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Abstract: Laboratory tests were carried out to investigate the cross-flow (CF) dynamic responses and
hydrodynamic forces of a flexible pipe that subjected to vortex-induced vibration (VIV). The pipe
had a critical mass ratio of 0.54 and an aspect ratio of 181.8. The uniform flow environment was
realized by towing the pipe along a towing tank. The towing velocity ranged from 0.1–1.0 m/s with
an interval of 0.05 m/s. Two axial pre-tension cases (200 N and 300 N) were enforced. The structural
strains were measured at seven positions evenly distributed along the pipe. Then a modal analysis
method was applied to reconstruct the displacement responses. It is revealed that the maximum CF
displacement amplitude reached up to 2.18 pipe diameter and the strain response exhibited higher
harmonic components. The CF dominant frequency gradually rises with the increase of reduced
velocity and up to a three-order vibration mode can be observed. In addition, mean drag coefficient,
lift force coefficient and added mass coefficient were also calculated to further investigate the fluid
force feature of a low mass flexible pipe undergoing VIV.
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1. Introduction

Vortex-induced vibration (VIV) is a typical fluid-structure interaction behavior, which has
significant effects on slender structures, such as marine risers [1], tall buildings [2], cables of bridges [3],
and receiver tubes of concentrated solar power plants [4]. In recent years, a great deal of effort has
been made to reveal the mechanism of VIV and some milestone findings have been reported in several
review works of Sarpkaya [5], Gabbai and Benaroya [6], Williamson and Govardhan [7], Wu, et al. [8],
and Rashidi, et al. [9].

One key parameter, the mass ratio m*, which characterizes the structural mass ms relative to the
mass of displaced fluid ρπD2/4 (where ρ is the fluid density and D is the cylinder diameter), has a
significant influence on the VIV characteristic of a circular cylinder. It is well known that cylinders
with low mass ratios have much broader lock-in ranges than those with high mass ratios. Furthermore,
high mass ratio cylinders are less influenced by the variation of the added mass coefficient, because the
added mass is a lower percentage of the total mass per unit length [7,10].

The vibration frequency and amplitude of an elastically mounted rigid circular cylinder with high
mass ratio in air undergoing cross-flow (CF) VIV have been well characterized by Feng [11]. It was
found that there were two types of amplitude response depending upon the mass-damping parameter
Cn (where Cn = 2m × ζ, being ζ the structural damping ratio), namely the initial and lower branches.
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However, the VIV response at low mass ratio and low mass-damping are different. Comparisons of
VIV responses in water and air were made by Khalak and Williamson [12]. It was observed that a low
mass ratio yielded a much higher peak amplitude. Moreover, the VIV response not only contains the
initial and lower branches, but also includes a much higher “upper response branch” between them.
Govardhan and Williamson [13,14] studied the CF VIV of an elastically-mounted rigid cylinder at low
mass-damping conditions. Large-amplitude vibrations were observed once the mass ratio was less
than a critical value of 0.542. Meanwhile, the extension of large-amplitude response regarding flow
velocity tends to be infinite.

