Seamount experiments are regarded as a straightforward way to showcase an oceanographic
models’ capabilities and behavior. We carried out our timing and validation tests on a classical
seamount, using continuous stratification with temperature ranging between (10 ◦C to 12 ◦C from the
bottom to the top in the water column) and equivalent density for seawater, while maintaining the
salinity constant at 35. The bathymetry for this experiment is defined by Equation (16),

D(x, y) = L(−1 + a ∗ e−b(x2+y2)), (16)

where L = 1000 m is the maximum depth and characteristic length, and the parameters a = 0.5 and
b = 8 control the seamount shape. The experimental domain is (x, y, z) = 3.6 km× 2.8 km× 1 km.
The experiment is forced externally with a linearly increasing u−velocity on the vertical column from
0 at the bottom to 0.01 m/s at the top, coming from the east direction.

The grid was created with cell clustering at the bottom, along half the domain in each horizontal
direction as seen in Figure 3; this created a 3D curvilinear grid with the point distribution seen in
Equation (18), where Li is the dimension length, D is the horizontal clustering position (D = Li/0.5)
and β varies between {1,5} uniformly along the vertical, β = 5 at the bottom where the cell clustering
is most and β = 1 at the surface where there is no clustering. This grid is based in the work of [2],
expanding it to be able to use continuous stratification and simplifying the curvilinear implementation:

J. Mar. Sci. Eng. 2019, 7, 185 12 of 26

xi = D{1 + sinh[β(ξi − A)]

sinhβA
}, (17)

A =
1

2β
ln[

1 + (eβ − 1)(D/Li)

1 + (e−β − 1)(D/Li)
]. (18)

Three grids were generated where each would have enough resolution to be able to show strong
scaling on the test cluster (see Section 3.2). The grid sizes are (x, y, z) = 1500× 100× 50 for the smallest
one, with 7.5 million cell points per variable (our lowest resolution problem), a second grid with sizes
(x, y, z) = 2000× 100× 100 having 20 million points per variable, and a high resolution problem of size
(x, y, z) = 3000× 200× 100 yielding around 60 million cell points per variable. The simulation was
run for five main loop iterations which in turn is 5 s of simulation, creating and writing a NetCDF file
as output. This I/O operation happens twice and is removed from the parallel timing and performance
analysis since it is not yet parallelized.

Figure 3. Seamount grid of size x = 3000, y = 200, z = 100. Point agglomeration can be seen along each
half horizontal direction with parameter β = 5, gradually decreasing onto the top to be uniform (β = 1).

3. Results and Discussion

3.1. Model Validation

This section shows how the parallelized model produces correct results for our stratified seamount
experiment. Correct in this context means replicating the same results obtained by the serial version of
the model which was recently validated for non-hydrostatic oceanographic applications [12]. We also
discuss the strategy applied to compare the models output and how much the results differ when
adding more processors. Comparison is presented against the serial and parallel outputs for a
single processor, to give a rounded picture on how communication errors are propagated in the
parallel framework.

3.1.1. Validation Procedure

The Stratified seamount experiment is run for five computational iterations, or cycles of solving
Equations (6)–(10) inside the main computational loop. The goal of this exercise is to define the
consistency of the whole computational suite in the parallel framework, compared to the same set of
equations being solved in serial. Each iteration represents a second of simulation time for a total of
5[s]. This validation process is carried out in the high resolution problem (3000× 200× 100).

J. Mar. Sci. Eng. 2019, 7, 185 13 of 26

NCO operators [50] were used to obtain the root-mean squared (RMS) error of the output directly
from the NetCDF output files, comparing each parallel run with the single processor serial run as seen
in Table A1 and also with the single processor parallel run, visible in Table A2. The RMS is obtained
for each main variable (p,u,v,w,T,D) by (1) subtracting each parallel output from the single processor
output, (2) applying a weighted average with respect to time in order to unify the records obtained
in a single time-averaged snapshot, and (3) obtaining the RMS error using the ncra operator. For the
results, we report the maximum absolute value of the RMS, minimizing boundary errors by reading
the 50th X-Y plane out of the vertical column of 100 planes.

3.1.2. Comparison with Serial GCCOM Model

Here, we present in table form the values of the maximum RMS along the half point of the vertical
column for each of the parallel runs obtained while comparing with the serial output of the identical
experiment of the Serial GCCOM. Note that we will refer to the comparison of parallel results to serial
as vs. serial for the rest of the document.

As can be seen models are in agreement for every practical purpose, with exception of the pressure
(which is the result of solving the linear system and depends of a krylov subspace solver method,
and therefore can be refined) placing the biggest error at around 10−5. The velocities readings are all of
them between 10−7–10−8 and the scalars D, T are close to machine error. Additionally, from Table A1,
errors are virtually equal across all parallel runs. This tells us the solutions we obtain from the parallel
model are in very close agreement with the serial model. This comparison brings confidence to the
robustness of the PETSc implementation we have achieved, yielding the same degree of error beyond
the data partitioning used. Nonetheless communication and rounding errors exist and the number of
processors used are affected by them as we will explain next.

3.1.3. Error Propagation

In this section, we examine how solution errors grow along with number of processors/nodes
when running the exact same experiment. Often, these errors are a consequence of halo communication
and rounding errors. The results can be seen in Table A2 and Figure 4. Note that, for these tests, where
we are comparing parallel model output for one processor vs. N processors, we will refer to this as
vs. parallel. In every case, the vs. serial RMS error is below 10−5 and would be unable to influence the
dynamics of our experiment, effectively transferring the physics model validation obtained at [12].
In addition, in the case of vs. parallel, RMS error is in every case orders of magnitude smaller than
vs. serial; as this is the case, we can confidently conclude that using as many as 240 processors (and
presumably more) won’t affect the solution because of rounding or communication errors that may
otherwise be introduced by a large data distribution layout. This finding brings confidence in our
parallel-enabled model.

In this section, we have shown that the PETSc based parallel GCCOM framework preserves the
solutions obtained by the validated serial GCCOM model for different mesh sizes of the Seamount test
case. We have also shown here that the communication errors PETSc introduces are small enough not
to be a problem with the 240 processors/12 nodes we have used.

Finally, the trend we show points that for the communication errors (vs. parallel error) to catch up
with the parallel framework migration error (vs. serial error) we would need to double the processor
count with a properly sized experiment, something that would be impractical to run in the serial
model. In short, we have attained a new range of problem sizes we can solve in this new parallel
framework, while carrying out the physics validation obtained in the serial version of the model.