Low mass ratio and high aspect ratio L/D (where L is the structural length) flexible cylinders
(e.g., risers, tendons and marine cables) have been widely used in ocean and offshore engineering;
consequently, much research attention has been made. Willden and Graham [15] numerically studied
the CF VIV of a long (L/D = 1544), flexible pipe in uniform flow field. Its mass ratio varied from 1.0–3.0
and its effect on VIV behaviors was examined. It was shown that the long flexible pipe vibrated in
a multi-modal form and the excited modes responded at the Strouhal frequency. Trim, et al. [16]
conducted experiments to study the VIV response of a marine riser in uniform and linear shear currents.
The riser model had a mass ratio of 1.60 and an aspect ratio of 1405. It was found that in-line (IL)
fatigue damage of the marine riser was as severe as CF fatigue damage. Chaplin, et al. [17] measured
the VIV response of a vertical tension riser in stepped flows by vertically towing a pipe model of
length 13.12 m, diameter 2.8 cm (i.e., L/D = 468.5), and mass ratio 3.0 along a towing tank. It was
observed that CF response could be excited to the 8th mode and the standard deviation of vibration
amplitude ratio was close to 0.53. With the help of digital particle image velocimetry (DPIV) technique,
Xu, et al. [18] investigated the velocity and vorticity fields in the vicinity of a flexible riser with a mass
ratio of 1.35 and an aspect ratio of 181. The Reynolds numbers covered the range of 9400–47,000.
Three vortex modes ‘2P’, ‘2S’, and ‘P+S’ were identified in the near wake of the riser. Huera-Huarte
and Bearman [19,20] performed an experimental investigation on a single vertical riser of length
1.5 m, external diameter 16.0 mm (i.e., L/D = 93.75), and mass ratio 1.8 in a stepped flow. It was
reported that the maximum dimensionless CF vibration amplitude and mean drag coefficient were
approximately 0.7 and 3.0, respectively. Moreover, accompanied by the increasing reduced velocity,
the drag effect was significantly amplified with increasing bi-directional response in the lock-in region.
Song, et al. [21] experimentally studied the VIV response of a long riser model with a mass ratio of
1.0 and an aspect ratio of 1750. CF and IL amplitudes were measured to be almost 2.8D and 1.3D,
respectively. Huera-Huarte, et al. [22] found that, for a flexible cylinder with mass ratios of 1.1 and 2.7,
the maximum VIV displacement amplitude was larger than 3.0D. More recently, our term carried out
towing tank experiments to study the streamwise VIV of a flexible cylinder with a mass ratio of 1.39
and an aspect ratio of 195.5 [23].

Several conclusions can already be drawn from the above literature: (a) the amplitude response
significantly increases with the decrease of mass ratio and mass-damping parameter [7,10,13]; (b) the
VIV characteristic of a low mass ratio cylinder is more complicated than that of a high mass ratio
cylinder due to the influence of the added mass [11,12]; (c) the vibration feature of an elastically
mounted rigid cylinder with critical mass ratio have been studied thoroughly [13,14]. However, up to
now, few works are available on the hydrodynamics of flexible cylinders with very low mass ratios,
despite the experimental works of Seyed-Aghazadeh and Modarres-Sadeghi [24] which investigated
the VIV response of a flexible cylinder of mass ratio 0.47 and aspect ratio 67 by using a reconstruction
algorithm. In this paper, a series of experimental tests were carried out to study the CF VIV responses
of and hydrodynamic forces on a flexible pipe with a critical mass ratio 0.54 and an aspect ratio 181.8.
The displacement amplitude, response frequency, fluid forces (including mean drag force, lift force,
and added mass force) were studied and discussed. It is expected that the present results can improve
the understanding of VIV characteristic of a long flexible and low mass ratio pipe. Thus, they are of
high significance for the design of flexible slender structures in ocean and offshore engineering.
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The organization of the rest of the paper is as follows. Section 2 describes the experimental
setup. Section 3 introduces the reconstruction algorithm used for transferring the strain signals to
displacement responses. Section 4 presents and analyzes the measurement results. Finally, some
conclusions as well as future prospect are drawn in Section 5.

2. Experimental Setup

The experiment was performed in a 137-m-long, 7-m-wide, and 3.3-m-deep towing tank at the State
Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University. The experimental
device mainly consisted of four parts: a polypropylene random (PPR) pipe model, an axial tension
adjustment device, a vertical supporting system, and a horizontal supporting frame. The pipe model
was fixed on a moving carriage. During the tests, it was towed in still water along the water tank to
implement a uniform fluid flow condition. A similar device has been used in our earlier experiments,
in which the streamwise VIV [23] and the VIV reduction of a flexible cylinder fitted with helical
strakes [25,26] were studied. Figure 1 shows the sketch of the experimental setup.
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Figure 1. Sketch of the experimental setup.

The pipe was made of PPR due to its small density and strong deformation resistivity. The mass
per unit length of the PPR pipe model was 0.205 kg/m, so the mass ratio is approximately equal to 0.54.
The value is close to the critical mass ratio of an elastically mounted rigid circular cylinder undergoing
VIV [13,14]. The pipe was 4.0 m long and had a small bending stiffness, EI = 4.88 Nm2 (where E is
the Young’s modulus and I is the moment of inertia). Figure 2 illustrates the seven measurement
positions G1–G7 that evenly distributed along the pipe. At each position, as shown in Figure 3, four
resistance strain gages were pasted to the outer surface of pipe. Among them, two gages were oriented
toward the x-direction (IL) while the other two gages were oriented toward the y-direction (CF). A heat
shrink tube was covered on the outer surface of PPR pipe. In this way, a smooth wall boundary
was implemented and the instrumentation cables and strain gages could be protected and insulated
from the fluid. The final external diameter of the pipe model was 22.0 mm and the aspect ratio was
equal to 181.8.
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(b) measurement position with strain gage; and (c) instrument cables.