J. Mar. Sci. Eng. 2019, 7, 185 14 of 26

Figure 4. Error comparison between serial and parallel models for one processor output, the parallel
error is consistently orders of magnitude smaller than the serial comparison, which in turn is small
enough to carry the physics validation of the model. Comparison with Serial GCCOM Mode.

3.2. Model Performance

Model performance can be assessed and measured in different ways, but in general should
improve with number of resources allocated, up to the limit of where the problem size and other
factors make it limit or even degrade performance. This is known as scalability or scaling power.

In order to analyze the parallel performance of the PETSc-based GCCOM model, it is important
to first validate the results as was done in Section 3.1. Once the model is validated, and the algorithmic
approach has been verified, the next step is to identify critical blocks and bottlenecks in order to
determine what elements of the model can be optimized. In the case of GCCOM, key factors include
problem size and resolution, time step resolution, numerical methods and solvers, file IO, the PETSc
framework, and the test cluster. The multiscale/multiphysics non-hydrostatic capabilities of the
GCCOM model are demonstrated using the stratified seamount test case using different meshes and a
3D lock exchange test case. The impact and results of these factors are presented below.

3.2.1. PETSc Performance

The PETSc framework has its own performance characteristics, and basically defines an upper
limit that we can expect from any model using the framework. The performance of PETSc is measured
using its streams test, which outputs the speedup as a function of the number of cores [16]. Streams
measures the communication overhead and efficiency that is realistically attainable in a system. The test

J. Mar. Sci. Eng. 2019, 7, 185 15 of 26

probes the machine for its maximum memory speed, and becomes an alternative way to measure
the maximum bandwidth, speedup and efficiency. The Streams tests are done as part of the PETSc
installation process and is regarded as an upper limit of the speedup attainable on the system, limited
by the memory bandwidth. More information can bee seen the PETSc user guide (see [16] Section
14—Hints for Performance and Tuning).

The speedup is defined as the ratio of the runtime of the serial model (T1) to the time, Tn, taken by
the parallel model as a function of the number of cores (n). The ideal speedup of an application would
be a perfect scaling of the serial (or base) timing to the number of processors used, or Sideal = T1/n.
The measured speedup of a model is defined as follows SN = T1/Tn.

The PETSc streams speedup is a diagnostics test for our system. As we will see in Section 3.2.3 it
shows as a linear trend, which indicates that the bandwidth communication capacity grows linearly
across the system, in this case up to 240 processors on 12 nodes. Note also that the PETSc framework
shows no sign of turning over, indicating that it is capable of scaling to a much larger number of cores.

In practice, most distributed memory applications are bounded by the memory bandwidth
allocation of the system, which is measured in PETSc by the streams test. For every test performed
in our analysis, we have used the streams’ speedup estimate as an upper bound on the speedup that
can be obtained as a result of the memory bandwidth constraint. For the GCCOM model, we have
determined that, for large enough problem sizes, this speedup threshold can be surpassed, effectively
offsetting this performance limit by some margin.

3.2.2. Profiling the GCCOM Model

To profile the GCCOM model, we analyze the three phases that are typical of many parallel
models: initialization, computation, and finalization. Initial wall-clock profiling timings show that
the time spent in the finalization phase is less than 1% of the wall-clock time, independent of problem
size and number of cores. Consequently, it will not be part of further analysis discussed in this section.
Timings also show that approximately 15–35% of total wall-clock time is spent in the initialization
phase, where the PETSc arrays and objects are initialized, memory is allocated, initialization data
are loaded in from files, and the curvilinear metrics are derived. The remainder of the execution
time is spent in what we refer to as the "main loop", in which a set of iterative solutions to the
governing equations are computed after the startup phase. In general, as the number of cores increases,
the percentage of time spent in the main loop goes down, while the time spent in the initialization
phase increases.

An explanation for the impact on scaling due to the startup phase may have something to do with
the strategy employed to initialize and allocate the arrays used in the serial model. First, the model
uses serial NetCDF to read and write data, effectively loading external files onto one master node and
then scattering the data across the system. Similarly, when writing output data, the whole array is
gathered onto one node, and then results are saved serially to a NetCDF file. Thus, the model is both
IO and memory bound. This is a well known issue, and moving to parallel IO libraries is an important
next step for this model.

In order to quantify the roles that these processes play in the total run time, we measured the
partitioning of the total wall clock time as a function of the number of processors for three key
functional areas: the main loop, or computational time; the I/O time; and the MPI communication time.
The results can be seen in Figure 5, which shows a stacked histogram view of the functional area timings
for the 3000× 200× 100 problem. The figure plots the percentage of time used by each component as a
function of the number of cores. In this figure, we see three trends: the computational time (the bottom,
or blue, group of datum) dominates the run-time for small number of cores, and appears to scale well;
the MPI communication time increases with the number of cores, which is expected and is a function of
the model and the PETSc framework. The figure also shows clearly that I/O is impacting the run-time,
and increasing with the number of processors. This would explain why the model is not scaling well
overall. Stacked plots for the lower resolution grids are presented in Figure 6, here the overtaking of

J. Mar. Sci. Eng. 2019, 7, 185 16 of 26

communication and I/O times over computation time is evident. These problems are too small to take
real advantage of the MPI framework over the 240 processors system and are capped by the I/O and
memory bandwidth speeds.

Figure 5. The histogram above shows a stacked normalized plot of the time partitioning between
computation, I/O operations and estimated communication times as a function of processors for the
high resolution problem.

Figure 6. Stacked normalized plot of the time partitioning for the lower resolution grids.

As mentioned above, the primary goal of this paper is to report on advances made to the GCCOM
model using the PETSc framework, to validate the results of the parallel version of the serial model
(which is done in Section 3.1, and to show that the computational aspect of the model scales. Based

J. Mar. Sci. Eng. 2019, 7, 185 17 of 26

on these goals, we will focus our scaling analysis primarily on the computational time required to
solve the flow processes (knowing that we would be addressing parallel file I/O in future research).
Thus, for the rest of this section, we will analyze the performance of the computational time, which is
calculated as follows:

Tcomp = Tmain_loop − TIO_main_loop. (19)

3.2.3. Parallel Performance Analysis

Ideal parallel performance is usually described as a reduction in execution time by a factor of
the number of processors used. However, this is seldom achieved. Several factors can limit model
speedup, some of which are discussed here, but a more generalized overview can be found in several
well-known textbooks [51,52]. Examples include loop calculations that cannot be unrolled because
the statements are dependent upon previous steps in the calculation, collecting information on all
processors before computing the next step (a self-recurrent loop). In addition, the hardware of the
system could potentially impact speed, including chip memory bandwidth or the network. Despite
these factors, speedup can be achieved by splitting up the work between multiple processors, which
reduces the calculation time.