The axial pre-tension in the experiment is a parameter needs to be carefully weighed. On the one
hand, there will be a considerable drag-induced IL deflection if the axial pre-tension is small. On the
other hand, a large pre-tension will lead to a very stiff pipe. Thus, high mode responses of VIV can
only be excited in the case of high towing velocities. After a reasonable trade off, two axial tension
forces (T = 200 N and 300 N) were adopted in our experiment. They were exerted through adjusting
the tensioner. A load cell was used to measure real-time axial tension on the vibrating pipe. Free decay
tests were performed in the air and still water, respectively. It showed that the damping ratio of the
pipe in the air was 0.0082 and the CF fundamental frequencies in the water were 2.32 Hz and 2.83 Hz
with respect to the two axial tension forces. All main physical properties of PPR pipe are summarized
in Table 1.

Table 1. Physical properties for the PPR pipe model.

Items Values

Pipe length, L 4.0 m
Outer diameter, D 0.022 m

Bending stiffness, EI 4.88 Nm2

Axial tension, T 200, 300 N
Fundamental frequency, f1 2.32, 2.83 Hz
Mass per unit length, ms 0.205 kg/m
Mass ratio, 4ms/ (πρD2) 0.54

Aspect ratio, L/D 181.8

The vertical supporting system was composed of two vertical supporting rods, two supporting
plates and two guide plates. The vertical supporting rods were fixed to the horizontal supporting
frame at its top end. On the bottom end, it was connected with the supporting plates. Parallel to the
supporting plates, there mounted two guide plates. The guide plates were designed to weaken the
flow disturbance caused by the supporting plates and vertical supporting rods. One end of the pipe
was pinned connected with the guide plate through a universal joint, while the other end was treated
as a simple support condition. Thus, the pipe could bend in both IL and CF directions, but its torsion
and translation were resisted. Furthermore, the axial elongation of the pipe was free. It was controlled
by a steel wire that passed through the hollow poles on the supporting plate and connected to a spring.

The horizontal supporting structure refers to the truss structure that mounted on the moving
carriage. To avoid the free-surface effect, the pipe model was submerged 1.0 m below the still water
level. The scheme of the experimental installation is shown in Figure 4. The towing velocity of
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the carriage ranged from 0.1–1.0 m/s with an increment of 0.05 m/s, yielding a maximum Reynolds
number of 2.2 × 104. A sampling frequency of 100 Hz was adopted. It was in accordance with the
Nyquist–Shannon sampling theorem, so the discrete strain signals were able to reflect the whole
information of a continuous signal. Nearly 40 runs were performed in the experiment. Each run lasted
for a duration of 50 s. Two consecutive runs were brought to at least 15 min halt to calm down the
disturbing water.
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3. Data Analysis

This paper was concerned with the CF displacement response of the pipe model, while the
measured signals were the structural strains at positions G1–G7. Therefore, a reconstruction algorithm
based on the model analysis technique was adopted. It was originally proposed by Lie and Kaasen [27]
and subsequently applied in the experimental works of [16,17,21–23,25–28].

In the linear regime, the CF displacement of a flexible pipe y(z, t) can be written as the sum of the
products of a series of mode shapes and their corresponding modal weights:

y(z, t) =
∑
∞

n=1
wn(t)ϕn(z), (1)

where t is the time, z is the coordinate along the pipe axis, n is the mode number, wn (t) is the modal
weight, and ϕn (z) is the mode shape.

For a simply supported pipe as shown in Figure 2, ϕn (z) has the following form:

ϕn(z) = sin
nπz

L
, (2)

where L is the pipe length.
The curvature of a flexible pipe κ(z,t) is defined as:

κ(z, t) =
y′′ (z, t)[

1 + y′(z, t)2
]3/2

≈ y′′ (z, t), (3)

Also, κ(z,t) can be calculated by:

κ(z, t) =
ε(z, t)

R
, (4)

where ε(z,t) is the strain of the pipe and R is the outer radius of the pipe. Hence:

ε(z, t)
R

= y′′ (z, t), (5)
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Substituting Equation (1) into Equation (5), we have:

ε(z, t)
R

= −
∑
∞

n=1

(nπ
L

)2
wn(t) sin

(nπz
L

)
, (6)

By solving Equation (6) using the strain signals measured at positions G1–G7, the unknown
modal weights wn (t) can be obtained. Note that since seven measurement positions are set, the
infinite expansion on the right hand side of Equation (6) is truncated after the first seven terms. That
is to say, n = 1, 2, . . . , 7. The truncation error of Equation (6) is negligible, because as shown in
Figures 5 and 6 VIV responses of orders higher than three can hardly be observed. After obtaining wn

(t), the CF displacement of at any positions along the pipe axis can be calculated by using Equation (1).
The interested reader is referred to the works of Trim, et al. [16], Chaplin, et al. [17], and Lie and
Kaasen [27] for more details about the modal analysis technique.

Two points need to be mentioned before applying the above approach for displacement
reconstruction. One is that the CR strains measured by strain gages are composed of two parts:
the tensile strain due to the axial pretension and the tensile or compressive strains caused by VIV
bending. Between them, the latter strains should be used when calculating wn(t). They can be obtained
by subtracting the pretension-induced strain measured by the load cell from the composite strains.
The other one is that a band pass filtering operation should be taken to remove the undesirable
frequencies. Frequencies lower than 1.0 Hz are excluded from the strain signal to eliminate the
interference from the carriage and supporting structure. The value is chosen to be less than half of the
fundamental vibration frequency of the pipe in water. Meanwhile, frequencies higher than 40.0 Hz are
cut off to avoid the 50.0-Hz-noise of alternating current (AC) signal. It is sufficiently large to cover
high-order vibration frequencies concerned in this study.

4. Results and Discussion

In this section, the CF VIV features of the flexible pipe of a critical mass ratio is investigated
by sequentially analyzing the strain, displacement, and fluid force. Figure 5 gives an example of
time-varying strains and corresponding response frequencies in the case of towing velocity U = 0.55 m/s
and axial tension T = 200 N. The left panel exhibits strain signals measured at positions G1–G7 within
t = 20–50 s. It is inferred that those positions where strain amplitudes are large are close to the antinodes
of dominant modes. Conversely, those positions with small strain amplitudes are near the mode nodes.
The right panel displays the frequency spectra of strains calculated using the Fast Fourier Transform
(FFT) technique. Although the strain amplitude varies with measurement positions, the response
frequencies are almost identical. It is also found that the CF strain response spectra are dominated
by one or two strong frequencies and accompanied by a series of weak frequencies. It is known that
the odd-order harmonics, such as 3fy ≈ 13.12 Hz, are generally related to the CF VIV. In this case, the
even-order harmonics, such as 2fy, can also be observed in the CF vibration. A similar result was
presented by Song, et al. [21], who experimentally studied the VIV response of a long flexible riser pipe
with a low mass ratio of 1.0. We infer that the even-order CF VIV is induced by the IL VIV response via
those strain gages that could not strictly aligned with the pipe. Specifically, the CF VIV is dominated
by odd-order harmonics while the IL vibration is dominated by even-order ones. The strain gages
were manually pasted to the pipe targeting at an identical direction with the pipe axis. Unfortunately,
this is difficult to be realized. Thus, the micro angle between the strain gage and pipe axis transmits
the even-order IL harmonics to the CF results.