Model performance can be assessed and measured in different ways, but in general should
improve with number of resources allocated, up to the limit of where the problem size and other
factors make it limit or even degrade performance. This is known as scalability or scaling power.

Figure 7 compares the speedup of the PETSc Streams test with the speedup of the GCCOM
computational work done in the main loop, for the Seamount test cases, as function of the number of
cores. The plot shows a linear trend, which is a consequence of the maximum memory bandwidth
allocation, which increases with the growing number or processors. We can see that the bandwidth
communication capacity grows linearly across the system, in this case up to 240 processors in 12 nodes.
Interestingly, the high resolution seamount experiment speedup (3000× 200× 100) is consistently
better than the streams test speedup. This is explained by the size of the high resolution problem
benefiting from internal PETSc optimizations that occur within the DM and DMDA objects, which
dynamically repartition grids and adjust the MPI communicators during the computations [43]. This is
not the case for the lower resolution cases: for these, we see that the speedup trend follows the streams
test closely, but it never surpasses the PETSc limit. In fact, we see the lower resolution trends being
bogged down by too much data distribution and hence more message passing, and the speedup ends
up being worse than the streams test with more processors added.

The measurement of the parallel efficiency indicates the percentage of efficiency for an application
when increasing the number of available resources. Efficiency is defined by Equation (20):

En =
T1

n ∗ Tn
, (20)

where T1 and Tn are the execution times for one and n processors, respectively, and n is the number of
processors. Ideal efficiency would be the case, for example, where doubling the number of processors
halves the run time. Efficiency is expected to decrease when too many processors are allocated to a
specific problem size. The optimal number of processors to use, from an economical perspective, can
be determined from this metric. It is important to keep in mind that the application can show speedup
while still decreasing its efficiency. The most common causes for decreasing efficiency are usually
related to memory bandwidth speed limits and sub-optimal domain decomposition. As we will see
later in this section, when these factors are taken into account, the scaling performance behavior can
be explained.

Figure 8 shows efficiency for the GCCOM seamount test cases and the PETSc Streams test,
calculated using Equation (20). From this, we can see that the PETSc Streams efficiency levels off at
around 30%. This efficiency is typically regarded as the realistic efficiency of the system, limited by
memory bandwidth, and as such we see that for the highest resolution problem (3000× 200× 100)

J. Mar. Sci. Eng. 2019, 7, 185 18 of 26

we are obtaining a better than streams efficiency across all nodes used, hinting at our parallelization
overcoming the memory bandwidth overhead up to 240 processors. This efficiency is expected to
decrease with a higher number of processors, something we don’t yet see happening for the highest
resolution case but does happen for the lower resolution experiments. Once again and as we saw
with the speedup chart, these problems are still too small to take real advantage of the parallelization;
although they present some speedup, the efficiency of resources allocated hardly justifies using more
than a few nodes to run these problems.

Figure 7. Speedup scaling for stratified seamount experiments of different resolutions compared to
the Portable, Extensible Toolkit for Scientific Computation (PETSc) streams test results for the test
system [16]. The theoretical ideal is shown for reference.

Figure 8. Efficiency for stratified seamount experiments of different resolutions compared to the PETSc
streams test results for the test system [16]. A theoretical ideal is shown for reference.

Finally, given the restrictions imposed on the model in the form of self-recurrent algorithms
and forced data distribution by HPGF algorithm, and keeping in mind that we have left out the I/O
and initialization processes (since they have not been parallelized), we regard this version of parallel

J. Mar. Sci. Eng. 2019, 7, 185 19 of 26

implementation to be a success. The model demonstrates efficiencies that are better than the streams
test estimates for our stratified seamount experiment, yet preserving the solution to any practical
threshold even when partitioning the problem across 200 processors and 12 nodes.

3.3. Multiscale/Multiphysics Capabilities

This section describes how GCCOM is capable of handling complicated fluid behavior by means
of two different methods. First, the multiple physical processes simulated inside the model, such as
hydrostatic and non-hydrostatic pressure, sub-grid scale turbulence, thermodynamics and the density
equations of state for seawater work together to capture complex processes. Second, the grid resolution
we use will have a major impact on the detail level and richness of the physics we obtain. In this
section, we present results of comparing the output of two different resolutions in the Seamount case
to better illustrate the point of the multiple physics and multiple scales GCCOM can capture.

Figures 9 and 10 show the velocity flow along the horizontal axis. The images compare and
contrast the High (left) vs. Low (right) grid resolution details for both side and bottom views of the
domain. The rows of images show a series of zoomed-in details, represented by the rectangular boxes.
The bars to the right of each image depict the scale values.

A side view comparison between the seamount test case of 3000× 200× 100 (high resolution, left
side) and 1500× 100× 50 grid points (low resolution, right side) is shown in Figure 9 for the horizontal
velocity, being forced on the right side of this figure. The high resolution has twice the resolution in
each direction and eight times the number of grid points.This snapshot was taken at the mid-section of
the domain after t = 6000 s of simulation. Each problem has been run with the same conditions and
shows similar behavior.

In the top row of images, the kilometer scale is depicted along the horizontal axis. The image
shows an accumulation of contours at the base of the seamount, and somewhat uniform velocities
over the rest of the domain for both of the resolutions. The difference between the two plots resides
in the density and locations of the contour lines. For the high resolution, there are significantly more
contour lines around the seamount bathymetry than for the low resolution plots. Row 2 of Figure 9
shows a zoomed in detail of these structures. Here, the images show marked differences between the
high and low resolution cases. In this frame, we see that the features developed in the high resolution
panel (left) are not captured in the low (right) resolution case. At the same time, the richness of the
higher resolution case can be explored further, as is shown in the bottom left panel. The increased
magnification reveals a series of eddies, while in the lower resolution counterpart no special behavior
is seen. These results demonstrate that the GCCOM model is capable of capturing more information
as the grid resolution increases: an increase in the number of points translates to capturing richer and
more complex phenomena across the domain; and the multiscale processes, ranging from kilometer to
meter scale lengths.

The ability of the GCCOM model to capture both high and low resolution flow features is seen
once again in Figure 10, where the view is from the bottom plane of the domain, where the velocity
flows from East to West. Again, the flow is captured at t = 6000 s. We can see structures developing
widely in the high resolution problem, while the low resolution only shows them happening in specific
spots and in a broader distribution, but we see no sign of high resolution fluid structures in the rest
of the domain. The middle rows in Figure 10 show an important difference in contour details: while
the low resolution grid shows a structure that is similar to that of the high resolution grid, the high
resolution grid captures the meandering waves of low velocity fields on the bottom of the seamount,
something we could see if we were modeling the shape of a sandy sea bottom. The details and number
of eddies behind the seamount peak are also richer in the high resolution grid, while only one broad
eddy-like structure is seen in the low resolution case (bottom panels). The results shown in this
section demonstrate that GCCOM is capable of capturing different types of phenomena including fluid
flow, nonhydrostatic pressure and thermodynamics, over scales that range from 100 to 103 m, thus
establishing that GCCOM is both a multiphysics and a multiscale model.

J. Mar. Sci. Eng. 2019, 7, 185 20 of 26

Figure 9. Figures depict zoomed-in details of the High (left) vs. Low (right) resolution side views of
the stratified seamount experiment at t = 6000 s.

Figure 10. Figures depict zoomed-in details of the High (left) vs. Low (right) resolution bottom plane
view for the stratified seamount experiment at t = 6000 s.

4. Conclusions

We have successfully implemented a parallel framework based on the serial GCCOM model,
using domain decomposition and parallel linear solver methods from the PETSc libraries. The model
has been validated using the seamount test case. Results show that the parallel version reproduces
serial results to within acceptable ranges for key variables and scalars: around 10−5 for the Krylov
subspace pressure solver; 10−7 to 10−8 for the velocities; and the scalars D and T are on the order of
32-bit machine precision.

Measured performance improvement tests show that detailed simulation run-times follow the
scaling of the core PETSc framework speed tests (Streams). In some cases, the GCCOM model
outperformed the streams test because the problem size is big enough to offset the communication
overhead. For the experiments run in this study, the speedup was improved by a factor of 80 for
240 cores, and follows closely (or is better than) the speedup of the PETSc Streams test. Additionally,

J. Mar. Sci. Eng. 2019, 7, 185 21 of 26

the gain in speedup shows that we can expect the model will be capable of additional improvement
when it is migrated to a larger system with more memory and cores.

Utilization of the PETSc libraries has proven to be of significant benefit, but using PETSc has
its pros and cons: We found that there was significant savings in the time needed for HPC model
development, which has immense value for our small research group, but that the learning curve
requires significant effort. For example, the complexity of representing the Arakawa-C staggered grid
using Fortran Matrices and MPI communications schemes was extremely complex. This was more
effectively achieved by employing the PETSc DM and DMDA parallelization paradigm for the array
distribution and linear solvers. In addition, once completed, the model scaling improved, while adding
and defining new scalars, variables, or testing different solvers was greatly simplified. We note that
the development and testing of those objects was challenging, and eventually became the topic of a
masters thesis project. Recently, PETSc has started offering staggered distributed arrays, DMSTAG
(which represents a “staggered grid” or a structured cell complex), which is something we will explore
in the future.

Based on our experiences, we strongly recommend PETSc as a proven alternative to obtain
scalability in complex models without the need to build a custom parallel framework. As stated
above, with PETSc, there is a learning curve: the migration of the model from an MPI based model
to the current PETSc model required more than two years. However, based on the improvement
of the GCCOM performance, our team feels that the adoption of the PETSc framework has been
worth the effort.

Additionally, we find the PETSc based model to be portable: we recently successfully completed
a prototype migration to the SDSC Comet system. The model ran to completion, but there is still much
work to be done as we explore the optimal memory and core configuration. Another motivation to
move GCCOM to a system like Comet is that they have access to optimized parallel IO libraries and
file systems (such as the parallel NetCDF, and the Lustre system).

The current version of the parallel framework can be improved in several ways. Domain
decomposition can be modified to take advantage of full partitioning in all three dimensions. However,
this would require changing, or replacing, the existing pressure-gradient algorithm, which forces
a vertical-slab decomposition because of self-recurrence in the spline integration over the column.
The parallel model would also benefit from the use of parallel file input and output and improvements
in memory management. We plan to explore how the adoption of exascale software systems such
as ADIOS, which manages data between nodes in parallel with the computations on the nodes, will
benefit the GCCOM model [53].

In conclusion, the performance tests conducted in these experiments show that the PETSc-based
parallel GCCOM model satisfies several of its primary goals, including:

• Produce results that agree with the validated serial model,
• Decrease the time to solution while showing strong scalability,
• Deliver reproducible results that are not affected by data distribution across multiple nodes

and cores,
• Maintain an efficiency that scales to several hundred cores without showing any signs of slowing

down, and
• Establish a model that is portable and can operate in heterogeneous environments.

The results shown in this paper also show that GCCOM is a parallel and scaleable, multiphysics,
and multiscale model: it scales to hundreds of cores (the limit of the test system); it can capture
different types of phenomena, including fluid flow, nonhydrostatic pressure, thermodynamics, sea
surface height; and it can operate over physical scales that range from 100 to 103 m.

Author Contributions: Conceptualization, M.V., M.G., and J.E.C.; methodology, M.V., M.G., M.P.T., and J.E.C.;
software, M.V., M.G. and M.P.T.; validation, M.V., M.G.; formal analysis, M.V. and M.P.T.; investigation, M.V.;
resources, J.E.C.; data curation, M.V.; writing—original draft preparation, M.V., M.G., M.P.T.; writing—review

J. Mar. Sci. Eng. 2019, 7, 185 22 of 26

and editing, M.V., M.P.T. and M.G.; visualization, M.V.; supervision, J.E.C.; project administration, J.E.C.; funding
acquisition, J.E.C.

Funding: This research was supported by the Computational Science Research Center (CSRC) at San Diego
State University (SDSU), the SDSU Presidents Leadership Fund, the CSU Council on Ocean Affairs, Science
and Technology (COAST) Grant Development Program, and the National Science Foundation (OCI 0721656,
CC-NIE 1245312, MRI Grant 0922702). Portions of this work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1548562.