Figure 6a shows the typical CF VIV displacements at positions G1–G7 when U = 0.75 m/s and
T = 300 N. The response displacements are obtained based on the reconstruction algorithm introduced
in Section 3. It can be seen that the maximum displacement amplitude occurs at positions G2 and
G6 and the minimum one appears at position G4. The maximum displacement amplitude is nearly
0.60D. Figure 6b gives the root-mean-square (RMS) of dimensionless displacements along the pipe
axis. Obviously, the VIV response is affected most by the 2-order mode and the maximum CF RMS
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displacement is up to 0.45D. In Figure 6c, the dominant frequency is 6.50 Hz, which is corresponding
to the second-order mode. Moreover, only one strong frequency peak is observed with U = 0.75 m/s
and T = 300 N. This trend of displacement response is consistent with that of a flexible cylinder with
relatively high mass ratio undergoing VIV [21,26,28].
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Figure 5. An example of time-varying strains and corresponding frequency spectra at measuring
positions G1–G7 with U = 0.55 m/s and T = 200 N.
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Figure 6. An example of time-varying displacements with U = 0.75 m/s and T = 300 N: (a) Dimensionless
displacement response for the last 30 s.; (b) spanwise evolution of the RMS displacement; and (c) response
frequencies at different measurement points.

Figure 7 plots the maximum CF displacement against the reduced velocity Vr = U/f 1D (where
f 1 is the fundamental frequency of the pipe model in water). Meanwhile, the experimental results
of Song, et al. [21] and Huera-Huarte, et al. [22] for flexible cylinders with low mass ratio and that
of Govardhan and Williamson [14] for an elastically-mounted rigid cylinder with the critical mass
ratio are compared. It can be seen that a slightly altered pre-tension (T = 200 N and 300 N) does
not make much difference in the maximum CF displacement. The present CF response amplitude
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has a maximum value of 2.18D at Vr = 18.63. With a larger mass ratio m* = 1.0, the maximum CF
displacement in the work of Song, et al. [21] increases to approximately 2.5D. Although the mass ratio is
close to that of Song, et al. [21], the maximum CF displacement of Huera-Huarte, et al.’s [22] experiment
can even reach up to 2.9D. The discrepancy is originated from the different current conditions as well
as the unequal damping ratio. As for the elastically-mounted rigid cylinder with m* = 0.542 [14],
the amplitude peak value is only 1.2D.
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Figure 8 gives the CF dominant mode and dimensionless dominant frequency fy/f 1 against the
reduced velocity Vr. The dominant mode refers to the order of natural frequency fn excited by fy.
It increases with Vr and is within the range of 1-order to 3-order. When Vr < 8, the CF VIV response is
dominated by 1st mode. An exception occurs at Vr≈ 3, where the second mode is observed. The flexible
pipe in the experiment has two degrees of freedom. At low flow velocity, the CF vibration is stabilized
at first mode while the IL vibration mode varies between first-order and second-order. Since the CF
displacement amplitude is comparatively small then that in the IL direction, and inevitably there is
micro direction error when manually pasting a strain gage to the pipe, the measured CF vibration
mode is more or less affected by the high-order IF vibration. As Vr ranging from 8 to 14, the 2nd mode
is excited. When Vr > 14, the third mode dominates the VIV response. The bottom panel of Figure 8
revels that fy increases monotonically with Vr. This trend can be well fitted by a linear regression. Using
the least square method, the slope of the fitting line (i.e., the Strouhal number St = fsD/U, where fs is
the vortex-shedding frequency that is nearly the same as fy in the lock-in region) is found to be 0.184.

A finite element technique proposed by Huera-Huarte, et al. [29] was applied to calculate the
mean drag coefficient of the flexible pipe. It has been extensively used and proved effective in the
VIV studies not limited to the works of [20,22,30,31]. Figure 9 shows the variation of mean drag
coefficient CD0 with the reduced velocity Vr. Some typical results of VIV experiments on flexible
cylinders with low mass ratios [20,22] are also plotted in the figure for comparison. It is observed
Huera-Huarte and Bearman [20]’s experimental result has the same trend as that of Huera-Huarte
and Bearman [22]. CD0 in the work of Huera-Huarte and Bearman [20] increases from 1.4 to 3.3 with
the increase of Vr from 0 to 5.5. Then, as Vr exceeds 5.5 and continues to increase, CD0 decreases from
3.3 to 1.4 gradually. While the maximum CD0 in Huera-Huarte, et al. [22] can approach to 4.5. For the
present work, the peak value of CD0 is nearly 2.0. Furthermore, the present result is not as scattered as
that of Huera-Huarte, et al. [22]. The discrepancy might be attributed to the different axial tensions
employed in the two experiments.
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Under the current experimental techniques, it is still challenging to measure the hydrodynamic
forces exerted on a flexible pipe undergoing VIV without interfering with the flow field. However,
the hydrodynamic forces can be obtained with the help of the inverse analysis method. The flexible
pipe is simplified as a tensioned Euler-Bernoulli beam model. Then, the following equation for CF
vibration can be established [29]:

ms
∂2y(z, t)
∂t2 + c

∂y(z, t)
∂t

+ EI
∂4y(z, t)
∂z4

− T
∂2y(z, t)
∂z2 = Fy(z, t), (7)