Acknowledgments: The authors are grateful for the contribution of the work done by Neelam Patel on the DMDA
PETSc framework. We also want to acknowledge helpful conversations with Ryan Walter on the internal wave, l
beam and lock release experiments for validation, Paul Choboter for his contribution to the development of the
current GCCOM model, and Jame Otto for his helpful insights into parallelization and hardware characterization.
This research was supported by the Computational Science Research Center (CSRC) at San Diego State University
(SDSU), the SDSU Presidents Leadership Fund, the CSU Council on Ocean Affairs, Science and Technology
(COAST) Grant Development Program, and the National Science Foundation (OCI 0721656, CC-NIE 1245312,
MRI Grant 0922702). Portions of this work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation Grant No. ACI-1548562.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Max Root-mean-squared (RMS) error per variable when comparing Serial GCCOM vs.
Parallel GCCOM Model from 1 to 240 processors across 12 nodes.

Max RMS error per Variable
Nodes Processors D [g/cm3] T [◦C] p [bar] u [m/s] v [m/s] w [m/s]

12 240 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

11 220 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

10 200 1.22 × 10−13 7.15 × 10−10 1.03 × 10−05 7.45 × 10−08 7.47 × 10−08 1.33 × 10−07

9 180 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

8 160 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.48 × 10−08 1.33 × 10−07

7 140 1.22 × 10−13 7.16 × 10−10 1.04 × 10−05 7.46 × 10−08 7.48 × 10−08 1.33 × 10−07

6 120 1.22 × 10−13 7.16 × 10−10 1.03 × 10−05 7.46 × 10−08 7.47 × 10−08 1.33 × 10−07

5 100 1.22 × 10−13 7.16 × 10−10 1.04 × 10−05 7.46 × 10−08 7.48 × 10−08 1.33 × 10−07

4 80 1.22 × 10−13 7.15 × 10−10 1.04 × 10−05 7.55 × 10−08 7.47 × 10−08 1.33 × 10−07

3 60 1.22 × 10−13 7.15 × 10−10 1.04 × 10−05 7.42 × 10−08 7.46 × 10−08 1.33 × 10−07

2 40 1.22 × 10−13 7.14 × 10−10 1.04 × 10−05 7.41 × 10−08 7.46 × 10−08 1.33 × 10−07

1 20 1.22 × 10−13 7.15 × 10−10 1.04 × 10−05 7.42 × 10−08 7.45 × 10−08 1.33 × 10−07

1 1 1.22 × 10−13 7.13 × 10−10 1.04 × 10−05 7.35 × 10−08 7.44 × 10−08 1.33 × 10−07

Table A2. Max RMS per variable when comparing Parallel GCCOM Model outputs from 20 to 240
processors across 12 nodes vs. Parallel GCCOM output in a single processor.

Max RMS per Variable
Nodes Processors D [g/cm3] T [◦C] p [bar] u [m/s] v [m/s] w [m/s]

12 240 1.88 × 10−15 9.96 × 10−12 6.32 × 10−08 2.73 × 10−09 1.36 × 10−09 7.91 × 10−10

11 220 1.88 × 10−15 9.98 × 10−12 2.45 × 10−08 2.76 × 10−09 1.37 × 10−09 8.16 × 10−10

10 200 1.88 × 10−15 1.00 × 10−11 5.43 × 10−08 2.78 × 10−09 1.36 × 10−09 8.01 × 10−10

9 180 1.88 × 10−15 1.03 × 10−11 3.61 × 10−08 2.49 × 10−09 1.38 × 10−09 8.53 × 10−10

8 160 2.04 × 10−15 1.04 × 10−11 4.82 × 10−08 2.64 × 10−09 1.39 × 10−09 8.69 × 10−10

7 140 2.04 × 10−15 1.07 × 10−11 2.49 × 10−08 2.46 × 10−09 1.42 × 10−09 9.22 × 10−10

6 120 2.04 × 10−15 1.04 × 10−11 6.56 × 10−08 2.64 × 10−09 1.39 × 10−09 8.57 × 10−10

5 100 2.04 × 10−15 1.07 × 10−11 5.00 × 10−08 2.72 × 10−09 1.41 × 10−09 9.06 × 10−10

4 80 1.57 × 10−15 8.07 × 10−12 2.73 × 10−08 2.12 × 10−09 1.22 × 10−09 6.93 × 10−10

3 60 1.10 × 10−15 5.46 × 10−12 1.66 × 10−08 1.54 × 10−09 8.34 × 10−10 4.57 × 10−10

2 40 9.42 × 10−16 4.13 × 10−12 3.88 × 10−08 1.05 × 10−09 5.47 × 10−10 3.47 × 10−10

1 20 4.71 × 10−16 1.84 × 10−12 4.72 × 10−08 1.54 × 10−09 5.96 × 10−10 1.68 × 10−10

J. Mar. Sci. Eng. 2019, 7, 185 23 of 26

Table A3. Parallel performance of the high resolution stratified seamount experiment (3000× 200× 100)
in the COD system.

Nodes Processors WTime [s] I/O Main Loop [s] WTime − I/O [s] Speedup Efficiency Streams Eff.

12 240 2.95 × 1002 1.19 × 1002 1.75 × 1002 8.82 × 1001 3.67 × 10−01 3.17 × 10−01

11 220 3.04 × 1002 1.15 × 1002 1.88 × 1002 8.21 × 1001 3.73 × 10−01 3.16 × 10−01

10 200 3.23 × 1002 1.15 × 1002 2.08 × 1002 7.43 × 1001 3.72 × 10−01 3.13 × 10−01

9 180 3.43 × 1002 1.13 × 1002 2.30 × 1002 6.74 × 1001 3.74 × 10−01 3.15 × 10−01

8 160 3.68 × 1002 1.12 × 1002 2.56 × 1002 6.04 × 1001 3.77 × 10−01 3.16 × 10−01

7 140 4.01 × 1002 1.14 × 1002 2.86 × 1002 5.40 × 1001 3.86 × 10−01 3.14 × 10−01

6 120 4.51 × 1002 1.14 × 1002 3.37 × 1002 4.59 × 1001 3.83 × 10−01 3.16 × 10−01

5 100 5.10 × 1002 1.10 × 1002 4.00 × 1002 3.87 × 1001 3.87 × 10−01 3.12 × 10−01

4 80 5.67 × 1002 1.02 × 1002 4.65 × 1002 3.33 × 1001 4.16 × 10−01 3.11 × 10−01

3 60 7.40 × 1002 9.80 × 1001 6.42 × 1002 2.41 × 1001 4.02 × 10−01 3.14 × 10−01

2 40 9.57 × 1002 8.41 × 1001 8.73 × 1002 1.77 × 1001 4.43 × 10−01 3.10 × 10−01

1 20 1.78 × 1003 8.23 × 1001 1.70 × 1003 9.12 × 1000 4.56 × 10−01 3.07 × 10−01

1 1 1.55 × 1004 3.96 × 1001 1.55 × 1004 1.00 1.00 1.00

Table A4. Parallel performance of the medium-sized stratified seamount experiment (2000× 100× 100)
in the COD system.

Nodes Processors WTime [s] I/O Main Loop [s] WTime − I/O [s] Speedup Efficiency Comm. Time I/O Time [s]

12 240 1.05 × 1002 5.60 × 1001 4.91 × 1001 7.02 × 1001 2.93 × 10−01 8.63 × 1006 1.11 × 1002

8 160 1.24 × 1002 5.08 × 1001 7.33 × 1001 4.70 × 1001 2.94 × 10−01 4.03 × 1001 1.07 × 1002

4 80 1.77 × 1002 4.27 × 1001 1.34 × 1002 2.57 × 1001 3.21 × 10−01 1.08 × 1001 1.12 × 1002

2 40 2.57 × 1002 2.25 × 1001 2.34 × 1002 1.47 × 1001 3.68 × 10−01 3.59 × 1000 9.68 × 1001

1 1 3.46 × 1003 1.22 × 1001 3.45 × 1003 1.00 1.00 1.00 × 10−05 8.64 × 1002

Table A5. Parallel performance of the low resolution stratified seamount experiment (1500× 100× 50)
in the COD system.

Nodes Processors WTime [s] I/O Main Loop [s] WTime − I/O [s] Speedup Efficiency Comm. Time I/O Time [s]

12 240 3.54 × 1001 2.31 × 1001 1.23 × 1001 6.84 × 1001 2.85 × 10−01 6.84 × 10−04 3.54 × 1001

8 160 3.79 × 1001 2.12 × 1001 1.67 × 1001 5.05 × 1001 3.16 × 10−01 5.05 × 10−04 3.79 × 1001

4 80 5.00 × 1001 1.76 × 1001 3.24 × 1001 2.60 × 1001 3.25 × 10−01 2.60 × 10−04 5.00 × 1001

2 40 7.43 × 1001 8.58 × 1000 6.57 × 1001 1.28 × 1001 3.21 × 10−01 1.28 × 10−04 7.43 × 1001

1 1 8.46 × 1002 3.34 × 1000 8.43 × 1002 1.00 1.00 1.00 × 10−05 8.46 × 1002

References

1. Alowayyed, S.; Groen, D.; Coveney, P.V.; Hoekstra, A.G. Multiscale computing in the exascale era.
J. Comput. Sci. 2017, 22, 15–25. [CrossRef]

2. Abouali, M.; Castillo, J.E. Unified Curvilinear Ocean Atmosphere Model (UCOAM): A vertical velocity case
study. Math. Comput. Model. 2013, 57, 2158–2168. [CrossRef]

3. Marshall, J.; Jones, H.; Hill, C. Efficient ocean modeling using non-hydrostatic algorithms. J. Mar. Syst. 1998,
18, 115–134. [CrossRef]

4. Fringer, O.B.; McWillimas, J.C.; Street, R.L. A New Hybrid Model for Coastal Simulations. Oceanography
2006, 19, 64–77. [CrossRef]

5. Berntsen, J.; Xing, J.; Davies, A.M. Numerical studies of flow over a sill: Sensitivity of the non-hydrostatic
effects to the grid size. Ocean Dyn. 2009, 59, 1043–1059. [CrossRef]

6. Torres, C.R.; Hanazaki, H.; Ochoa, J.; Castillo, J.; Van Woert, M. Flow past a sphere moving vertically in a
stratified diffusive fluid. J. Fluid Mech. 2000, 417, 211–236. [CrossRef]

7. Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier–Stokes
model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 1997, 102, 5753–5766. [CrossRef]

8. Fringer, O.B.; Gerritsen, M.; Street, R.L. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal
ocean simulator. Ocean Model. 2006, 14, 139–173. [CrossRef]

9. Lai, Z.; Chen, C.; Cowles, G.W.; Beardsley, R.C. A nonhydrostatic version of FVCOM: 1. Validation experiments.
J. Geophys. Res. Oceans 2010, 115, 1–23. [CrossRef]

http://dx.doi.org/10.1016/j.jocs.2017.07.004
http://dx.doi.org/10.1016/j.mcm.2011.03.023
http://dx.doi.org/10.1016/S0924-7963(98)00008-6
http://dx.doi.org/10.5670/oceanog.2006.91
http://dx.doi.org/10.1007/s10236-009-0227-0
http://dx.doi.org/10.1017/S0022112000001002
http://dx.doi.org/10.1029/96JC02775
http://dx.doi.org/10.1016/j.ocemod.2006.03.006
http://dx.doi.org/10.1029/2009JC005525

J. Mar. Sci. Eng. 2019, 7, 185 24 of 26

10. Santilli, E.; Scotti, A. The stratified ocean model with adaptive refinement (SOMAR). J. Comput. Phys. 2015,
291, 60–81. [CrossRef]

11. Liu, Z.; Lin, L.; Xie, L.; Gao, H. Partially implicit finite difference scheme for calculating dynamic pressure in
a terrain-following coordinate non-hydrostatic ocean model. Ocean Model. 2016, 106, 44–57. [CrossRef]

12. Garcia, M.; Choboter, P.F.; Walter, R.K.; Castillo, J.E. Validation of the nonhydrostatic General Curvilinear
Coastal Ocean Model (GCCOM) for stratified flows. J. Comput. Sci. 2019, 30, 143–156. [CrossRef]

13. Thomas, M.P.; Castillo, J.E. Parallelization of the 3D Unified Curvilinear Coastal Ocean Model: Initial Results.
In Proceedings of the International Conference on Computational Science and Its Applications, Amsterdam,
The Netherlands, 4–6 June 2012; pp. 88–96.

14. Thomas, M.P.; Bucciarelli, R.; Chao, Y.; Choboter, P.; Garcia, M.; Manjunanth, S.; Castillo, J.E. Development
of an Ocean Sciences Education Portal for Simulating Coastal Ocean Processes. In Proceedings of the 10th
Gateway Computing Environments Workshop, Boulder, CO, USA, 29–31 September 2015.

15. Choboter, P.F.; Garcia, M.; Cecchis, D.D.; Thomas, M.; Walter, R.K.; Castillo, J.E. Nesting nonhydrostatic
GCCOM within hydrostatic ROMS for multiscale Coastal Ocean Modeling. In Proceedings of the MTS IEEE
Oceans 2016 Conference, Monterey, CA, USA, 19–23 September 2016; pp. 1–4. [CrossRef]

16. Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.;
Gropp, W.D.; Kaushik, D.; et al. PETSc Users Manual; Technical Report ANL-95/11—Revision 3.8; Argonne
National Laboratory: Lemont, IL, USA, 2017.