In the above equation, Fy (z,t) is the total fluid force in the CF direction [31]:

Fy(z, t) = CL
ρD

2
√

2
.
yRMS(z)

U2 .
y(z, t) −Ca

ρπD2

4
..
y(z, t), (8)

where
.
yRMS(z) is the RMS value of the response velocity

..
y(z, t). CL and Ca denote the lift force

coefficient and added mass coefficient, respectively. They can be calculated using the following
equations [31]:
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CL =
2
√

2
.
yRMS(z)

ρDU2

(λ2λ5 − λ3λ4)

λ2
2 − λ1λ4

, (9)

Ca =
4

ρπD2

(λ1λ5 − λ2λ3)

λ2
2 − λ1λ4

, (10)

λ1–λ5 can be obtained according to following expressions:

λ1 =
∑S

i=1
.
y(z, ti)

2, λ2 =
∑S

i=1
.
y(z, ti)·

..
y(z, ti), λ3 =

∑S
i=1 Fy(z, ti)·

.
y(z, ti),

λ4 =
∑S

i=1
..
y(z, ti)

2, λ5 =
∑S

i=1 Fy(z, ti)·
..
y(z, ti),

(11)

Figure 10 gives the variations of lift force coefficient CL and added mass coefficient Ca of the
flexible pipe against the reduced velocity Vr. It is observed that CL under two axial tension cases
(T = 200 N and 300 N) are nearly the same when Vr is smaller than 4.0. Moreover, in the 1st mode and
3rd mode lock-in regions, axial tension T also makes little influence on CL. Different situations happen
in the 2nd mode lock-in region, where a larger axial tension T = 300 N leads to an overall larger CL.
The maximum CL covering the whole range of Vr is approximate 1.70. The corresponding Vr and T
are 14.45 and 300, respectively. As for Ca, it goes up with the increase of Vr so long as CF VIV does
not occur. Then it turns to decrease with the increase of Vr once lock-in appears at approximately
Vr = 4.0 (as shown in Figure 8). The minimum Ca covering the whole range of Vr is about −0.41.
The corresponding Vr and T are 15.25 and 300, respectively. This above trend can also be observed in
the VIV experiment of Vikestad, et al. [32] where a lightly damped elastically-mounted rigid cylinder
undergoing uniform flow was concerned.
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5. Conclusions and Future Work

A towing tank experiment was conducted to study the CF VIV response of a flexible pipe with a
critical mass ratio of 0.54 and an aspect ratio of 181.8. Two different axial pre-tensions (200 N and 300 N)
were enforced and a reconstruction algorithm was applied to obtain the VIV displacement based on
the measured strains discretely distributed along the pipe.
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The conclusion indicates that the CF strain response of the flexible pipe near the critical mass ratio
is dominated by one or two frequencies and accompanied by a series of weak frequencies. Furthermore,
both odd-order and even-order harmonics can be observed in the CF frequency spectrum. The CF
displacement has a maximum value of 2.18D and the CF dominant mode numbers are in the range of
1–3. The fitting result shows that the present flexible pipe has a Strouhal number of 0.184.

In addition, new fluid force coefficients of a flexible pipe undergoing VIV are supplemented into
the existing dataset. It is hoped to provide reference to the later experimental and numerical studies.
The maximum mean drag coefficient and lift force coefficient are close to 2.0 and 1.7, respectively, in the
present experiment. The added mass coefficient first increases and then declines with the increase of
the reduced velocity. The turning point locates at the reduced velocity at which the lock-in occurs.
Moreover, the minimum added mass coefficient can be as small as −0.41.

In the future, uncertainty quantification (UQ) analysis would be carried out to strengthen the
scientific rigor of the present work. Among various existing methods, a newer approach adopted by
Rezaeiravesh, et al. [33] is being considered.
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