17. Balay, S.; Abhyankar, S.; Adams, M.F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W.D.;
Kaushik, D.; et al. PETSc Web Page, 2018. Available online: http://www.mcs.anl.gov/petsc (accessed on
12 June 2019).

18. Balay, S.; Gropp, W.D.; McInnes, L.C.; Smith, B.F. Efficient Management of Parallelism in Object Oriented
Numerical Software Libraries. In Modern Software Tools in Scientific Computing; Arge, E., Bruaset, A.M.,
Langtangen, H.P., Eds.; Birkhäuser Press: Basel, Switzerland, 1997; pp. 163–202.

19. Valera, M.; Garcia, M.; Walter, M.; Choboter, R.; Castillo, P. Modeling nearshore internal bores and waves in
Monterey bay using the General Curvilinear Coastal Ocean Dynamics Model, GCCOM. In Proceedings of
the Joint AMS-SIAM Meeting, Minisymposium on Mimetic Multiphase Subsurface and Oceanic Transport,
San Diego, CA, USA, 10–13 January 2018.

20. Garcia, M.; Hoar, T.; Thomas, M.; Bailey, B.; Castillo, J. Interfacing an ensemble Data Assimilation system
with a 3D nonhydrostatic Coastal Ocean Model, an OSSE experiment. In Proceedings of the MTS IEEE
Oceans 2016 Conference, Monterey, CA, USA, 19–23 September 2016; pp. 1–11. [CrossRef]

21. Shchepetkina, A.; McWilliamsa, J.C. Algorithm for non-hydrostatic dynamics in the Regional Oceanic
Modeling System. Ocean Model. 2007, 18, 143–174.

22. Kerbyson, D.J.; Jones, P.W. A Performance Model of the Parallel Ocean Program. Int. J. High Perform. Comput.
Appl. 2005, 19, 261–276. [CrossRef]

23. Ringler, T.; Petersen, M.; Higdon, R.L.; Jacobsen, D.; Jones, P.W.; Maltrud, M. A multi-resolution approach to
global ocean modeling. Ocean Model. 2013, 69, 211–232. [CrossRef]

24. Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.;
Bleck, R. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 2007,
65, 60–83. [CrossRef]

25. Tang, H.; Qu, K.; Wu, X. An overset grid method for integration of fully 3D fluid dynamics and geophysics
fluid dynamics models to simulate multiphysics coastal ocean flows. J. Comput. Phys. 2014, 273, 548–571.
[CrossRef]

26. Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields
and rapidly varied flows in coastal waters. Coastal Eng. 2011, 58, 992–1012. [CrossRef]

27. Brzenski, J. Coupling GCCOM, a Curvilinear Ocean Model Rigid Lid Simulation with SWASH for Analysis
of Free Surface Conditions. Master’s Thesis, San Diego State University, San Diego, CA, USA, 2019.

28. Torres, C.R.; Castillo, J.E. A New 3D Curvilinear Coordinates Numerical Model for Oceanic Flow
Over Arbitrary Bathymetry (In Spanish). In Proceedings of the Desarrollos Recientes en Métodos
Numéricos, Muller-Karger, C.M., Lentini, M., Cerrolaza, M., Eds.; 2002; pp. 105–112, ISBN 980-00-1951-0.
Available online: https://www.researchgate.net/publication/233853889_A_new_3d_curvilinear_
coordinates_numerical_model_for_oceanic_flow_over_arbitrary_bathymetry_In_Spanish (accessed on
13 June 2019).

http://dx.doi.org/10.1016/j.jcp.2015.03.008
http://dx.doi.org/10.1016/j.ocemod.2016.09.004
http://dx.doi.org/10.1016/j.jocs.2018.11.012
http://dx.doi.org/10.1109/OCEANS.2016.7761488
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1109/OCEANS.2016.7760992
http://dx.doi.org/10.1177/1094342005056114
http://dx.doi.org/10.1016/j.ocemod.2013.04.010
http://dx.doi.org/10.1016/j.jmarsys.2005.09.016
http://dx.doi.org/10.1016/j.jcp.2014.05.010
http://dx.doi.org/10.1016/j.coastaleng.2011.05.015
https://www.researchgate.net/publication/233853889_A_new_3d_curvilinear_coordinates_numerical_model_for_oceanic_flow_over_arbitrary_bathymetry_In_Spanish
https://www.researchgate.net/publication/233853889_A_new_3d_curvilinear_coordinates_numerical_model_for_oceanic_flow_over_arbitrary_bathymetry_In_Spanish

J. Mar. Sci. Eng. 2019, 7, 185 25 of 26

29. Torres, C.R.; Castillo, J.E. Stratified Rotating Flow Over Complex Terrain. Appl. Numer. Math. 2003,
47, 531–541. [CrossRef]

30. Torres, C.R.; Mascarenhas, A.S.; Castillo, J.E. Three-dimensional stratified flow over the Alarcón Seamount,
Gulf of California entrance. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 647–657. [CrossRef]

31. Abouali, M.; Castillo, J.E. General Curvilinear Ocean Model (GCOM) Next, Generation; Technical Report
CSRCR2010-02; Computational Sciences Research Center, San Diego State University: San Diego, CA,
USA, 2010.

32. Arakawa, A. Computational Design for Long–Term Numerical Integration of the Equations of Fluid Motion:
Two–Dimensional Incompressible Flow. Part I. J. Comput. Phys. 1997, 135, 103–114. [CrossRef]

33. Garcia, M. Data Assimilation Unit for the General Curvilinear Environmental Model. Ph.D. Dissertation,
Claremont Graduate University, Claremont, CA, USA; San Diego State University, San Diego, CA, USA,
2015.

34. Notay, Y. User’s Guide to AGMG, 2014; Technical Report; Service de Metrologie Nucleaire, Universite Libre
de Bruxelles: Brussels, Belgium, 2014. Available online: http://agmg.eu/agmg_userguide.pdf (accessed on
13 June 2019).

35. Thomas, M.P. Parallel Implementation of the Unified Curvilinear Ocean and Atmospheric (UCOAM)
Model and Supporting Computational Environment. Ph.D. Dissertation, Claremont Graduate University,
Claremont, CA, USA; San Diego State University, San Diego, CA, USA, 2014.

36. Smith, B.; McInnes, L.C.; Constantinescu, E.; Adams, M.; Balay, S.; Brown, J.; Knepley, M.; Zhang, H. PETSc’s
Software Strategy for the Design Space of Composable Extreme–Scale Solvers. In Proceedings of the OE
Exascale Research Conference, Portland, OR, USA, 16–19 July 2012; pp. 1–8.

37. Valera, M.; Patel, N.; Castillo, J. PETSc-Based Parallelization of the fully 3D-Curvilinear Non–Hydrostatic Coastal
Ocean Dynamics Model, GCCOM; Technical Report CSRCR2017-02; Computational Sciences Research Center,
San Diego State University: San Diego, CA, USA, 2017.

38. Patel, N.V. Validation of a PETSc-Based Parallel General Curvilinear Coastal Ocean Model. Master’s Thesis,
San Diego State University, San Diego, CA, USA, 2017.

39. Wang, W.; Fischer, T.; Zehner, B.; Böttcher, N.; Görke, U.J.; Kolditz, O. A parallel finite element method for
two-phase flow processes in porous media: OpenGeoSys with PETSc. Environ. Earth Sci. 2015, 73, 2269–2285.
[CrossRef]

40. Liu, L.; Li, R.; Yang, G.; Wang, B.; Li, L.; Pu, Y. Improving parallel performance of a finite-difference AGCM
on modern high-performance computers. J. Atmos. Ocean. Technol. 2014, 31, 2157–2168. [CrossRef]

41. Brown, J.; Knepley, M.G.; May, D.A.; McInnes, L.C.; Smith, B. Composable linear solvers for multiphysics.
In Proceedings of the 2012 11th International Symposium Parallel Distributed Computing ISPDC, Munich,
Germany, 25–29 June 2012; pp. 55–62. [CrossRef]

42. Shi, J.; Li, R.; Xi, Y.; Saad, Y.; de Hoop, M.V. Computing Planetary Interior Normal Modes with a Highly
Parallel Polynomial Filtering Eigensolver. In Proceedings of the SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, 11–16 November 2018;
pp. 894–906. [CrossRef]

43. May, D.A.; Sanan, P.; Rupp, K.; Knepley, M.G.; Smith, B.F. Extreme-Scale Multigrid Components within
PETSc. In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC ’16), New York,
NY, USA, 8–10 June 2016; pp. 1–24. [CrossRef]

44. Heroux, M.A.; Bartlett, R.A.; Howle, V.E.; Hoekstra, R.J.; Hu, J.J.; Kolda, T.G.; Lehoucq, R.B.; Long, K.R.;
Pawlowski, R.P.; Phipps, E.T.; et al. An overview of the Trilinos project. ACM Trans. Math. Softw. 2005,
31, 397–423. [CrossRef]

45. Falgout, R.D.; Jones, J.E.; Yang, U.M. The Design and Implementation of hypre, a Library of Parallel High
Performance Preconditioners. In Numerical Solution of Partial Differential Equations on Parallel Computers;
Bruaset, A., Tveito, A., Eds.; Springer: Berlin, Germany, 2006; pp. 267–294.

46. Lamb, C. OpenCL for NVIDIA GPUs. In Proceedings of the 2009 IEEE Hot Chips 21 Symposium (HCS),
Stanford, CA, USA, 23–25 August 2009; pp. 1–24. [CrossRef]

47. Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit,
free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [CrossRef]

48. Boussinesq, J. ThÉorie de l’Écoulement Tourbillonnant et Tumultueux des Liquides dans les Lits Rectilignes a Grande
Section; Gauthier-Villars et fils: Paris, France, 1897; p. 94.

http://dx.doi.org/10.1016/S0168-9274(03)00085-0
http://dx.doi.org/10.1016/j.dsr2.2004.05.012
http://dx.doi.org/10.1006/jcph.1997.5697
http://agmg.eu/agmg_userguide.pdf
http://dx.doi.org/10.1007/s12665-014-3576-z
http://dx.doi.org/10.1175/JTECH-D-13-00067.1
http://dx.doi.org/10.1109/ISPDC.2012.16
http://dx.doi.org/10.1109/sc.2018.00074
http://dx.doi.org/10.1145/2929908.2929913
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1109/HOTCHIPS.2009.7478346
http://dx.doi.org/10.1016/j.ocemod.2004.08.002

J. Mar. Sci. Eng. 2019, 7, 185 26 of 26

49. Moore, R.L.; Tatineni, M.; Wagner, R.P.; Wilkins-Diehr, N.; Norman, M.L.; Baru, C.; Baxter, D.; Fox, G.C.;
Majumdar, A.; Papadopoulos, P.; et al. Gateways to Discovery: Cyberinfrastructure for the Long Tail of
Science. In Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery
Environment, Atlanta, GA, USA, 13–18 July 2014. [CrossRef]

50. Zender, C.S. Bit Grooming: Statistically accurate precision-preserving quantization with compression,
evaluated in the netCDF Operators (NCO, v4.4.8+). Geosci. Model Dev. 2016, 9, 3199–3211. [CrossRef]

51. Pacheco, P. An Introduction to Parallel Programming; Morgan Kaufmann: Burlington, MA, USA, 2011; p. 392.
52. Foster, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering;

Addison–Wesley Publishing Company: Boston, MA, USA, 1995.
53. Liu, Q.; Logan, J.; Tian, Y.; Abbasi, H.; Podhorszki, N.; Choi, J.Y.; Klasky, S.; Tchoua, R.; Lofstead, J.;

Oldfield, R.; et al. Hello ADIOS: The Challenges and Lessons of Developing Leadership Class I/O
Frameworks. Concurr. Comput. Pract. Exp. 2014, 26, 1453–1473. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2616498.2616540
http://dx.doi.org/10.5194/gmd-9-3199-2016
http://dx.doi.org/10.1002/cpe.3125
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	The General Curvilinear Coastal Ocean Model (GCCOM)
	The PETSc Libraries
	PETSc Development in GCCOM
	Model Parallelization
	The Arakawa-C Grid
	Domain Decomposition
	Hydrostatic Pressure-Gradient Force
	Laplacian Transformation
	External Boundary Data

	Test Case Experiments
	Test System
	Stratified Seamount

	Results and Discussion
	Model Validation
	Validation Procedure
	Comparison with Serial GCCOM Model
	Error Propagation

	Model Performance
	PETSc Performance
	Profiling the GCCOM Model
	Parallel Performance Analysis

	Multiscale/Multiphysics Capabilities

	Conclusions
	
	References

